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Abstract

Lung cancer is the leading cause of cancer death worldwide in part due to our inability to identify which smokers
are at highest risk and the lack of effective tools to detect the disease at its earliest and potentially curable stage.
Recent results from the National Lung Screening Trial have shown that annual screening of high-risk smokers with
low-dose helical computed tomography of the chest can reduce lung cancer mortality. However, molecular
biomarkers are needed to identify which current and former smokers would benefit most from annual computed
tomography scan screening in order to reduce the costs and morbidity associated with this procedure. Additionally,
there is an urgent clinical need to develop biomarkers that can distinguish benign from malignant lesions found on
computed tomography of the chest given its very high false positive rate. This review highlights recent genetic,
transcriptomic and epigenomic biomarkers that are emerging as tools for the early detection of lung cancer both
in the diagnostic and screening setting.
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Introduction
Lung cancer is the leading cause of cancer death in both
men and women in the US and the world, causing more
than 1 million deaths per year [1-4]. The global cancer
burden in annual cases is projected to double by 2050,
and lung cancer is expected to remain the leading cause
of all cancer deaths during that time. Cigarette smoke
remains the main risk factor for lung cancer, with 85%
to 90% percent of lung cancer cases in the US occurring
in current or former smokers. However, only 10% to
20% of heavy smokers develop lung cancer [5]. While
smoking cessation gradually reduces the risk of lung
cancer, the majority of new lung cancer cases occur in
former smokers. The high mortality in patients with
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lung cancer (80% to 85% in five years) results in part
from our inability to predict which of the 100 million
current and former smokers in the US are at greatest
risk for developing lung cancer, and from the lack of ef-
fective tools to diagnose the disease at an early stage [6].
Recent results published from the National Lung

Screening Trial have shown that screening high-risk
smokers (based on age and cumulative exposure to to-
bacco smoke) with low-dose helical computed tomogra-
phy (CT) can lead to a reduction in both lung cancer
mortality (by 20.0%) and all-cause mortality (by 6.7%)
compared to standard radiographic screening. While this
landmark study is already impacting CT screening guide-
lines and practices across the US, there were a number
of important caveats to the study, including the age (55
to 75 years old) and smoking exposure cutoffs (>30
pack-years) chosen for patient inclusion, and the dura-
tion of annual CT screening (three years). Importantly,
39.1% of all participants in the low-dose CT arm of the
trial had at least one positive screen for lung cancer, and
96.4% of these initial positive screenings represented
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false positives for lung cancer [7]. This overabundance
of false positives could lead to higher screening costs
and unnecessary invasive procedures on many smokers
who do not actually have lung cancer. Thus, there is a
critical need to develop biomarkers that can determine
which of the frequently detected lung nodules on CT
scan are malignant (that is, diagnostic markers), and to
further define the large high-risk population that would
be eligible for screening by CT to increase the efficacy of
screening and to reduce the cost and morbidity associa-
ted with it (that is, screening markers; Figure 1).
The sequencing of the human genome together with

the technological advances that enabled this accomplish-
ment have ushered in a new era of molecular biomarker
development that promises to help address these unmet
needs. This review will summarize recent genetic, trans-
criptomic and epigenomic biomarkers that are emerging
as tools for the early detection of lung cancer (Figure 2),
both in the diagnostic and the screening setting (prog-
nostic and predictive biomarkers will not be covered).
The review will focus on genome-wide studies in clinical
biospecimens (no animal models or cell line studies) that
leverage these emerging high-throughput technologies,
and will review commonality of variants between lung
cancer and chronic obstructive airways disease. Although
there are a number of promising metabolic and proteomic
biomarkers for early lung cancer detection, these fall out-
side the scope of this review [8].

Genome-wide association studies to identify genetic risk
factors for lung cancer
Initial genome-wide associations in lung cancer robustly
implicated SNPs (Table 1) spanning the chromosome
15q25 region encoding the gene cluster of nicotinic
receptors, CHRNA3/A5/B4 [9-12]. Subsequent multi-
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1.33, P = 5.96 × 10−31). Three other large smoking gene-
tics consortia confirmed this locus as that most associated
with smoking quantity [11,14,15].
Therefore, the challenging question was the degree

to which the associations between these chromosome
15q25 variants and lung cancer were due to their effects
on smoking intensity, rather than a direct carcinogenic
effect. The lung cancer association, though statistically
robust, and initially not altered by adjustment for smok-
ing, increasingly appears to be mediated through smok-
ing. However, there is still uncertainty as to the degree
with which the association for lung cancer is mediated
through genetic risk beyond that attributed to smoking
intensity. Saccone et al. [13] showed that locus 1 was asso-
ciated with lung cancer even when controlling for amount
smoked per day (odds ratio = 1.31, P = 1.99 × 10−21),
suggesting possible direct genetic effects of locus 1 on this
cancer, at least in the presence of smoking. Spitz et al.
[16] noted that the lung cancer risk associated with the
variant genotype was highest in the lightest smokers (<20
cigarettes per day) and younger patients (<61 years), argu-
ing a role for genetic susceptibility in these lesser-exposed
groups. Furthermore, they [16] were not able to implicate
this locus as a risk factor in other smoking-related cancers
(bladder and renal), suggesting genetic effects on both
smoking behavior and lung cancer risk.
Surgical
Biopsies

Clinical
Diagnosis

iagnose indeterminate

hest CT Scan to decide 
which individuals need

a surgical biopsy

Early Diagnostic
Biomarkers of 
Lung Cancer

Need #2Need #2

nodules indentified by

e National Lung Screening Trial. While there is a reduction in both
re are still two major unmet needs highlighted by the trial. The first is
T to those with the highest risks. Genetic, transcriptomic and
ers with the highest likelihood of developing lung cancer. The second
ich are false positives for lung cancer. Early diagnostic biomarkers
s before sending patients into surgery.



