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Abstract

Corticosteroids are standard treatment for patients
with multiple sclerosis experiencing acute relapse.
Because dyspeptic pain is a common side effect of
this intervention, patients can be given a histamine
receptor-2 antagonist, proton pump inhibitor or
antacid to prevent or ameliorate this disturbance.
Additionally, patients with multiple sclerosis may be
taking these medications independent of
corticosteroid treatment. Interventions for gastric
disturbances can influence the activation state of the
immune system, a principal mediator of pathology in
multiple sclerosis. Although histamine release
promotes inflammation, activation of the histamine
receptor-2 can suppress a proinflammatory immune
response, and blocking histamine receptor-2 with an
antagonist could shift the balance more towards
immune stimulation. Studies utilizing an animal model
of multiple sclerosis indicate that histamine receptor-2
antagonists potentially augment disease activity in
patients with multiple sclerosis. In contrast, proton
pump inhibitors appear to favor immune suppression,
but have not been studied in models of multiple
sclerosis. Antacids, histamine receptor-2 antagonists
and proton pump inhibitors also could alter the
intestinal microflora, which may indirectly lead to
immune stimulation. Additionally, elevated gastric pH
can promote the vitamin B12 deficiency that patients
with multiple sclerosis are at risk of developing. Here,
we review possible roles of gastric acid inhibitors on
immunopathogenic mechanisms associated with
multiple sclerosis.
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Introduction
The use of medications to reduce acid production in the
stomach has become an increasingly routine practice in
patient care. Chronic pain, discomfort and swallowing
problems associated with gastroesophageal reflux disease
(GERD) or peptic ulcer disease are widespread in the
population. Use of acid-reducing compounds has become
more common and people have begun taking them routi-
nely for heartburn or dyspepsia. Non-steroidal anti-inflam-
matory drugs and other medications can cause dyspepsia
and peptic ulcers that can be associated with increased
acid secretion [1]. Corticosteroids that are administered to
patients with multiple sclerosis (MS) to promote the reso-
lution of acute relapses [2] can also cause dyspeptic pain
in the upper abdomen associated with increased gastric
acid secretion [3]. Gastric disturbances are regularly mana-
ged with a histamine receptor-2 (H2R) antagonist, proton
pump inhibitor (PPI) or an antacid. These agents can be
administered prophylactically or in response to dyspeptic
pain when the patient is receiving a course of high dose
corticosteroids [2,4-6]. Patients with MS also can take
these drugs as part of their daily routine due to ongoing
dyspepsia, GERD or concomitant illness. Many of these
agents are prescribed by the patients’ primary care physi-
cian and are available as over-the-counter medications for
indigestion or related conditions. These interventions are
generally considered to be safe. We propose that the use
of these agents could have unintended consequences on
the disease process in patients with MS, and perhaps in
other autoimmune conditions.
H2R, PPIs and antacids may directly or indirectly

influence the inflammatory response in patients with
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MS. H2R antagonists (for example, cimetidine, famoti-
dine, nizatidine and ranitidine) act in the stomach by
decreasing the basal and food-stimulated parietal cell
acid secretion. H2R antagonists also act on other cell
types, including endothelial cells at the blood-brain bar-
rier (BBB), mast cells and cells of the immune system
(for example, T-lymphocytes, monocytes and dendritic
cells (DCs)), that play central roles in orchestrating
immune-mediated pathology in MS. Although histamine
release can mediate acute inflammatory events, it can
also influence chronic inflammatory states [7], and evi-
dence suggests that activation of H2R suppresses the
immune response. Thus, the effects of H2R antagonists
could lead to enhancement of a proinflammatory state
that could result in increased disease activity in patients
with MS. PPIs (for example, lansoprazole, omeprazole,
dexlansoprazole, esomeprazole, pantoprazole and rabe-
prazole) irreversibly inhibit the H+/K+ ATPase in parie-
tal cells, which is used to pump protons into the gastric
lumen. In addition, these inhibitors can act on other cell
types including cells of the immune system. Unlike H2R
antagonists, PPIs might promote immune suppression.
Antacids, H2R antagonists and PPIs all result in an
increased gastric pH. A prolonged elevation in gastric
pH can lead to increased levels of bacteria in the sto-
mach and small intestine, which in theory could aggra-
vate inflammation in patients with MS. In this review,
we will compare the immunological effects of different
modalities directed at suppressing gastric acid, and dis-
cuss the potential implications for the disease process in
MS.

