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Abstract

Background: Over the last few years, accumulating data have implicated a role for ferritin as a signaling molecule
and direct mediator of the immune system. Hyperferritinemia is associated with a multitude of clinical conditions
and with worse prognosis in critically ill patients.

Discussion: There are four uncommon medical conditions characterized by high levels of ferritin, namely the
macrophage activation syndrome (MAS), adult onset Still’s disease (AOSD), catastrophic antiphospholipid syndrome
(cAPS) and septic shock, that share a similar clinical and laboratory features, and also respond to similar treatments,
suggesting a common pathogenic mechanism. Ferritin is known to be a pro-inflammatory mediator inducing
expression of pro-inflammatory molecules, yet it has opposing actions as a pro-inflammatory and as an
immunosuppressant. We propose that the exceptionally high ferritin levels observed in these uncommon clinical
conditions are not just the product of the inflammation but rather may contribute to the development of a
cytokine storm.

Summary: Here we review and compare four clinical conditions and the role of ferritin as an immunomodulator.
We would like to propose including these four conditions under a common syndrome entity termed
“Hyperferritinemic Syndrome”.

Keywords: Hyperferritinemia, Macrophage activation syndrome (MAS), Adult onset Still’s disease (AOSD),
Catastrophic antiphospholipid syndrome (cAPS), Septic shock
Background
For most clinicians dealing with inflammatory diseases,
serum ferritin levels are a rather non-specific marker of
the acute phase response, which is often ignored or not
measured when the patient presents acutely. In some
diseases, ferritin levels may be extremely high and, while
not specific, these very high levels may be helpful
diagnostically. Four uncommon immune mediated
conditions may be associated with high ferritin levels:
macrophage activation syndrome (MAS), adult onset
Still’s disease (AOSD), catastrophic antiphospholipid
syndrome (cAPS) and septic shock. These disorders
share similar clinical and laboratory presentations and
* Correspondence: Shoenfel@post.tau.ac.il
1Center for Autoimmune Diseases, Sheba Medical Center (affiliated with the
Tel-Aviv University), Tel-Hashomer 52621, Israel
2Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
Full list of author information is available at the end of the article

© 2013 Rosário et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
they also respond to similar treatments, suggesting that
hyperferritinemia may be involved in a common patho-
genic mechanism.
There is increasing evidence that circulating ferritin

levels may not only reflect an acute phase response but
may play a critical role in inflammation [1]. Its secretion
is regulated by pro-inflammatory cytokines and ferritin
has immunosuppressive effects possibly mediated by
binding to its receptor [2]. Different mechanisms may
inhibit the ferritin-mediated suppression of the immune
cells, and in turn, this impaired immunosuppression
may favor the loss of tolerance and the development of
autoimmune diseases [2]. Moderate levels of hyperfer-
ritinemia are associated with autoimmune diseases,
including systemic lupus erythematosus (SLE), rheuma-
toid arthritis (RA), multiple sclerosis (MS) [3-7] and
antiphospholipid syndrome (APS) [8]. Although it is
generally accepted that circulating ferritin levels may
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reflect an acute phase response, the explanation for why
and how serum ferritin is elevated is unknown.
We hypothesize that the huge levels of ferritin seen in

these four clinical conditions are not just a secondary
product of the inflammatory process but rather they
are part of the pathogenic mechanism. Therefore, we
propose to include them under a single nomenclature:
“The Hyperferritinemic Syndrome”.

Ferritin
Ferritin is an iron-binding molecule that stores iron in a
biologically available form for vital cellular processes
while protecting proteins, lipids and DNA from the po-
tential toxicity of this metal element. Ferritin plays a role
in a large number of other conditions, including inflam-
matory, neurodegenerative and malignant diseases [9].
Ferritin is a major intracellular iron storage protein in