Figure 2 Biological rationale for addressing clinical issues by using upstream early events that ultimately lead to lung cancer
phenotypes as genomic biomarkers. The diagram highlights early upstream markers for diagnosing or screening of lung cancer far in advance
of the development of clinically evident invasive carcinomas, which are mainly driven by genetic, epigenetic and transcriptomic damage.
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Wang et al. [17] demonstrated that each copy of
chromosome 15q risk alleles was associated with in-
creased cigarette consumption of 1.0 cigarette per day at
rs12914385 and 0.9 cigarettes per day at rs8042374 with,
and concluded that these modest differences in smoking
behavior were sufficient to account for the 15q25 asso-
ciation with lung cancer risk. However, it could also be
argued that cigarettes per day is not a sufficient proxy
for carcinogen exposure [18].
Truong et al. [19] used data from 21 case-control

studies (nine in North America, eight in Europe and
four in Asia) and replicated the association between
chromosome 15q25 SNPs and lung cancer risk (Table 1)
in white ever smokers (odds ratio = 1.26, CI:1.21-1.32,



Table 1 Regions and genes associated with lung cancer and/or chronic obstructive pulmonary disease

Reference Gene Chromosome
region

Population size Platform

[9] CHRNA5, CHRNA3 and CHRNB4,
HTERT,

15q24-25.1 Discovery 1,154 Cases 1,137 Illumina Hapmap 300

CLPTM1L 5p15.33 Replication two sets- Texas 711/632
and UK 2,013/3,062 Caucasian

[10] CHRNA5, CHRNA3 and CHRNB4 15q24-25.1 Discovery 1,989/2,513/4,752 Caucasian Illumina Hapmap 300

HTERT, CLPTM1L 5p15.33

HLA region 6p21

[11] CHRNA5, CHRNA3 and CHRNB4 15q24-25.1 1,024/32,244 Caucasian Illumina (Human Hap300 and Human
Hap300-duo + Bead Arrays, Illumina)

[12] CHRNA5, CHRNA3 and CHRNB4 15q25, 5,739/5,848; Meta-analysis 7,561/13,818
Caucasian

550 K, 610QUAD4, 317 K + 540S

5p15, and 6p21HTERT, CLPTM1L

HLA region

[32] RAD52 12p13.33 5,355/4,344 replication 3,359 squamous
cell /9,100 Caucasian

Variety of platforms 550, 300, Infinium
AB7900 7,700/5,914

[13] CHRNA5, CHRNA3 and CHRNB4 15q25 7,700/5,914 Caucasian PCR 7,700/5,914

[19] CHRNA5, CHRNA3 and CHRNB4 15q25 11,645/14,954 Caucasian and Asian Illumina Omni1-Quad and OmniExpress
chips

HTERT, CLPTM1L 5p15

[27] CHRNA5, CHRNA3 and CHRNB4 15q25 1,094/1,100 Korean PCR 1,094/1,100

HTERT, CLPTM1L 5p15

[29] TP63 3q285 Discovery 2,331/3,077 Replication 6,313/
6,409 Chinese

--

TERT-CLPTM1L p15.33

MIPEP-TNFRSF19 13q12.12

MTMR3-HORMAD2-LIF 22q12.2

[30] GATA3 10p14 Discovery 2,331/3,077 Validation 7,436/
7,483 Chinese

Affymetrix SNP Array 6.0 TaqMan,
iPLEX Sequenom MassARRAY

CYP24A1 20q13.2

PPP2R2B-STK32A-DPYSL3 5q32

IL3-CSF2-P4HA2 5q31.1

AJAP1-NPHP4 1p36.32

[31] LRFN2 6p21.17p15.3 Discovery 2,331/4,006 Replication
2,665/11,436

Affymetrix SNP Array 6.0 chips

SP4 and DNAH11
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P-trend = 2 × 10(-26)) and also confirmed that this associ-
ation was higher at younger age of onset (P-trend = 0.002),
whereas no association was found in never smokers or in
Asian participants. Spitz et al. [16] found no elevated risk
associated with these variants in over 547 lifetime never
smoking patients with lung cancer. Subsequent meta-
analyses of never smokers with lung cancer (Galvan and
Dragani [20] in >1,000 never smokers and >1,800 controls;
and Wang et al. [17] in 2,405 patients and 7,622 controls)
replicated the lack of any statistically significant association
with this locus in never smokers.
Other top hits identified in the GWAS have also been

replicated. A number of well-designed GWAS and meta-
analyses have implicated variants at the 5p15.33 locus in
cancer risk at several different sites, including lung can-
cer in both white and Asian patients [21]. Truong et al.
[19] confirmed the significant association in white pa-
tients for rs2736100 in the chromosome 5p15 locus.
Both Troung et al. [19] and Landi et al. [12] noted a
histology-specific role of rs2736100 in adenocarcinoma.
This locus was also recently implicated in lung cancer
risk in African American patients [22]. There is biologic
plausibility for this finding because mean relative telo-
mere length has been associated with four genetic var-
iants of the hTERT gene, including rs2736100 [23], and
TERT gene amplification is responsible for TERT mRNA
overexpression in a majority of lung adenocarcinomas
[24]. Cleft lip and palate transmembrane protein 1-like
(CLPTM1L) gene also resides in this region of chromo-
some 5 for which copy number gain has been found to
be the most frequent genetic event in early stages of
non-small cell lung cancer. James et al. [25] demonstrated
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increased CLPTM1L expression in lung adenocarcinomas
and protection from genotoxic stress-induced apoptosis
and concluded that anti-apoptotic CLPTM1L function
could be another mechanism of susceptibility to lung tu-
morigenesis. A third region implicated by GWAS in sus-
ceptibility to lung cancer in Caucasians is the human
leukocyte antigen region at chromosome 6p21 [10,26].
The association with SNPs in the 5p15 and 15q25 re-