Histamine receptor-2 antagonists
Histamine levels in the cerebrospinal fluid (CSF) are
higher in patients with relapsing-remitting MS and pro-
gressive MS compared with control patients [8,9]. Activa-
tion of histamine receptors can stimulate both pro- and
anti-inflammatory pathways, which are mediated through
the differential activation of the four G-protein coupled
receptors, histamine receptor-1 (H1R), H2R, H3R and
H4R [7,10]. In genetically manipulated mice unable to
make histamine [11], or in mice deficient in histamine-
producing mast cells [12], clinical and pathological signs
of experimental autoimmune encephalomyelitis (EAE), an
animal model of MS, are significantly more severe than in
wild-type mice with EAE. This suggests an overall effect of
histamine towards limiting autoimmune brain inflamma-
tion, which is in contrast to the role of histamine in other
inflammatory conditions, such as an allergic response.
Because activation of H2R appears to be a key mechanism
for histamine-mediated immunosuppression, it raises the
question of whether H2R antagonists aggravate disease
activity in patients with MS. H2R is expressed by a variety
of cells, including endothelial and systemic inflammatory

cells [7], and H2R is expressed in EAE by CNS inflamma-
tory infiltrates and possibly microglia and astrocytes [13].
Because H2R antagonists have been shown to gain access
to the brain [14], they can exert effects on inflammatory
cells within the CNS as well as systemically.
Histamine receptor-2 activation promotes a T helper cell 2
response
Active disease in MS is generally thought to be associated
with an overactive T helper cell (Th) 1 response and an
underactive Th2 response. For example, peripheral blood
mononuclear cells from patients with MS secrete
increased amounts of proinflammatory cytokines asso-
ciated with the Th1 response (for example, IFN-g, IL-12
and TNF-a) and release reduced amounts of the anti-
inflammatory cytokine IL-10, associated with Th2 and
regulatory T cell activity [15-17]. In contrast, immune
tolerance and/or disease remission is associated with an
upregulation of the Th2 cytokines (for example, IL-4 and
IL-10) and TGF-b in rodents with EAE [18-22]. The ele-
vated EAE disease activity observed in mice deficient for
histamine production was postulated to be owing to the
absence of suppression via H2R activation, resulting in
an increased Th1 response [11]. Activation of H2R by
dimaprit, a selective H2R agonist, was found to reduce
clinical and pathological signs of disease severity in EAE
(such as ataxia and CNS macrophage accumulation) [23]
and lessen encephalitogenic T cell responses [24]. Con-
versely, using cimetidine to block H2R during EAE
induction in guinea pigs led to a greater incidence of dis-
ease when compared with the incidence in guinea pigs
given saline [25]. Cimetidine also promoted a Th1-
mediated delayed type hypersensitivity reaction, an
inflammatory state with some similarities to EAE [25-27].
In vitro studies demonstrate that H2R agonists mimic

the actions of histamine [28], which inhibits the secretion
of proinflammatory cytokines and stimulates the produc-
tion of anti-inflammatory cytokines in human peripheral
blood mononuclear cells [28-31] (Table 1). Furthermore,
the effects induced by histamine were primarily mediated
by H2R, evidenced by the fact that these effects were
blocked by cimetidine [29,30,32]. In addition, the H2R
mediates suppression of TNF-a production by mast cells
[33]. Thus, histamine, via stimulation of H2R, can result
in a shift of Th1/Th2 balance toward Th2-dominance
(Table 1). Taken together, these studies raise the question
- does selective H2R antagonism negatively influence an
autoimmune state by promoting Th1 responses?
Histamine receptor-2 activation suppresses
proinflammatory T cell responses
Activation and trafficking of T cells into the CNS are
important steps in MS pathogenesis. In fact, drugs that
target these steps (for example, copolymer 1, fingolimod
and natalizumab) reduce the severity and frequency of
clinical relapses in MS [34-36]. H2R-mediated actions