all organisms, and its structural properties are largely
conserved through species (Figure 1). Each apoferritin
(iron-free ferritin) shell comprises 24 subunits of two
kinds: H-subunit and L-subunit. Depending on the tissue
type and physiologic status of the cell, the ratio of H- to
L-subunits in ferritin can vary widely, from a predomin-
antly L-subunit rich ferritin in tissues such as liver and
spleen, to H-subunit rich ferritin in the heart and kid-
neys [10]. The expression of ferritin is under delicate
control (Figure 2). The amount of cytoplasmic ferritin is
regulated by the translation of H- and L-ferritin mRNAs
in response to an intracellular pool of “chelatable” or
“labile” iron. In addition to iron, ferritin synthesis is
regulated by cytokines at various levels (transcriptional,
post-transcriptional and translational) during develop-
ment, cellular differentiation, proliferation and inflam-
mation [1]. Expression of ferritin is also regulated by
oxidative stress, hormones (thyroid hormone), growth
factors, second messengers, and hypoxia-ischemia and
Figure 1 Ferritin structure and function. Ferritin is a major intracellular i
largely conserved through species. Apoferritin refers to the iron-free form o
ferritin. Each apoferritin shell comprises 24 subunits of two kinds: a H-subu
status of the cell, the ratio of H- to L-subunits in ferritin can vary widely. Fe
19q13.3, respectively, and both have multiple pseudogenes [1]. H-ferritin p
is involved in nucleation, mineralization and long-term storage of iron [10].
hyperoxia. Lipopolysaccharide (LPS - endotoxin), a com-
ponent of the outer membrane of gram negative bac-
teria, elicits a variety of reactions that involve ferritin; in
animal models the administration of LPS can increase
ferritin expression. Also, cyclopentenone prostaglandins,
which are involved in inflammatory and febrile re-
sponses as well as viral replication, induced L chain fer-
ritin in human monocytes [1].
Hyperferritinemia is associated with several inflamma-

tory conditions, such as sepsis, systemic inflammatory
response syndrome (SIRS), multiorgan dysfunction syn-
drome (MODS), and MAS. In critically ill patients,
hyperferritinemia is associated with the severity of the
underlying disease [13-16]. In one study [14], very high
levels of ferritin (>3,000 ng/ml) were associated with in-
creased mortality in a dose response fashion.
The detailed secretory pathway of serum ferritin is not

completely understood. Hepatocytes, macrophages and
Kupffer cells secrete ferritin [2,17,18]. Serum ferritin is
iron-poor and mainly consists of L-subunits [2]. So far,
iron incorporation is the only L-ferritin function estab-
lished by in vitro studies, but more recent studies
showed that L-ferritin may have a stimulatory effect on
cell proliferation, independent of iron availability. These
findings suggest that L-ferritin may affect some cellular
pathways that remain to be identified [19].
Moreover, there is still the paradox that circulating fer-

ritin mainly consists of L-subunits, whereas most of the
evidence supporting the existence of ferritin receptors
indicates specificity for H-subunits [2].
The role of ferritin as a signaling molecule requires

the presence of a specific receptor. Only the ferritin re-
ceptors expressed on hepatic cells bind both H- and
L-ferritin, while those expressed on the other tissues are
for the H-chain [20]. In an experimental murine model,
the T-cell immunoglobulin and mucin domain (TIM)-2
ron storage protein in all organisms, and its structural properties are
f the protein; the iron-containing form is termed holoferritin or simply
nit and a L-subunit. Depending on the tissue type and physiologic
rritin H- and L-subunits are mapped on chromosomes 11q23 and
lays a major role in the rapid detoxification of iron, while the L-subunit



Figure 2 Control of ferritin expression. The expression of ferritin is regulated at both the transcriptional and post-transcriptional levels by iron,
cytokine release, chemokine production, lipopolysaccharide, prostaglandins, hormones, growth factors, second messengers, hyperoxia and
hypoxia, and oxidative stress [5]. Cytokines may also affect ferritin translation indirectly through their ability to induce nitric oxide synthase and,
hence, increase nitric oxide (NO) (Figure 2) [11,12]. NO, in turn, causes inhibition of ferritin translation. Complex feedback mechanisms between
ferritin and cytokines in the control of pro-inflammatory and anti-inflammatory mediators: cytokines can induce ferritin expression; otherwise,
ferritin can induce the expression of pro- and anti-inflammatory cytokines.
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was identified as a receptor for H-ferritin endocytosis in
B and T cells, liver and kidney [21]. TIM-2 is a member
of the T-cell TIM gene family, which is a family of cell
surface molecules involved in the regulation of immune
responses [17,21]. Recently, another cell surface receptor
for ferritin, Scara5, was identified. Scara5 is a scavenger
receptor that can bind various ligands, and, in contrast
to TIM-2, it preferentially binds L-ferritin [22]. It is ap-
parent that additional ferritin receptors may exist and
have specific roles in different cell populations.
Ferritin and immunity
Ferritin as an immunosuppressant
H-ferritin has immunomodulatory effects, including
suppression of the delayed type of hypersensitivity to in-
duce anergy [23], suppression of antibody production by
B lymphocytes [24], decreasing the phagocytosis by
granulocytes [25], and regulating granulomonocytopoie-
sis [25]. Nevertheless, another ferritin-like molecule, a
cloned human chimeric H-ferritin chain, PLIF (placenta
immunomodulator ferritin), suppresses myelopoiesis and
T cells, supporting the evidence that H-ferritin may have
immunosuppressive functions [26]. The mechanisms
underlying the inhibitory functions of H-ferritin are
largely unknown, and they may include direct or indirect
signaling via specific receptors for H-ferritin on lympho-
cytes [20] or the down-regulation of CD2, which acts
as a cofactor for lymphocyte stimulation [27]. More re-
cent data suggest that H-ferritin may suppress immune
responses by its ability to induce production of the anti-
inflammatory cytokine IL-10 in lymphocytes [28].
In addition to its suppressive effects on hematopoietic