gions was confirmed in a Korean population with similar
magnitude of effect as reported for other ethnic groups,
but there was no association with the 6p locus [27].
Likewise, the effect of the 5p15 SNP was significant only
for adenocarcinoma. Truong et al. [19] noted no effect
for the chromosome 15q locus, but replicated the as-
sociation with the 5p locus in an Asian population. A
Japanese study [28] confirmed the finding at 5p15.33.
There have been several GWAS in Chinese populations.
Hu et al. [29] replicated findings of significance in both
3q28 (TP53) and at the 5p13 locus (Table 1). They also
reported significance at two additional loci, 12q12 and
22q12 (Table 1). In an attempt to identify additional sus-
ceptibility loci in Chinese patients with lung cancer, Dong
et al. [30] reported genome-wide significance for three
additional lung cancer susceptibility loci at 10p14 (close to
GATA3), 5q32 in PPP2R2B-STK32A-DPYSL3, and 20q13.2
in CYP24A1. They also found additional associations for
rs247008 at 5q31.1 (IL3-CSF2-P4HA2), and rs9439519 at
1p36.32 (AJAP1-NPHP4). There was suggestive evidence
for interactions with smoking dose. Jin et al. [31] noted
that genetic variants at 6p21.1 and 7p15.3 were associated
with risk of multiple cancers in Han Chinese patients, in-
cluding lung cancer. Finally, Shi et al. [32] reported that a
locus on RAD52, involved in DNA double-strand break re-
pair and homologous recombination, influenced risk of
squamous cell lung cancer but not other cell types.
It is likely that many more common variants can be an-

ticipated to contribute to lung cancer risk, although with
effect sizes too small to reach significance in genome-wide
analyses. It has been argued that there are diminishing
returns in predicting disease risk from common marker
SNPs, and greater effort should be spent investigating
functional relevance of the GWAS findings. For example,
evaluating the effect that SNP variation has upon ex-
pression and activity of nicotinic receptors can be explored
by taking advantage of animal and cellular models of
CHRNA3 and CHRNA5 knock-out animals [33,34]. Studies
of cell lines and primary lung cancers can provide insights
into the effects of these variants on proliferation and apop-
tosis; one such study suggested a role of a proteosome gene
in this region beyond the effects of nicotinic receptors [35].
Emerging metabolomic markers may provide useful bio-
marker dosimeters of smoking damage relative to carci-
nogenesis. Certainly, multiple strategies are needed to
further tease apart these complex relationships [18].
Overlap in genetic risk factors for lung cancer and chronic
obstructive pulmonary disease
Lung cancer and chronic obstructive pulmonary disease
(COPD) result from the combined effects of smoking
exposure and genetic susceptibility. Tobacco smoke ex-
posure has been responsible for 80% of lung cancers,
however only 15% to 20% of chronic smokers develop
lung cancer or COPD. Approximately 50% to 90% of
smokers with lung cancer also have COPD. Studies have
shown that COPD is an independent risk factor for lung
cancer among Caucasians and African Americans, con-
ferring a four- to six-fold increased risk. Over the past
few years, several lung cancer risk models have been de-
veloped [36-40], some of which included pulmonary dis-
eases such as COPD and pneumonia. Consistently, the
inclusion of COPD in the models leads to improvement
of the discriminatory power and good calibration [41].
The model with the highest discriminatory power repor-
ted to date is the extended Prostate, Lung, Colorectal
and Ovarian lung cancer risk model [37], which also in-
cludes COPD. This dual susceptibility indicates a link bet-
ween the processes that induce COPD and lung cancer.
Results from recent GWAS suggest a possible overlap

in the genetic risk factors predisposing smokers to lung
cancer and COPD. Several regions in the genome associ-
ated with lung cancer and/or COPD have been identi-
fied, including chromosome 1q21, 4q22, 4q24, 4q31,
5p15, 5q32, 6p21, 6q24, 15q25 and19q13 [9,10,41-49].
Several important genes mapping to those regions have
also been identified as significant players in the pa-
thogenesis of lung cancer and/or COPD (Table 1), and
many of these loci overlap. For example, a variant in the
FAM13A gene has been reported to have a protective ef-
fect in COPD and lung cancer [49]. CHRNA3/5 (15q25)
was reported to be associated with both COPD and lung
cancer [10,48,49] through its effects on both smoking
exposure and COPD. Using mediation analysis, Wang
et al. [50] reported that COPD is a mediating phenotype
that could partially explain the effect of smoking ex-
posure on lung cancer. These findings suggest the pres-
ence of shared susceptibility mechanisms for these two
smoking-related diseases. Such susceptibility may also be
mediated through receptors expressed on the bronchial
epithelium that implicate molecular pathways underlying
both COPD and lung cancer [51]. To date, most of the
lung cancer and COPD genetic studies have been con-
ducted independent of each other, which has contributed
to the mediating effect of one disease over the other be-
ing overlooked [52].