Biswas et al. BMC Medicine 2012, 10:57
http://www.biomedcentral.com/1741-7015/10/57

Page 2 of 10



may represent an intrinsic mechanism that self-limits T
cell activation, proliferation and trafficking, particularly
in the setting of autoimmunity. For example, in vitro
administration of histamine or an H2R agonist inhibits
proliferation and IFN-g production by mouse T cells acti-
vated against an encephalitogenic peptide used for EAE
induction [24].
In an intravital microscopy model mimicking the early

stages of inflammation in EAE, both H1R and H2R acti-
vation reduced the ability of myelin autoreactive T cells
to adhere to inflamed brain vessels in vivo, which is a
crucial step in the development of MS [24]. In an aller-
gic model, H2R activation led to downregulation of leu-
kocyte infiltration into the inflamed tissue [37]. Some
studies suggest that H2R may promote BBB leakage
while H1R may suppress it [38], although H2R or H1R
activation are associated with an increase in endothelial
cell production of IL-6 [39], and IL-6 may act to pro-
mote the maintenance of the BBB [40,41].
If H2R activation leads to the suppression of the T cell

responses, then selective blockage of H2R has the potential
to promote the T cell immune response. Indeed, antagon-
ism of H2R, independent of altering histamine levels,
causes immune stimulation and amplification of an exist-
ing inflammatory event (Table 2). In studies on human or
mouse cells, cimetidine enhances mitogen-stimulated
lymphocyte activation [42,43], reduces histamine-induced
suppression of T cell proliferation [44], reduces the hista-
mine-activated suppressor T cell response in the presence

or absence of mitogen [45,46], facilitates the conversion of
monocytes to macrophages [47] and reverses the hista-
mine-induced suppression of proinflammatory cytokine
synthesis [29,30,32] (Tables 1 and 2). Cimetidine increased
antibody-dependent cellular cytotoxicity of T cells from
patients with MS against primary rat oligodendrocytes
[48]. Cimetidine inhibits regulatory T cell-like activity [49]
and enhances the inflammatory response, to a DNA vac-
cine for example, by promoting humoral and T cell-
mediated responses and inducing IL-12 production while
inhibiting the production of anti-inflammatory cytokines
[50]. Cimetidine can also increase antibody production
and proliferation of mitogen-stimulated splenocytes in
response to an immunogen [51]. Ranitidine causes
immune activation in patients with a head injury [52],
reverses surgery-induced immunosuppression [53-55] and
was reported in a case study to exacerbate lymphocytic
colitis [56]. In addition, H2R are present on basophils and
mast cells and function to suppress the release of hista-
mine and proinflammatory cytokines [33,57]. Together,
these data support an immunostimulatory role of H2R
antagonists, which is likely due to the blockage of H2R-
mediated suppression pathways (Tables 1 and 2).
Histamine receptor-2 activation polarizes dendritic cells and
monocyte function towards a T helper cell 2 response
DCs are professional antigen presenting cells that specia-
lize in the uptake of antigens and their transport from
peripheral tissues to the lymphoid organs. They can also
migrate into the CNS and/or differentiate from microglia

Table 1 Examples of immune effects induced by histamine or histamine receptor-2 agonists

Agent Organism/cell type Response Reference

Dimaprit Mice Attenuates experimental autoimmune encephalomyelitis disease
activity

[23]

Dimaprit
Histamine

Mouse activated T cells Suppresses T cell proliferation, IL-6, IL-10, IL-17 and IFN-g production [24]

H2 agonist
Histamine (reversed by H2R
antagonist)

Human neutrophils Decreases neutrophil chemotaxis response [44]

H2 agonist
Histamine (reversed by H2R
antagonist)

Human T cells Decreases T cell proliferation [44]

H2R agonists
Histamine (reversed by H2R
antagonist)