cell proliferation and differentiation, there is also evi-
dence that H-ferritin plays an important role in
chemokine receptor signaling and receptor-mediated cell
migration. H-ferritin is a negative regulator of the CXC-
chemokine receptor 4 (CXCR4). Thus, H-ferritin binding
to CXCR4 impairs the signaling leading to the activation
of mitogen-activated protein kinase (MAPK), a kinase
that is known to play an important role in cell prolifera-
tion, differentiation and migration [29].

Ferritin as a pro-inflammatory mediator
A novel role for extracellular ferritin as a pro-inflamma-
tory signaling molecule in hepatic stellate cells has been
proposed by Ruddell et al. [30]. Cells treated with fer-
ritin activated a TIM-2-independent pathway comprising
PI3 kinase phosphorylation, protein kinase C zeta activa-
tion and MAPK activation, ultimately culminating in
activation of nuclear factor-κB (NF-κB). Activation of
NF-κB in turn enhanced the expression of pro-
inflammatory mediators, including IL-1β, inducible ni-
tric oxide synthase and others. Of great relevance is the
fact that this function was independent of the iron con-
tent of ferritin, suggesting that exogenous ferritin may
assume roles entirely independent of its classic role as
an iron binding protein. Moreover, this study showed
that L-chain-rich tissue ferritin, and recombinant H-
and L-ferritin, all initiated the activation of signaling
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pathways, which clearly suggests a role for serum ferritin
(that is constituted mainly of L-ferritin subunits) as a
pro-inflammatory mediator. Also, it was proposed that
ferritin may play a role in an array of inflammatory/
fibrogenic states associated with infection in organs,
such as the heart, lungs, kidney and pancreas, all of
which have cell types similar to hepatic stellate cells that
mediate the fibrogenic response to injury [17,30].
A comprehensive analysis of the role of ferritin as a

signaling molecule via TIM-2, Scara5 or via as yet un-
identified receptors, will be of great interest and may
lead to a better understanding of the precise role of
circulating ferritin in inflammation.

Ferritin in autoimmune diseases
Hyperferritinemia is known to be associated with auto-
immune diseases, such as SLE, RA and MS [3-7], and
also in serological antiphospholipid syndrome (APS) [8]
(Table 1). The relevance of ferritin in autoimmune dis-
eases is also supported by the finding of autoantibodies
against ferritin in different autoimmune diseases: RA
[31], giant cell arteritis and polymyalgia rheumatica [32]
and Takayasu arteritis [33]. Yet, their importance re-
mains to be established.
The murine TIM gene family is linked to a locus that

regulates airway hypersensitivity and the production of
Th2 cytokines. Furthermore, in many of the animal
autoimmune disease models in which a number of
susceptibility loci have been identified, locus 11, which
includes the TIM gene family, has been found to be
related to susceptibility to autoimmunity [2,34,35].
Some polymorphisms in TIM genes are associated
with immunity-related diseases, such as RA [34,35].
Table 1 Associations between hyperferritinemia and autoimm

Hyperferritinemia (%) Described associations between hyperferri

RA 4% [7] ✓ High concentrations of ferritin are found in

✓ Significant correlations described between se

MS 8% [6,7] ✓ Loss of ferritin binding is involved in, or is a

✓ Ferritin levels are significantly elevated in the se

✓ Hyperferritinemia is associated with male g
whereas an inverse association was noted b

SLE 23% [7] ✓ Serum levels of ferritin during the more act
active stages of SLE [3].

✓ Hyperferritinemia is associated with serositi

✓ ECLAM score is significantly higher in patie

✓ Hyperferritinemia is associated with thromb
patients with active disease [5].