Epigenetic screening and diagnostic markers for lung
cancer
Epigenetics is classically defined as the study of changes in
downstream phenotypes or gene expression that cannot
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be attributed to changes in DNA and is heritable. Another
refined definition is that epigenetics concerns structural
changes in chromosomal regions that are not related to
changes in DNA that mark altered activity states [53].
Two major types of epigenetic regulation are DNA methy-
lation and histone modification, both of which are known
to modulate gene expression. Given that the abundance
of molecular biomarkers in this field have been DNA
methylation-based, this section will focus on DNA methy-
lation studies that hold the potential to impact early lung
cancer detection (Table 2a).
DNA methylation is an epigenetic mechanism marked

by the joining of a methyl group to a cytosine base to
form 5-methylcytosine, typically at a CpG dinucleotide
near or within a CpG island. When CpG dinucleotides
are methylated to a high degree in the promoter region
of a gene, that gene’s expression is usually down-regu-
lated as a result. This is one way that cells can regulate
which genes are expressed (Figure 2) and is a mecha-
nism utilized during cell and tissue differentiation during
development [54]. Aberrant hypermethylation of onco-
genes or hypomethylation of tumor suppressor genes
(Table 2a) is one way that transcriptional regulation can
spiral out of control in cancer cells [55].
Genome-wide methylation profiling has been used to

identify altered methylation patterns in lung cancer tis-
sue (including genes such as CDKN2A, RASSF1A, ARHI,
MGMT and RARβ) [56,57], but so far only one larger
scale study has shown the possibilities of identifying
methylation biomarkers for the diagnostic or screening
setting in noninvasive biospecimens utilizing micro-
array-based technologies. In this study, nine CpGs were
able to discriminate between lung cancer cases and con-
trols with an area under the receiver operator charac-
teristic curve (AUC) of 0.86 [58]. The vast majority of
current methylation studies that could be useful for
screening and diagnostic tests remain at a candidate
gene or gene panel level analysis (Table 2a).
Belinsky et al. [59] originally identified the hyperme-

thylation of CDKN2A in lung tumors but within the
same study also examined the sputum of 33 people who
smoked. In this small initial study, eight patients had
sputum with methylated CDKN2A detected by methyla-
tion-specific polymerase chain reaction (MSP). Of those,
three were diagnosed with lung cancer at the time of
sputum collection and one other would develop lung
cancer a year later [59]. Work on identifying CDKN2A,
as well as MGMT, as a measure of cancer risk and diag-
nosis was expanded in a 21-patient study of matched
sputum and squamous cell carcinoma (SCC) samples as
well as sputum samples from 32 patients evaluated for
possible lung cancer. This study was able to significantly
improve cancer detection and risk using the methylation
status of the two genes compared to cytology alone, with
100% of patients with SCC displaying methylation of
one or both of these genes. More importantly, these
genes were aberrantly methylated up to three years
before diagnosis [60]. By looking at the sputum of lung
cancer-surviving smokers, cancer-free smokers and ne-
ver smokers, then adjusting for age and smoking dura-
tion, MGMT, RASSF1A, DAPK and PAX5α were also
identified as being significantly differently methylated in
the lung cancer survivors. This indicates that aberrant
methylation of a panel of candidate genes could identify
patients with higher risk of lung cancer (lung cancer-
surviving smokers had a 6.2-fold higher odds of having
three or more of these genes methylated in sputum)
[61]. Other genes that have been identified in the spu-
tum with aberrant methylation associated with increased
risk for lung cancer include ASC/TMS1 (increased odds
in cancer patients from 7.2 to 28.6) [62], GATA4, GATA5
and PAX5β (6.5-fold increase in cancer risk with methy-
lation of three or more genes) [63]. Recently, a larger
panel of 31 genes in the sputum was used to identify sig-
natures of stage I lung cancer. It had >70% accuracy and
could predict which smokers had cancer between 3 and
18 months before clinical diagnosis (AUC of 0.71 and
0.77 for the two cohorts in the study) [64].
Other potential distal sites for assessing lung cancer

risk using methylation markers include the serum, plas-
ma and blood leukocytes. Based on evidence that DNA
from tumor cells can be found freely in circulating se-
rum [65], Esteller et al. [66] examined the serum, nor-
mal lung tissue and tumor tissue from 22 patients with
non-small cell lung cancer (NSCLC). They found that
73% of patients had serum DNA that reflected hyperme-
thylation events found in their tumors. Specifically using
MSP, they looked at methylation of CDKN2A, MGMT,
DAPK and GSTP1, genes whose aberrant methylation
profiles have already been shown to associate with lung
cancer risk or diagnosis [66]. A larger study with a
cross-section case-control design looked at the serum
from 200 patients, 91 of whom had lung cancer, 100 had
non-malignant lung disease, and nine had some other
malignant disease. RARβ, CDKN2A, DAPK, RASSF1A
and MGMT were examined, and the analysis showed
that a patient having methylation of just one gene had
an odds ratio of 5.08, meaning they were approximately
five times likely to have lung cancer than patients with-
out any methylated genes. This odds ratio increased in
patients with two or more genes being aberrantly meth-
ylated [67]. Overall, just looking at this limited candidate
gene list, almost 50% of patients with lung cancer dis-
played at least one case of aberrant methylation in their
serum. Other genes with aberrant methylation in serum
DNA have been found to associate with lung cancer risk,
including TMEFF2 [68], RUNX3 [69] and CDH13 [70],
suggesting that many genes in the serum could signify



Table 2 Methylation-, gene-expression- and miRNA-based biomarkers for risks and early detection of lung cancer

Reference Sample type Genetics/
genomics
platform

Clinical settings Key findings

a) Epigenetic biomarkers

[59] Sputum, lung tissue,
biopsies

MSP Lung tissue, precursor lesions and bronchial
biopsies from patients with SCC and sputum
from individuals with suspicion of lung cancer

CDKN21 hypermethylation more often
observed in patients with cancer than with no
cancer

[66] Paired serum and
lung tissue

MSP Lung tissue and serum from patients with
NSCLC and control

73% of patients had serum DNA that reflected
aberrant methylation in their tumors,
specifically in CDKN2A, MGMT, DAPK, GSTP1

[60] Paired sputum and
lung tissue

MSP Lung tissue and sputum from smokers with
SCC

CDKN2A and MGMT were hypermethylated in
both sputum and tumor of patients at time of
diagnosis