Human peripheral blood
mononuclear cells

Inhibits secretion of IL-1 and IL-12, and stimulates production of IL-10 [28,29,31]

Histamine
(reversed by H2R antagonist)

Human peripheral blood
mononuclear cells

Inhibits secretion of TNF-a [30]

Histamine
(reversed by H2R antagonist)

Human DCs Suppresses IL-12 production following lipopolysaccharide stimulation
of DCs

[73]

Histamine
(reversed by H2R antagonist)

Human DCs Promotes Th2 response, that is, upregulation of Th2 chemokine
production, by immature DCs

[74]

Histamine
(reversed by H2R antagonist)

Rat mast cells Suppresses TNF-a production [33]

Histamine
(reversed by H2R antagonist)

Human umbilical vein
endothelial cells

Stimulates production of IL-6 [39]

DC: dendritic cell; H2R: histamine receptor-2; IFN-g: interferon gamma; IL: interleukin; Th: T helper cell; TNF-a: tumor necrosis factor alpha.
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[58,59] and can be present in the CSF [60]. Due to their
ability to stimulate naïve T cells, DCs have a central role
in the initiation of a primary immune response. Emerging
data indicate that DCs play an important role in the
initiation of autoimmune attacks in EAE and MS. Specifi-
cally, DC-derived cytokine signals are involved in the dif-
ferentiation and proliferation of autoreactive T cells.
The profile and levels of cytokines secreted by the sti-

mulating DCs determine whether a naïve T cell will
become a Th1, Th17 or Th2 cell. Th1 CD4+ T helper
cells secrete proinflammatory cytokines such as IL-1,
IFN-g and TNF-b, while Th2 type CD4+ T cells secrete
IL-4, IL-5, IL-13 and granulocyte colony stimulating fac-
tor. Th1 cells and Th17 cells, which secrete IL-17, pro-
mote inflammation in MS [61,62]. Experimental studies
have shown that DC-derived signals are critical for
recruiting and maintaining the activity of Th1 and Th17
cells [63]. During disease activity or relapse in MS, there
is a higher proportion of circulating DCs that secrete
IL-12 and IL-23 [64,65]. Increased secretion of IL-12
and IL-23 from DCs, in turn, coincides with significant
increases in pathogenic Th1 [66] and Th17 [67,68]
activity, respectively. Thus, during relapses, Th1 and
Th17 cells are overactive and Th2 activity is downregu-
lated. Conversely, during periods of disease remission,
presumably a shift in DC-derived signals promotes a
reduction of the Th17 cell number to low levels [69],
and CD4+ cells polarize into effector IL-4 and IL-10
producing Th2 cells, resulting in an overall anti-inflam-
matory environment [66,70].
Histamine influences the profile of cytokine produc-

tion by maturing DCs [71]. H2R seems to play a domi-
nant role in the regulation of DC function [71] as
multiple DC subsets express high levels of H2R, whereas
H1R and H4R are differentially expressed [72]. Activa-
tion of H2R on DCs results in polarizing the DCs

towards a Th2-promoting environment via suppression
of IL-12 production [71,73] and an increase in IL-10
synthesis [71,72]. Cimetidine has been shown to block
the effects of histamine in regulating IL-12 production
and Th2 polarization [73,74]. A recent study also
showed that H2R activation led to suppression of blood
monocyte-derived CD1a+ cells, a subset of DCs posses-
sing greater inflammatory properties than the CD1a-

subset, and famotidine was able to block this action
[72].
Direct regulation of DC function by H2R antagonists