APS Primary APS 8% ✓ In patients with APS syndrome, hyperferritin
cardiac, neurological and hematological ma

Secondary APS 9% [8]

APS antiphospholipid syndrome, DAS28 Disease Activity Score 28, ECLAM European
arthritis, SLE systemic lupus erythematosus.
Additionally, it is known that TIM-2 is a negative regu-
lator of the cells involved in the Th2 immune reaction
[2,36,37]. The fact that ferritin acts as an immunosup-
pressant, together with the finding that TIM-2 is a spe-
cific receptor for ferritin, led Recalcati et al. [2] to
propose that H-ferritin may have a role in autoimmun-
ity. Different mechanisms involving H-ferritin/TIM-2
interactions can inhibit the H-ferritin-mediated suppres-
sion of immune cells. In turn, the impaired immunosup-
pression may favor the loss of tolerance and the
development of autoimmune diseases [2].
Ferritin may also play a role in autoimmunity through

its effects on CXCR4. As previously reported, H-ferritin
is a negative regulator of CXCR4. This chemokine recep-
tor is known to be significantly up-regulated in mono-
cytes, neutrophils, B cell subsets and plasma cells in
murine models of lupus nephritis. Moreover, the treat-
ment of these mice with an antagonist of CXCR4 ame-
liorated end organ disease [38].
As described above, pro-inflammatory cytokines can

induce ferritin expression; in turn, ferritin may induce
the expression of pro-inflammatory cytokines. Moreover,
ferritin induction of anti-inflammatory cytokines (IL-10)
is an important mechanism underlying the immunosup-
pressive effects of ferritin. There seems, therefore, to be
a complex interaction between ferritin and cytokines in
the control of pro-inflammatory and anti-inflammatory
mediators (Figure 2). So, ferritin can be either an
immunosuppressive or a pro-inflammatory molecule.
These opposing effects are probably dependent on
the activation of different pathways, through different re-
ceptors, possibly employing different effectors (that is,
L- versus H-ferritin), and maybe different contexts. In
une diseases

tinemia and autoimmune diseases

synovial fluid and synovial cells of RA patients [5].

rum ferritin levels and disease activity by DAS28 score in RA patients [5].

consequence of, demyelination associated with MS [4].

rum and the cerebrospinal fluid only in chronic progressive active patients [4].

ender and a more progressive type of MS (that is, relapsing-progressive),
etween the milder form of disease (relapsing-remitting) [6].

ive stage of SLE exceeded those of RA patients and patients at less

s and hematological manifestation [4].

nts with hyperferritinemia [5].

ocytopenia, lupus anticoagulant and anticardiolipin antibodies in SLE

emia is associated with the presence of venous thrombotic events,
nifestations [8].

Consensus Lupus Activity Measurement, MS multiple sclerosis, RA rheumatoid
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fact, this last idea resembles the two-hit hypothesis, for
instance, in vivo, for the high levels of ferritin to be
pathogenic it may require a second hit, like a pro-
inflammatory environment, a specific infection or maybe
a particular genetic background. Indeed, this may ex-
plain why in the case of hyperferritinemia-cataract syn-
drome there are high levels of ferritin without an
inflammatory response.
MAS, AOSD, cAPS and septic shock are characterized

by life-threatening hyperinflammation with multi-organ
failure. Below we will review each one of these condi-
tions in turn and Table 2 summarizes their clinical and
laboratory features.

Clinical and laboratory features in mas, AOSD,
cAPS and septic shock
Macrophage activation syndrome (MAS)
Hemophagocytic syndrome, also referred to as hemo-
phagocytic lymphohistiocytosis (HLH), represents a
severe hyperinflammatory condition triggered in most
Table 2 Common clinical manifestations and laboratory abno

Septic shock cAPS

Hyperferritinemia + [15,39] [71%] [8]

Range of ferritin levels (ng/mL)* 21 to 2,210 [15] 250 to 2,875

Hypercytokinemia + [45] + [46], [47

Infection as a trigger [100%] [54] + [46]

Fever + [54] + [56]

Multiorgan involvement [100%] [54] [100%] [46

Hepatomegaly Rare [14] NR

Splenomegaly Rare [14] NR

Hemophagocytosis + [14] NR

Thrombocytopenia + [14], [54] [46%] [58

Anemia + [54] Hemolytic anemia

Leukopenia + [14], [54] NR

Neutropenia + [54] NR

Neutrophilia + [54] + [56]

Macrophage activation + [14] NR

Low/absent NK activity + [14] NR

Sol. IL-2R >2,400 U/ml + [14] NR

Abnormal liver function tests + [54] + [56]