[72] Bronchial epithelial
cells, blood
lymphocytes, lung
tissue

MSP Paired blood and bronchial epithelial samples
from smokers/non-smokers with pre-
neoplastic lesions and neoplastic lesions from
individuals with NSCL versus controls

ECAD and DAPK more likely to be methylated
in smokers’ peripheral lymphocytes or
bronchial epithelium and never methylated in
non-smokers

[58] Peripheral blood
leukocytes

Illumina
Beadchip and
Pyrosequencing

Smokers with recently diagnosed SCLC and
controls

Forty-three CpG sites were differentially
methylated between SCLC and controls, and
nine of these, validated by pyrosequencing,
could discriminate SCLC with AUC of 0.86

[71] Paired serum and
lung tissue

MSP Paired serum and lung tissue samples from
individuals with lung cancer and controls

Six-gene serum panel that discriminated
patients with lung cancer with 75% sensitivity
and 73% specificity

b) Transcriptomics biomarkers

[76] Bronchial brushing,
large airway
epithelium

Affymetrix array Bronchial brushings of cytologically normal
large airway eptihelium obtained from
smokers undergoing bronchoscopy for
suspicion of lung cancer

Eighty gene airway biomarker with >80%
diagnostic sensitivity and specificity, and 95%
sensitivity and negative predictive value when
biomarker is combined with cytology
collected at bronchoscopy

[78] Bronchial brushings
from normal airway
bronchial epithelial
cells

(StaRT)-PCR Normal bronchial epithelial cells of patients
with lung cancer and non-lung cancer
controls

Fourteen gene airway biomarkers of
antioxidant, DNA repair and transcription
factor genes with performance in a test AUC
>0.84 and an accuracy of 80%

[86] Peripheral blood
mononuclear cells

cDNA array Blood collection from smokers with newly
diagnosed lung cancer confirmed by
histopathology

twenty-nine-gene blood signature with >80%
sensitivity and specificity

[79] Bronchial brushing
from airway
epithelium

Affymetrix array Bronchial airway brushings of cytologically
normal epithelium from smokers with and
without lung cancer or premalignancy

Gene-expression signature of PI3K signaling
pathway activation was differentially expressed
in airways of smokers with lung cancer or
dysplasia and was reversible with
chemopreventive therapy

[88] Whole blood Sentrix whole
genome bead
chips WG6
(Illumina)

PAX gene-stabilized blood samples from three
independent groups consisting of patients
with NSCLC and controls

Genes differently expressed in whole blood of
patients with NSCLC and controls were used
to build a diagnostic classifier with AUC >0.82

[85] Saliva Affymetrix array Whole saliva collected from untreated patients
with lung cancer with matched cancer-free
controls

Seven highly discriminatory transcriptomic
salivary biomarker with AUC = 0.925 with
>82% sensitivity and specificity

c) MicroRNA biomarkers

[93] Sputum RT-qPCR Sputum from patients with squamous lung
cancer and healthy controls

Three miRNA diagnosed stage I squamous cell
lung cancer with AUC = 0.87

[94] Sputum RT-qPCR Sputum from patients with lung
adenocarcinoma and healthy controls

Four miRNA diagnosed stage I lung
adenocarcinoma with AUC = 0.90

[107] Serum Genoexplorer
microRNA
expression
system

Serum from patients with lung cancer versus
healthy controls

Two miRNA discriminated individuals with
early stages NSCLC with AUC = 0.77
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Table 2 Methylation-, gene-expression- and miRNA-based biomarkers for risks and early detection of lung cancer
(Continued)

[103] Serum Taqman Low
Density Arrays
RT-qPCR

Serum from asymptomatic patients with
NSCLC and healthy smokers. Patients were
screened by low-dose CT and sera were
collected at the time of diagnosis before the
surgery

Thirty-two miRNA predicted risk of developing
lung cancer in asymptomatic high-risk
individuals with an accuracy of 80%

[109] Plasma Taqman Low
Density Arrays
RT-qPCR

Multiple plasma samples were collected
before and at the time of disease, from two
independent spiral CT-screening trials

Fifteen miRNA predicted the risk of lung
cancer with AUC = 0.85 and 13 miRNA
diagnosed lung cancer in undetermined CT
nodules with AUC = 0.88

[110] Plasma RT-qPCR Plasma from patients with lung cancer versus
healthy controls

Four miRNAs discriminated patients with
NSCLC with AUC = 0.93

[105] Serum RT-qPCR Serum from patients with lung cancer versus
healthy controls

Ten miRNAs discriminated patients with
NSCLC with AUC = 0.97
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lung cancer risk and that a larger profile of aberrant
methylation could produce a more accurate biomarker
for lung cancer risk. The work by Begum et al. [71], who
looked at methylation profiles of a slightly larger set of
15 genes and then selected the six most sensitive and
specific genes for predicting lung cancer risk (APC,
CDH1, MGMT, DCC, RASSF1A and AIM1), clearly shows
evidence that a more global methylome approach could
lead to a more sensitive (75%) and specific (73%) bio-
marker of lung cancer risk from serum DNA [71]. Methy-
lation events in plasma, specifically in CDKN2A, MGMT
and RASSF1A [61], as well as in peripheral blood leu-
kocytes [58] and lymphocytes [72,73], are promising less
invasive sites for assessing lung cancer risk through mea-
suring DNA methylation differences.

Transcriptomic biomarkers for screening and diagnosing
lung cancer
Gene-expression profiling or transcriptomics has been
used to delineate disease classification, improve diag-
nostic accuracy, identify new molecular targets for drugs
and provide new biological insights into lung cancer.
High-throughput technologies, such as microarray, and
sequencing platforms allow the measurement of thou-
sands of genes simultaneously, to look for different pat-
tern changes across subsets that help characterize a
particular physiological state or clinical phenotype. In
this section, we will review the diagnostic and screening
transcriptomic biomarkers that have been developed in
the airway and blood of at-risk smokers (Table 2b).