has not been shown in MS. However, cimetidine was
found to increase the antigen presenting capacity and
possibly IL-12 secretion of DCs isolated from immuno-
suppressed patients with colorectal cancer [75]. This
implied unmasking of suppressed DC function by cimeti-
dine in cells from these patients. In MS, glucocorticoids
and INF-b can reduce IL-12 secretion by immature
human DCs [76,77], which raises the possibility of a
reversal of DC suppression by cimetidine in patients with
MS similar to immunosuppressed patients with colorec-
tal cancer. The actions of cimetidine in patients with can-
cer were not necessarily solely mediated by H2R, since
similar effects were not seen with famotidine [75].
Implications of histamine receptor-2 antagonists for
patients with multiple sclerosis
Although H2R antagonists have the potential to interfere
with immunosuppressive pathways, it is uncertain
whether they affect the disease course in patients with
MS. The findings from EAE studies supporting a role for
H2R antagonists in disease progression might not trans-
late to MS, that is, the effects of H2R antagonists could
have different effects between mice and humans. Further-
more, there are several competing factors that dictate
whether the immune response will become activated to
promote pathology in MS, and histamine is only one of

Table 2 Examples of immune effects by histamine receptor-2 antagonists

Agent Cell/whole animal Response Reference

Cimetidine Guinea pigs Increases activity of delayed type hypersensitivity and experimental
autoimmune encephalomyelitis incidence

[25]

Cimetidine Mouse T cells Inhibits induction of T suppressor cells [45]

Cimetidine Mouse splenocytes Increases antibody production, and proliferation of mitogen-activated
splenocytes in response to tetanus toxoid

[51]

Cimetidine Mouse T cells Inhibits regulatory T cell-like activity [49]

Cimetidine Human T cells Reduces suppressor T cell response [46]

Cimetidine Human lymphocytes Increases the mitogen-activated T cell response [42,43]

Cimetidine Human DCs Increases the capacity of antigen presentation by DCs from
immunosuppressed cancer patients

[75]

Ranitidine Human T cells Increases CD4+ T cells and mitogen-stimulated IFN-g production from
patients with head injury

[52]

Ranitidine Human monocytes, neutrophils, natural killer cells,
delayed type hypersensitivity

Reverses surgery-induced immune suppression [54,55]

DC: dendritic cell; IFN-g: interferon gamma.
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many mediators influencing the immune balance and
pathogenic course. Thus, it is possible that, in the overall
scheme of a complex disease, blockage of immunosup-
pression pathways via H2R antagonists does not influ-
ence proinflammatory conditions or counteract the
immunosuppressive properties of corticosteroids. Acute
exacerbation of disease activity following the ingestion of
H2R antagonists is unlikely; otherwise several reports
would have been expected describing these events. How-
ever, the possibility that H2R blockers promote a general
increase in disease activity remains, because some pathol-
ogy can be clinically silent in MS [78,79] and the com-
pounding effects of multiple lesions may take years to
impact on the clinical presentation of MS [80]. Although
magnetic resonance imaging (MRI) scans can often show
increased activity in the face of stable clinical features,
the reverse is also true; in other words, gradual clinical
change is often not apparent by MRI. Thus, H2R antago-
nists could aggravate ongoing pathology at a subclinical
level or below the detection limits of MRI. Furthermore,
given the range of histamine responses in the system, and
the number of common drugs that exert some influence
on the histamine pathways, H2R antagonists might influ-
ence disease activity only under a specific set of condi-
tions or only in concert with other medications, thus
making the effects difficult to recognize. To complicate
matters further, some outcome measures revealed a dif-
ference only with one H2R antagonist but not with a sec-
ond antagonist [43,75]. With the large number of
patients taking H2R antagonists, a small, but possibly sig-
nificant effect could easily be missed.
A few cases of increased autoimmune responses have

been reported with these agents. These have included one
case of autoimmune hepatitis in a patient with MS asso-
ciated with rechallenge of ranitidine [81], new skin lesions
in a patient with systemic lupus erythematosus associated
with cimetidine [82], lymphocytic infiltration in patients
with breast cancer associated with famotidine [83], and
exacerbation of psoriasis associated with H2R antagonists
[84].