HyperTG + [14] NR

Coagulopathy + [54] DIC [15%] [

Hypofibrinogenemia + [14], [54] [15%] [58

ESR/CRP (↑ or ↓) ↑ [54] ↑ [46]

[%], percentage of association reported in the literature; +, positive association but
CRP C reactive protein, DIC disseminated intravascular coagulation, ESR elevated sed
* There is only our study on cAPS and it is a small cohort, and there are only a few
conditions may be underestimated.
Table 2. All four conditions are life-threatening events in which an uncontrolled and
severe hyperinflammation. There is evidence of hypercytokinemia and hyperferritin
cAPS, for which there is no information in the literature, there is an impaired or abs
cases by infectious agents. Familial forms of HLH are
due to mutations occurring either in the perforin gene
or in genes important for the exocytosis of cytotoxic
granules. Acquired forms of HLH are encountered in
association with infections, autoimmune diseases, malig-
nant diseases and acquired immune deficiency states
(for example, after organ transplantation) [62].
An acquired form of HLH that occurs in autoimmune

diseases is called MAS, and is most frequently seen
complicating systemic juvenile idiopathic arthritis, but
this syndrome has been increasingly reported in patients
with SLE, AOSD, RA and less commonly in spondy-
loarthropathy and vasculitis [49]. MAS, like other forms
of HLH, is characterized by prolonged fever, hepatos-
plenomegaly, cytopenias, high levels of ferritin, triglycer-
ides, transaminases and bilirubin, and low fibrinogen
[62]. Hemophagocytosis is often absent at the disease
onset but is usually found with the progression of the
disease. The soluble IL-2 receptor is a valuable disease
marker because of consistently increased levels during
rmalities: MAS, AOSD, cAPS and septic shock

AOSD MAS

[70 to 89%] [40,41] [87 to 100%] [42]

[8] 223,6 to 54924 [43] 994 to 189,721 [44]

] + [48] + [49-53]

+ [41] + [55]

[82 to 100%] [41] [78 to 94%] [42]

] + [41] + [14,55,57]

[42%] [41] [61 to 88%] [42]

[22 to 65%] [41] [45 to 59%] [42]

+ [3,40] [81%] [42]

] - [89%] [42]

[35%] [58] [68%] [41] [67 to 82%] [42]

- [39 to 56%] [42]

- + [14,55,57]

[81%] [41] -

+ [59] + [14,55,57]

+ [60] + [14,55,57]

+ [48] + [14,55,57]

[73%] [41] [94%] [42]

NR [77 to 100%] [42]

58] Rare [41] + [55]

] Rare [41] [78 to 89%] [42]

↑ [99%] [41] ESR ↓ [79 to 92%] [42] CRP ↑ [61]

not precise percentage reported; -, not associated; NR, no reported association.
imentation rate, hyperTG hypertriglyceridemia, sol. IL-2R, soluble IL-2 receptor.
studies on ferritin levels in sepsis, so the values of ferritin in these two

immune response, triggered in most cases by infectious agents, leads to a
emia during the symptomatic period of the diseases. With the exception of the
ent function in natural killer (NK) and cytotoxic T cells.
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active HLH [55]. MAS is a prototype of a major immune
system activation characterized by enormous levels of
ferritin and severe hypercytokinemia: IL-1β, IFN-γ,
TNF-α, IL-10, IL-6, IL-18, IL-2 and IL-12 [49].
The pathogenesis is poorly understood, but in both

genetic as well as in the acquired cases there is an
impaired or absent function in natural killer (NK) and
cytotoxic T cells [55,63].
Despite the close relationship of MAS with other

forms of HLH, there are important clinical, laboratory
and therapeutic differences that inclusively lead to a pro-
posal of modified criteria for MAS [64]. In contrast to
other forms of HLH, in MAS, cytopenias may be less
severe initially, severe cardiac impairment appears to be
common and coagulopathy is more pronounced, the
C-reactive protein tend to be higher and when the cyto-
kine profile is compared, the pro-inflammatory IL-β is
elevated and the concentrations of IL-6 and TNF-α tend
to be higher [61]. Also, the response to treatment is dif-
ferent and most of the MAS cases respond to less ag-
gressive therapy than do the genetic forms of HLH [55].