Airway-based transcriptomic biomarkers for early detection
of lung cancer
A number of transcriptomic biomarkers for the early de-
tection of lung cancer have leveraged the so-called field
cancerization or field effect paradigm in which abnor-
malities in gene expression in the normal bronchial mu-
cosa are shared with those found in the tumor. Two
genome-wide gene-expression profiling studies identified
transcriptomic alterations related to smoking that were
found both in the cancer and in the normal lung tissue
[74,75]. The first study analyzed both lung SCC com-
pared to the normal epithelium of the bronchi and ade-
nocarcinoma as compared to the normal alveolar lung
tissue [74]. The second study focused on SCC and nor-
mal bronchial epithelium [75]. Abnormalities in the nor-
mal bronchial tissue that were similar to those identified
in the tumor were seen in tumor suppressor genes and
oncogenes, as well as different functions such as xeno-
biotic metabolism and redox stress, matrix degradation,
and cell differentiation.
Based on these studies, a number of groups have been

using a comparatively easily available specimen, airway
epithelial cells through bronchial brushings, to measure
the changes in gene expression associated with lung
cancer. An 80 gene-expression-based biomarker was de-
veloped in mainstem bronchial airway epithelial cells
that can serve as a sensitive and a specific biomarker for
diagnosing lung cancer among smokers undergoing
bronchoscopy for suspected disease [76]. Importantly,
combining the gene-expression biomarker with cytology
obtained at bronchoscopy resulted in 95% sensitivity and
95% negative predictive value, enabling the physician to
avoid unnecessary further invasive procedures in those
smokers without lung cancer. Furthermore, the biomar-
ker was shown to be associated with lung cancer diagno-
sis independent of clinical and radiographic risk factors
for disease, although the study was limited in terms of
the clinical and radiographic risk factors that were mod-
eled (for example, COPD positron emission tomography
scan results not included) [77]. Later, Blomquist et al.
also reported that a pattern of antioxidant and DNA re-
pair gene expression in normal airway epithelium was
associated with lung cancer [78]. They identified a signa-
ture of 14 genes that discriminates cases versus controls
with an AUC of 0.84 and an accuracy of 80%.
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Beyond diagnosing lung cancer, airway gene expression
has also been used to identify molecular pathways that
are deregulated in the bronchial airway of smokers with
or at risk for lung cancer [79]. A gene-expression signa-
ture of phosphoinositide-3-kinase signaling pathway was
differentially activated in the cytologically normal bron-
chial airway of both smokers with lung cancer and
smokers with pre-malignant airway lesions [76]. Further-
more, that study found that the PI3K pathway gene-
expression signature reverses back to baseline in those
patients whose dysplastic lesions regress upon treatment
with the candidate lung cancer chemoprophylaxis agent
myoinositol. As airway epithelial cell dysplasia is a pre-
neoplastic event in lung carcinogenesis, these data sug-
gest both that PI3K pathway activation is an early and
reversible event during lung carcinogenesis and, more
broadly, that bronchial airway epithelial cell gene expres-
sion reflects carcinogenic processes that precede the de-
velopment of frank malignancy [79]. This suggests that
alterations in airway gene expression are an early and
potentially reversible event in the process of lung car-
cinogenesis that could potentially be used to guide per-
sonalized approaches to lung cancer chemoprevention.
Leveraging the microarray dataset of airway epithelium

from smokers with and without lung cancer [76], Wang
et al. [80] provided additional insight into the molecular
pathways altered in the airway of smokers with lung can-
cer. They identified that the antioxidant response path-
way, regulated by the transcription factor nuclear factor
erythroid-derived 2-like 2, was down-regulated in the
airway of smokers with lung cancer. Furthermore, they
identified potential polymorphisms in the promoter re-
gions of the antioxidant genes that may associate with
decreased airway gene expression in response to tobacco
smoke.
With the emergence of next-generation sequencing as

a more robust tool for transcriptomic profiling, Beane
et al. sequenced the RNA from bronchial airway epithe-
lial cell brushings obtained during bronchoscopy from
healthy never smokers, current smokers and smokers
with and without lung cancer undergoing lung nodule
resection surgery [81]. There was a significant corre-
lation between the RNA-sequencing gene-expression
data and Affymetrix microarray data generated from the
same samples (P <0.001), although the RNA-sequencing
data detected additional smoking- and cancer-related
transcripts whose expression was not found to be signifi-
cantly altered when using microarrays.
Over the past several years, a number of studies have

attempted to move transcriptomic profiling of the airway
in at-risk smokers to biosamples that are less invasive
and more easily collected in population-based studies.
Two separate groups have demonstrated that the buccal
mucosa gene-expression response to smoking mirrors
that seen in the bronchial airway (one study using punch
biopsies of the cheek [82] and the second using buccal
scrapings [83]). Both studies were limited to healthy
smokers and did not assess the relationship of bronchial
and buccal gene expression within the same individual.
More recently, Zhang et al. [84] demonstrated a strongly
concordant gene-expression response to smoking in
matched nasal and bronchial samples from active smo-
kers. These studies raise the exciting possibility that
buccal and nasal swabs could be used as a surrogate to
bronchial brushings for a relatively noninvasive scree-
ning or diagnostic tool for individual susceptibility to
smoking-induced lung diseases. Additionally, Zhang et al.
[85] profiled salivary transcriptomes of recently diagnosed
and untreated smoker and non-smoker patients with lung
cancer and matched cancer-free controls. The study led to
the discovery of seven highly discriminatory transcrip-
tomic salivary biomarkers with 93.75% sensitivity and
82.81% specificity in the pre-validation sample set. Data
suggest that lung cancer transcriptomic biomarker signa-
tures are present in human saliva, which could be clini-
cally used to discriminate patients with lung cancer from
cancer-free controls.