Proton pump inhibitors
PPIs are routinely used to treat acid-peptic disorders. They
act by blocking gastric acid secretion via inhibition of the
H+/K+ ATPase, the proton pump of the gastric parietal
cells [85]. PPIs can also act on monocytes, neutrophils and
endothelial cells with the result being amelioration of the
immune response [86,87]. Omeprazole [87] and possibly
other PPIs cross the BBB. PPIs may block the activity of
reactive oxygen species [88], which are thought to pro-
mote disease activity in the CNS of patients with MS [89].
The roles of PPIs in MS or in an animal model of MS
have not been adequately studied but, as discussed below,

it is theoretically possible that their action favors a sup-
pressive role on disease activity.
Proton pump inhibitors can cause immune suppression
Several in vitro and in vivo studies have shown that PPIs
can exert anti-inflammatory effects unrelated to the
inhibition of gastric acid production [90]. These anti-
inflammatory effects are seen via their anti-oxidants
activity, cytokine modulation and ability to alter the
expression of adhesion molecules via direct action on
inflammatory cells such as neutrophils, monocytes and
endothelial cells [88]. These effects can persist even
after short-term delivery. As mentioned in the previous
sections, altered cytokine secretion and adhesion mole-
cules expressions in inflammatory cells play important
roles in MS pathogenesis. Thus, it is possible that the
anti-inflammatory properties of the PPIs may contribute
to the beneficial actions of other anti-inflammatory or
immunomodulatory drugs when administered concur-
rently in MS.
Proton pump inhibitors suppress inflammatory responses
by neutrophils and peripheral blood monocytes
Neutrophils have been suggested to promote disease
activity in EAE and MS [91-96]. In EAE, neutrophils have
been detected in CNS inflammatory infiltrates [93,94]
and neutrophil depletion ameliorated EAE activity [94].
Neutrophils have been postulated to induce BBB leakage
during the development of EAE [96] and may be involved
with the onset of axonal pathology [95]. The role of neu-
trophils in MS is less clear. They have been suggested to
be participants in early disease development in the CNS
[95], but may not be present in later stages. In relapsing-
remitting MS, peripheral neutrophils are in a primed
state, which could lead to enhanced activation after infec-
tion. Elevated effector mechanisms by neutrophils in
relapsing-remitting MS include increased degranulation,
elevated oxidative burst and higher levels of neutrophil
extracellular traps [97].
PPIs suppress the production of reactive oxygen species

by neutrophils and monocytes in culture, lessen their
expression of adhesion molecules, and reduce their inter-
actions with endothelial cells [86,88,98-101], which is
necessary for entry into the CNS. Notably, medications
that interfere with cell adhesion to the endothelium are
used to suppress the occurrence of MS relapses, for
example, natalizumab [35]. In addition, lansoprazole
reduced the in vitro production of the proinflammatory
cytokines TNF-a and IL-1b by peripheral blood mono-
cytes [102]. By contrast, cimetidine blocked the inhibition
of neutrophil chemotaxis induced by histamine [44].
Proton pump inhibitors can reduce the inflammatory state
of microglia
Since some PPIs like omeprazole can rapidly penetrate
the BBB [87], they would have the potential to interact
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with microglial cells. Activation of microglial cells may
play an important role in the regulation of autoimmune
inflammation in EAE and MS [103,104]. Activated
microglia are thought to exert toxicity towards neurons
via the production of potentially neurotoxic molecules
such as proinflammatory cytokines and superoxide radi-
cals [105]. For example, lipopolysaccharide (LPS)- and
IFN-g-stimulated human microglia show significant toxi-
city towards neurons in culture [106]. However, when
LPS- and IFN-g-activated human microglial cells were
exposed to lansoprazole or omeprazole, they displayed
less toxicity towards neuroblastoma cells in culture
[107]. Microglia may also perform protective functions,
such as secretion of neurotrophic factors and the pro-
tective cytokines TGF-b and IL-10 [103], thus the role
of PPIs on these functions deserves further study.