Adult onset Still’s disease (AOSD)
AOSD is a systemic inflammatory disorder with un-
known etiology, but it is hypothesized that it may be a
reactive syndrome where various infectious agents may
act as disease triggers in a genetically predisposed host
[65]. It is characterized by fever, arthritis and a typical
skin rash (non-pruritic, salmon-pink macular lesions on
the trunk and extremities) correlating with diurnal fe-
vers. Important laboratory findings include leukocytosis
(predominantly neutrophils) and high levels of ferritin
[40,48]. Elevated serum ferritin levels were seen in 89%
of these patients in some series, nearly half of whom had
levels greater than five times normal [40]. Similarly to
MAS, macrophage activation may play an important role
in hyperferritinemia as well as in the pathogenesis of
AOSD [59]. Heightened soluble IL-2 receptor levels, a
marker of T cell activation, were also reported in two
distinct studies of AOSD patients, serving as a potential
marker of disease activity [66,67]. Furthermore, reactive
hemophagocytic syndrome is not uncommon in AOSD
[3,40]. Recent studies revealed a pivotal role of several
pro-inflammatory cytokines on AOSD, such as IL-1, IL-
6, IL-8, TNF-α and IL-18 in disease pathogenesis. There
are controversial statements concerning the importance
of IL-18 in distinguishing AOSD from other diagnoses
[68,69]. NK T cells are numerically and functionally defi-
cient in AOSD, similar to those observed in SLE, RA
and MAS [60].

Catastrophic antiphospholipid syndrome (cAPS)
The catastrophic variant of the APS syndrome is
characterized by clinical evidence of multiple organ
involvement developing over a very short period of time,
histopathological evidence of multiple small vessel occlu-
sions and laboratory confirmation of the presence of
antiphospholipid antibodies (aPL), usually in high titer.
Approximately 55% of cAPS cases are associated with a
known trigger, such as infection or trauma [47,58,70]. We
found that hyperferritinemia was strongly allied to the
catastrophic variant of APS, present among 71% of cAPS
patients with very high levels of ferritin (>1,000 ng/ml) de-
termined in 36% of patients (although the cohort was
small so the ferritin levels may be underestimated) [8]. Al-
though patients with cAPS represent less than 1% of all
APS patients, this complication can be life-threatening
with a significantly increased mortality rate [46,56,58].
The mechanisms of cAPS are not clearly understood. The
clinical manifestations of cAPS probably depend both on
the organs affected by the thrombotic events, the extent of
the thromboses and on the manifestations of the SIRS
[47]. It is assumed that this multisystem inflammatory
syndrome is caused by cytokine activation, although actual
measurements of cytokine levels in very ill patients with
cAPS have not been undertaken. Cytokines involved in-
clude TNF-α, IL-1, IL-6, IL-18 and macrophage-migration
inhibitory factor [46].
Septic shock
Septic shock is thought to be a SIRS that is activated by
invasive infection. The definition of septic shock includes
sepsis-induced hypotension despite adequate fluid resusci-
tation, along with the presence of organ perfusion
abnormalities, and ultimately cell dysfunction [54]. Hyper-
ferritinemia is also known to be associated with sepsis
[39]. Children with septic shock have hyperferritinemia
and the levels of ferritin are associated with poor outcome
[15]. Pro- and anti-inflammatory hypercytokinemia play a
pivotal role in the pathophysiology of sepsis contributing
to the dysregulation of the host immune system, inflam-
matory response and coagulation system [45,71,72]. De-
creased NK cell activity is found in septic patients and is a
predictor of neonatal sepsis [14].
Efficacy of similar treatment modalities for the four
clinical conditions
Believing that ferritin may be pathogenic in these dis-
eases, it would be expected that its decrease would
ameliorate the clinical condition of the patients with
these diseases. In fact, previously, hyperferritinemia in
sepsis/MODS/MAS was successfully treated with plasma
exchange, intravenous immunoglobulin (IVIG) and
methylprednisone [16]. Indeed, these therapies were
effective modalities, individually or in combination, in
the four clinical conditions as described above (summa-
rized in Table 3).



Table 3 The effectiveness of common treatment modalities: MAS, AOSD, septic shock and cAPS

Corticosteroids IVIG Blood purification/Plasma exchange Others

MAS +++ [55] ++ [55] ++ [16,73-75] Cyclosporine A
[55]

AOSD +++ [41,65] ++ [41,76] + [59,77,78] DMARDs [41,65];
Anti-IL-6 [41,48];
Anti-IL-1 [41,48]

cAPS +++ [46] +++ [46,79,80] +++ [46,81] Anticoagulation
[46,70]

Septic
shock

+/− [54,82,83] +/− [84] ++ [85-88] Antibiotics [54]

Rationale Anti-inflammatory effects of
corticosteroids rely on their ability to

repress the activity of
immunomodulatory transcriptor factors
like NF-κB and activator protein-1 [89].