Blood-based transcriptomic biomarkers for early detection
of lung cancer
Although the development of a gene-expression bio-
marker in blood that can be collected in a noninvasive
manner is highly attractive, studies have been relatively
limited by the degradation of circulating mRNA in
serum and plasma. However, gene-expression alterations
identified in lung tumors have been identified in circu-
lating white blood cells by a number of groups. Showe
et al. analyzed gene expression in peripheral blood
mononuclear cell samples of current or former smokers
with histologically diagnosed NSCLC tumors [86]. They
identified a 29-gene signature that separates patients
with and without lung cancer with 86% accuracy (91%
sensitivity, 80% specificity). Accuracy in an independent
validation set was 78% (sensitivity of 76% and specifi-
city of 82%). Rotunno et al. analyzed gene expression
of lung tissue and peripheral whole blood collected
using PAXgene blood RNA tubes from patients with
adenocarcinoma and controls to identify dysregulated
lung cancer genes that could be tested in blood to
improve identification of at-risk patients in the future
[87]. Zander et al. further investigated the validity of
whole-blood-based gene-expression profiling for the
detection of patients with lung cancer among smokers
from three different datasets. They showed that RNA-
stabilized whole-blood samples can indeed be used to
develop a gene-expression-based classifier that can be
used as a biomarker to discriminate between NSCLC
patients and controls [88].
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miRNA biomarkers for the early detection of lung cancer
MicroRNAs are recently discovered small molecules that
play an important role in regulating gene expression.
These noncoding RNAs, in their final active form, are
usually 22 nucleotides in length and target specific parts
or mRNA sequences, usually found in the 3′ untrans-
lated regions of mRNA, which either prevent translation
or promote mRNA degradation, and lead to down-
regulation of specific genes [89]. Because miRNA are
relatively more stable than mRNA [90], any miRNA pro-
files of lung cancer risk or diagnosis are likely to be
more accurate when moving from the bench to the
clinic. This review will focus on large-scale miRNA stud-
ies that have been performed in airway, sputum and
blood for early lung cancer detection (Table 2c).
In bronchial tissue
By global profiling of miRNA in pre-malignant airway
lesions, 69 miRNA were found to evolve in high-risk
patients from a pre-invasive stage to a higher stage in
the multistep process of lung carcinogenesis. The ex-
pression profiles of 30 and 15 miRNAs were able to
discriminate low-grade lesions from high-grade ones
including or not invasive carcinoma [91]. While this
data suggests that airway miRNA expression may serve
as an early detection biomarker, this study was limited
to bronchial biopsies of pre-malignant airway lesions,
which are relatively invasive. As with the gene-expres-
sion studies outlined above, more microRNA profiles
in airway epithelial brushings are needed to advance
the field.
In sputum
Given the relative stability of miRNA in biological speci-
mens, a number of groups have explored the utility of
miRNA-based biomarkers in sputum samples. Xie et al.
[92] showed that miRNA profiles in the sputum could
be used to identify NSCLC. More recently, two studies
were also able to identify and distinguish miRNA pro-
files that could do early detection of SCC [93] or adeno-
carcinoma [94]. Both studies included a test set and a
validation set. A SCC signature of three miRNAs diag-
nosed the presence of a stage I SCC in patients’ sputum
with a sensitivity of 73%, a specificity of 96% and an
AUC of 0.87 in the test set [93]. The adenocarcinoma
signature composed of four miRNA detected patients
with stage I adenocarcinoma with a specificity of 81%,
a sensitivity of 92% and an AUC of 0.90 [94]. There
was no overlap between the two signatures in spu-
tum. In total, seven different miRNAs were identified
in these two signatures and these miRNAs could be
risk factors for lung cancer and be used to diagnose
lung cancer.
In blood
The relative stability of miRNA has prompted numerous
groups to explore the potential utility of a blood-based
miRNA biomarker for early detection of lung cancer.
Ten of these have been specifically looking for circu-
lating miRNA in plasma or serum, whereas five studies
have examined miRNA expression profiles in whole
blood [95-99].
Among the whole-blood miRNA studies, one study

took a candidate approach by analyzing the expression
of let-7a in the blood of patients with NSCLC [97]. The
other four studies screened the expression of larger
panels of miRNA in a small number of patients (range
of 10 to 28 patients per group), not including any
validation set [95,96,98,99]. These studies identified an
miRNA signature discriminating between patients with
lung cancer and healthy controls with a sensitivity and
specificity ranging from 86% to 98% and from 88% to
100%, respectively, using cross-validation within trai-
ning set. Keller et al. [96] have applied next-generation
miRNA-sequencing to whole blood to identify miRNAs
associated with lung cancer. Using ultra-deep (appro-
ximately 25 million reads per sample of small RNA)
sequencing of blood samples from 10 patients with
NSCLC and 10 healthy individuals, they were able to
identify seven entirely novel miRNAs (not annotated in
miRBase at the time) that were significantly altered in
patients with cancer [96]. This relatively small study
demonstrates the potential resolution that miRNA-
sequencing could provide in discovering entirely new
biomarkers for lung cancer.
Seven studies analyzed miRNA expression in serum