Increased gastric pH
The basic function of all the compounds under discus-
sion is to raise the gastric pH either directly or indirectly.
Antacids act directly by neutralizing gastric acid while
H2R antagonists and PPIs act by lessening acid produc-
tion. Common antacids include calcium carbonate, mag-
nesium carbonate, sodium bicarbonate or aluminum
hydroxide, and like H2R antagonists and PPIs they are
available over-the-counter in a number of preparations.
Regardless of the mechanism by which the pH is
increased, a lower level of stomach acid may have nega-
tive consequences for patients with MS. For example,
there is a greater survival of bacteria in the stomach and
small intestine following prolonged treatment with an
acid suppressing agent [108-110]. Interestingly, a lower
bacterial flora in the gastrointestinal tract was found to
lessen the severity of EAE development [111]. The gut
microflora has been shown to affect the innate immune
response [112] and patients with MS have overactive

neutrophils [97]. Increased neutrophil activity has been
proposed to amplify and lengthen inflammation during
an infection in patients with relapsing-remitting MS and
may promote tissue injury and inflammation during MS
[97]. Thus, a greater level of bacteria in the intestinal
tract following a rise in gastric pH could, in theory, wor-
sen the neutrophil response in MS. On the other hand, a
rise in gastric pH has been associated with an increased
risk of developing food allergies through promotion of
Th2 responses [113-116] and the aluminum-based anta-
cid sucralfate may enhance the Th2 effect [117,118]. In
this example, a greater Th2 response due to a greater
gastric pH would be predicted to lessen disease activity
in MS.
When administered over long periods of time, agents

that increase the gastric pH may lead to a deficiency of
vitamin B12, particularly in older individuals [119,120].
Patients with MS can have low levels of vitamin B12
[121,122], suggesting that medications that block gastric
acid production could be contributing to this deficient
status.

Conclusions
A large number of factors modulate the immune response
during different phases of MS; treatment for dyspeptic
pain is one factor that has the potential to affect the
immune response. Managing gastric acid can be a recur-
rent issue faced over the lifetime of patients with MS.
Although not proven, some interventions have the poten-
tial for disease aggravation while others would favor dis-
ease suppression or could be relatively neutral (Table 3).
Although histamine release can result in inflammation,
activation of the H2R is associated with immune suppres-
sion; administration of an H2R antagonist during a preex-
isting proinflammatory condition, such as occurs in MS,
may lead to further immune stimulation. Thus, it is

Table 3 Summary of key effects of acid suppressing agents in relation to multiple sclerosis

Agent Response

H2R antagonists No reports of acute worsening of MS disease status
Increases EAE incidence
Promotes Th1 and Th17 responses
Promotes production of proinflammatory cytokines
Promotes T cell response, for example, proliferation
Promotes suppression of Th2 response
Block suppression of dendritic cells

PPIs No reports of acute worsening of MS disease status
Not studied in EAE
Suppresses reactive oxygen species
Lessens expression of adhesion molecules
Suppresses production of proinflammatory cytokines

Increased gastric pH
(H2R antagonists, PPIs, or antacids)

No reports of acute worsening of MS disease status
Possibly alters microflora in the stomach and small intestine
Possibly alters neutrophil response
Can lead to vitamin B12 deficiency

EAE: experimental autoimmune encephalomyelitis; H2R: histamine receptor-2; MS: multiple sclerosis; PPI: proton pump inhibitor; Th: T helper cell.
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theoretically possible that H2R antagonists aggravate
pathogenesis or lessen the effects of immunosuppressive
drugs. An absence of overt changes in clinical signs follow-
ing administration of H2R antagonists may not be suffi-
cient to dismiss the potential negative effects of these
drugs because much of the ongoing pathology can remain
clinically silent. Besides H2R antagonists, PPIs and anta-
cids can be administered for dyspeptic pain. In contrast to
H2R antagonists, PPIs may have immunosuppressive
properties, although they also can have unwanted side
effects, for example, increased risk of gastric infection.
Antacids as well as H2R antagonists and PPIs could also
indirectly affect the immune system by enabling enhanced
bacterial growth in the stomach and small intestine.
Furthermore, prolonged use of inhibitors of gastric acid
production might promote vitamin B12 deficiency, of
which patients with MS appear to be at risk. We suggest
that further investigations are warranted regarding the
potential consequences of different approaches to the
management of gastric acid in MS, especially over long
periods of time with MS being a chronic condition.
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