Direct antitoxic effects, as well as
indirect immunomodulatory
mechanisms of IVIG has been
described in the literature [84].

The overall concept of blood purification
is to attenuate the overwhelming
systemic overflow of pro- and anti-

inflammatory mediators and to restore a
broad-based humoral homeostasis [90].

IVIG probably acts by cytokine- and
pathogen-specific antibodies [55,91].

They are cytotoxic for lymphocytes and
inhibit expression of cytokines and
differentiation of dendritic cells [55].

IVIG prevents release of pro-
inflammatory cytokines in human
monocytic cells stimulated with

procalcitonin [92].

It is an extracorporeal blood purification
technique designed to remove various
toxic and inflammatory mediators and to
replenish essential compounds via the

replacement plasma [16].

+++ first line treatment recommended in international literature, ++ recommended treatment based in series cases reported in the literature, + treatment used in
clinical practice described in case reports, +/− controversial use in clinical practice. AOSD adult onset Still’s disease, cAPS catastrophic antiphospholipid syndrome,
DMARDs disease-modifying antirheumatic drugs, IVIG intravenous immunoglobulin, MAS macrophage activation syndrome,
NF-κB nuclear factor kappaB, NR not reported.
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Corticosteroids harbor anti-inflammatory effects that
rely on their ability to repress the activity of immuno-
modulatory transcriptor factors, such as NF-κB and acti-
vator protein (AP)-1 [89]. They are cytotoxic for
lymphocytes and inhibit expression of cytokines and dif-
ferentiation of dendritic cells [55]. For patients with
MAS, an acquired form of HLH, it has been proven that
a less cytotoxic approach is effective, in contrast to the
genetic forms of HLH in which an aggressive chemoim-
mune therapy is required [16]. In MAS high-dose corti-
costeroids is often used with good response [55]. Also in
AOSD, corticosteroid therapy is effective in approxi-
mately two-thirds of patients [41,48]. Furthermore, in
cAPS, corticosteroids may be considered in all patients
unless an absolute contraindication exists; of course, that
particular caution should be exercised in patients with
infection [58]. Although some studies showed promising
results with the use of corticosteroids in the treatment
of sepsis and septic shock, larger studies and meta-
analyses have failed to reproduce these effects. Hence,
the utilization of corticosteroids in the treatment of sep-
sis remains controversial [82].
IVIG therapy is beneficial in a large number of

autoantibody-mediated or self-reactive T cell-associated
autoimmune diseases [55,91]. Direct antitoxic effects, as
well as the indirect immunomodulatory mechanisms of
IVIG are the basis for the rationale to use these
substances in life-threatening infections and hyperin-
flammatory states [84]. IVIG probably acts by cytokine-
and pathogen-specific antibodies, possibly including
antibodies to ferritin [55,91]. Moreover, IVIG prevents the
release of pro-inflammatory cytokines in human mono-
cytic cells stimulated with procalcitonin [92]. IVIG is an
important modality in the treatment of MAS [93], AOSD
[65,76] and cAPS [79,80]. IVIG is not recommended in
adult patients with septic shock, mainly due to the risk-
benefit ratio and cost effectiveness [84].
Systemic inflammatory response is responsible for an

important immunologic disturbance with the release
into the bloodstream of numerous inflammatory
mediators, such as cytokines, chemokines, complement
components, platelet-activating factor, leukotrienes,
thromboxanes and kinins. The overall concept of blood
purification is, therefore, to attenuate this overwhelming
systemic overflow of pro- and anti-inflammatory media-
tors released at the early phase of sepsis and to restore a
broad-based humoral homeostasis in order to improve
outcome [90]. Plasma exchange is an extracorporeal
blood purification technique designed to remove various
toxic and inflammatory mediators and to replenish es-
sential compounds via the replacement plasma, which is
known also to decrease ferritin levels [16]. It is a suc-
cessful therapy in all four clinical conditions discussed,
although in the case of the AOSD, there are only anec-
dotal cases [59,73-75,77,78,81,85-88].
On the other hand, there are also differences in the

treatment of these conditions, for instance, Cyclosporin
A, as part of the HLH-94 protocol, has been proven to
be effective for maintaining remission in genetic HLH
and for children with MAS [55], but its results in AOSD
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are modest [65]. As well, in cAPS the anticoagulation is
one of the major therapies and is not indicated in the
other conditions.