[100-106] and three in plasma [107-109]. Six out of
the ten studies included a validation set and four
of the same six studies described the performance of
the test, that is, sensitivity, specificity and/or AUC
[100,101,103,105,107,108]. Notably, only three studies
included samples at earlier time points than diagnosis
[101,102,107], which is required for evaluating miRNAs as
a risk or screening biomarker. Boeri et al. identified
miRNA signatures that predict lung cancer development
and prognosis [107]. They analyzed miRNA expression in
38 patients with lung cancer from the INT-IEO cohort
(training set) and 53 from the MILD trial (validation set).
With a signature composed of a ratio of 15 miRNAs, they
could predict risk of lung cancer in patients with nodules
in the CT screening with a sensitivity of 80%, a specificity
of 90% and an AUC of 0.85. A signature composed of a ra-
tio of 13 miRNAs was able to diagnose lung cancer in
undermined CT-screened lung nodules with a sensitivity
of 75%, a specificity of 100% and an AUC of 0.88. The
study of Boeri et al. [107] is the only work so far directly
addressing the role of biomarkers for the work-up of
CT-screened nodules. In addition to requiring further
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prospective validation, this study might be too complex to
apply in practice. Another more recent study by Bianchi
et al. [101] identified a 34-miRNA profile that could pre-
dict which asymptomatic high-risk individuals were likely
to develop a lung cancer with an accuracy of 80%. Among
the 5,203 high-risk individuals studied, 93 went on to be
diagnosed with NSCLC in the first two years of screening.
Serum was collected before surgery from 59 of these 93
patients, and serum was also collected from 69 matched
control patients who were enrolled in the same study.
Using a training set and test set, they were able to identify
a 34-miRNA biomarker, one which can better identify
lung cancer risk and be more properly used as a screening
test [101].

Free circulating DNA biomarkers
Circulating cell-free DNA (cf-DNA) is a known marker
of cancer cell death and an increase in the prevalence of
cf-DNA in the blood has been used as a marker to dis-
tinguish patients with cancer patients from patients with
no cancer [110,111]. In this section, we will review re-
cent efforts to utilize cf-DNA as a diagnostic and screen-
ing biomarker for differentiating patients with lung
cancer from those without, especially some studies that
have been able to identify changes in cf-DNA that can
distinguish patients with early stage lung cancer from
patients with no cancer.
Utilizing polymerase chain reaction (PCR), Sozzi et al.

[112] examined the levels of plasma DNA in 84 patients
with NSCLC and 43 healthy blood donor controls, and
showed over a range of cutoff points that healthy con-
trols could be distinguished from patients with lung tu-
mors with an AUC of 0.844. They showed that, even in
patients with stage 1a cancer, the amount of circulating
plasma DNA was significantly higher than in the control
patients [112]. Although this study showed the use of
quantifying cf-DNA to distinguish patients with cancer
from healthy controls, only 8 of the 43 controls were
smokers, so smoking may have been a confounding ef-
fect in the cancer diagnosis. Sozzi et al. [113] addressed
this by matching 93 control individuals who smoked
with 100 patients with NSCLC, and were able to dis-
criminate the patients from controls by concentration of
cf-DNA with an AUC of 0.94. They also quantified the
risk such that a unit increase in plasma DNA led to a
21% increase in NSCLC risk [113]. Other studies have
shown that cf-DNA can distinguish patients with benign
lung disease from lung cancer with an AUC of 0.73
[114]. However, in a screening cohort of >1,000 higher
risk smoking volunteers, Sozzi et al. [115] found that
quantification of cf-DNA could not be used to distin-
guish the individuals who would develop lung cancer
from those who did not [115]. Other studies have also
confirmed this finding [116].
In terms of the emerging clinical needs (Figure 1),
these data argue that cf-DNA may not be an effective
marker for screening high-risk smokers, but based on
these and many other cf-DNA studies [117-120], it could
still play a role in diagnosing whether nodules identified
by low-dose CT are either benign or malignant. The field
is also progressing towards the identification of scree-
ning- or diagnostic-specific markers within lung tumor
circulating cf-DNA including methylation markers [68]
and genetic mutations such as epidermal growth factor
receptor mutations [121-123]. Although these develop-
ments are relatively new, the Dawson et al. study [124],
in which genetic alterations could be identified in cf-DNA
that corresponded dynamically with metastatic breast
cancer, shows the potential for identifying novel gen-
omic and genetic biomarkers within cf-DNA to better
stratify patients [124].

Conclusions
As CT screening programs for lung cancer proliferate in
the post-National Lung Screening Trial era, there is an
urgent and growing need to develop and validate bio-
markers that can both help identify those smokers at
highest risk who are most likely to benefit from screen-
ing and help distinguish benign from malignant lesions
found on chest imaging. The recent advances in genetics
and genomics have ushered in an era of genome-wide
studies aimed at identifying molecular biomarkers for
diagnosis and risk for lung cancer. While a number of
promising genetic, transcriptomic and epigenomic mar-
kers have been identified as detailed above, we have yet
to see translation from biomarker discovery to clinical
application.
A review of these studies reveals several important

limitations that will need to be addressed in the coming
years if the field is to advance and have a clinical impact.
First, molecular biomarkers discussed in this review will
need to be validated in multicenter trials on independent
cohorts to demonstrate the validity and generalizability
of the biomarker. Importantly, the biomarkers will need
to be validated in the clinical setting in which they will
be applied. This latter caveat is best addressed at the
biomarker development stage, where molecular markers
are identified among clinical specimens that reflect the
ultimate clinical application (for example, for diagnostic
markers, using specimens collected prior to lung cancer
diagnosis among patient and controls who present with
suspicion of disease). To have clinical utility, these mo-
lecular markers will need to demonstrate performance
metrics that would alter clinical decision making (for
example, having a very high negative predictive value
in the diagnostic setting). They will further need to de-
monstrate that they provide information about cancer
risk and/or diagnosis that is independent of clinical and
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radiographic risk factors that have been well established
for disease. The ultimate translation to the clinic, how-
ever, will require transitioning to analytical platforms
that can be readily applied in the clinic to facilitate phy-
sician adoption as part of their standard of care.
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