Discussion
The hyperferritinemic syndrome
The four conditions: MAS, AOSD, cAPS and septic
shock share similar clinical signs, symptoms and labora-
tory parameters (summarized in Table 2). Additionally,
they respond to similar modes of therapies (Table 3).
Clinically, it is difficult to distinguish between these
conditions; in fact, it was previously proposed that se-
vere sepsis, SIRS and MAS could be considered inter-
mediate phenotypes of the same inflammatory process, a
spectrum of molecular abnormalities affecting target
cells killed by cytotoxic T cells and NK cells [14]. More-
over, the overlap between MAS, cAPS and sepsis has
been previously reported [94,95].
Information is emerging about the biological relevance

of ferritin. Ferritin is known to be a pro-inflammatory
mediator inducing expression of inflammatory molecules
[30]. Yet it has opposing actions as a pro-inflammatory
and as an immunosuppressant.
We believe that the very high ferritin levels in these

clinical conditions are not just the product of the inflam-
mation but rather may have a pathogenic role. Possibly,
in an inflammatory environment, as observed in these
diseases, the huge levels of ferritin may be involved in
some sort of a loop mechanism where ferritin’s inflam-
matory proprieties are exacerbated, leading to an ex-
treme expression of additional inflammatory mediators
that are characteristic in the cytokine storm.
The good response to treatment with methylpredniso-

lone, plasma exchange and IVIG supports a common
pathogenic mechanism, and ferritin may be the link be-
tween them. It was previously shown that ferritin levels
decreased gradually after each plasma exchange session
[16]. Furthermore, IVIG may be relevant not only be-
cause antibodies against ferritin may be present, but it
may also prevent the release of pro-inflammatory cyto-
kines [92]. It is also very interesting to realize that the
inhibition of the cytokines that play a central role in
AOSD (IL-1 and IL-6) is an effective treatment, since
they are the same cytokines known to induce ferritin ex-
pression [48]. Macrophages seem to play a major role in
these four conditions. In fact, they are responsible for
the production of cytokines and also appear to be of
utmost importance in the production and secretion of
serum ferritin.
However, not all the patients with these clinical condi-

tions have hyperferritinemia; in fact, in about 10% of the
AOSD patients the ferritin levels are normal [40]. Per-
haps in this subgroup of patients the disease has a differ-
ent etiology with a different pathogenesis. On the other
hand, there are other diseases characterized by high
levels of ferritin, such as hyperferritinemia-cataract syn-
drome that do not have an inflammatory response. Fur-
thermore, the genetic forms of HLH that share clinical
similarities with the four diseases discussed also have
several important differences in the clinical, laboratory
and, mainly, treatment response, which may suggest a
distinct pathogenic features. Another clinical condition
resembles these four that we have described, induced by
the administration of an anti-CD28 monoclonal anti-
body. It led to a pro-inflammatory cytokine storm with
multiorgan failure that responded to treatment with cor-
ticosteroids and hemodiafiltration with high dialysate
rates and fresh frozen plasma. We may speculate that in
this condition ferritin was also elevated, but it was not
measured [96].
Taking this all together, we suggest that the four

conditions: MAS, AOSD, cAPS and septic shock, which
share common clinical and pathogenic features, should
be included under a common syndrome named “Hyper-
ferritinemic Syndrome”.
This concept of hyperferritinemia as a major contribu-

tor in the pathogenesis of these conditions may be ex-
tremely important in considering more targeted therapy.
It is to be hoped that busy clinicians may appreciate the
value of ferritin measurements when managing critically
ill patients and that these assays may be useful in guid-
ing therapy and predicting prognosis.
Further studies are required to understand the possible

pathogenic role of ferritin in these conditions. There are
many unsolved questions in this issue, such as why and
how the serum ferritin is elevated, what is the compos-
ition of ferritin in the different diseases, and whether
there are more receptors for ferritin and how ferritin in-
teracts with them.

Summary

� There is increasing evidence that circulating ferritin
levels may not only reflect an acute phase response
but may play a critical role in inflammation.

� MAS, AOSD, cAPS and septic shock are associated
with very high levels of ferritin.

� These disorders share similar clinical and laboratory
presentations and respond to similar treatments,
suggesting that hyperferritinemia may be involved in
a common pathogenic mechanism.

� We hypothesize that the huge levels of ferritin seen
in these four clinical conditions are not just a
secondary product of the inflammatory process, but
rather, they are part of the pathogenic mechanism.

� We propose to include these four disorders under a
single nomenclature: “The Hyperferritinemic
Syndrome”.
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