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Abstract
Background: Spinal muscular atrophy (SMA) is a neurodegenerative disorder associated with
mutations of the survival motor neuron gene SMN and is characterized by muscle weakness and
atrophy caused by degeneration of spinal motor neurons. SMN has a role in neurons but its
deficiency may have a direct effect on muscle tissue.

Methods: We applied microarray and quantitative real-time PCR to study at transcriptional level
the effects of a defective SMN gene in skeletal muscles affected by the two forms of SMA: the most
severe type I and the mild type III.

Results: The two forms of SMA generated distinct expression signatures: the SMA III muscle
transcriptome is close to that found under normal conditions, whereas in SMA I there is strong
alteration of gene expression. Genes implicated in signal transduction were up-regulated in SMA III
whereas those of energy metabolism and muscle contraction were consistently down-regulated in
SMA I. The expression pattern of gene networks involved in atrophy signaling was completed by
qRT-PCR, showing that specific pathways are involved, namely IGF/PI3K/Akt, TNF-α/p38 MAPK
and Ras/ERK pathways.

Conclusion: Our study suggests a different picture of atrophy pathways in each of the two forms
of SMA. In particular, p38 may be the regulator of protein synthesis in SMA I. The SMA III profile
appears as the result of the concurrent presence of atrophic and hypertrophic fibers. This more
favorable condition might be due to the over-expression of MTOR that, given its role in the
activation of protein synthesis, could lead to compensatory hypertrophy in SMA III muscle fibers.

Background
Spinal muscular atrophy (SMA) is a neurodegenerative
disorder with progressive paralysis caused by the loss of
motor neurons. Mutations of both alleles of the telomeric

survival motor neuron (SMN) gene SMN1 are correlated
with the development of SMA [1]. The SMA phenotype
can be influenced by the variable copy number of the par-
alogous centromeric gene SMN2 [2-4] which, lacking
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exon 7, codifies a protein with reduced self-oligomeriza-
tion and stability [5,6].

SMN is a ubiquitously expressed protein complex impli-
cated in a variety of processes, including the formation
and function of neuromuscular junctions [7,8]. Defi-
ciency of the SMN protein may have a specific effect
within the motor neuron, connected to RNA metabolism
or transcription, which impairs the biogenesis of axons.
SMN may be important in the muscle cell itself, and its
lack might lead to faulty signaling from skeletal muscle [9-
11]. The effect of SMN gene mutations in the degenera-
tion of muscle fibers, independent of motor neurons, is
supported by results obtained in mice with a deletion of
SMN exon 7 restricted to skeletal muscle [10]. In Dro-
sophila melanogaster a sarcomeric SMN protein has been
demonstrated, implicating a muscle-specific function and
underlining the importance of this tissue in modulating
the severity of SMA phenotype [11].

The main pathological trait of SMA muscles is atrophy,
albeit with a variable severity. Many studies have identi-
fied elements of the signaling cascades leading to muscle
atrophy [12-16]. We compared the expression signatures
of human muscles affected by the two extreme forms of
SMA (I and III) to understand which genes, other than
SMN, are involved in muscle-specific SMA pathways and
to understand the mechanisms leading to and sustaining
atrophy in different forms of SMA.

Methods
Characterization of patients with SMA and SMA samples
For this study we analyzed muscle biopsies and genomic
DNA from peripheral blood of four patients with SMA I
and five patients with SMA III from the Neuromuscular
Bank of the University of Padova. The Bank has been
approved by the Ethical Committee of the University of
Padova in compliance with the Helsinki Declaration. The
clinical traits of the patients are summarized in Additional
file 1. Atrophy and hypertrophy values of muscle biopsies
were obtained by comparing the diameters of random
selections of SMA muscle fibers with normal muscle of
similar age (see Additional file 2, Extended Methods for
details of the methodology).

Genomic analysis of patients with SMA
Genomic DNA was isolated from whole blood by the salt-
ing-out procedure [17]. To identify the presence of SMN1
gene deletions in exon 7 and 8, PCR amplifications and
restriction enzyme digestions were carried out according
to the method proposed by Van der Steege et al [18]. Dele-
tions of exon 5 in the NAIP gene were also checked by per-
forming multiplex PCR as proposed by Roy et al [19]. To
identify the number of the SMN2 gene copies we
employed a fluorescence-based competitive PCR assay
previously described by Scheffer et al [20], with modifica-

tions. Primer sequences and experimental conditions
used in multiplexed PCR tests are reported in Additional
file 2.

Microarray experiments
We used a microarray platform containing 4670 muscle-
specific 3'-cDNA fragments that is deposited and
described in the GEO database (GPL2011) [21]. Patient
and control biopsies were taken from quadriceps femora-
lis muscles. Total RNA was purified by the TRIZOL proto-
col and quality checked by Agilent Bioanalyzer 2100. One
microgram of each RNA sample was linearly amplified
using the Amino Allyl MessageAmp II aRNA Amplifica-
tion Kit (Ambion) and labeled with fluorescent amino
allyl-dUTP (Cy3 or Cy5, GE Healthcare). Patient and con-
trol cDNAs, labeled with different dyes, were competi-
tively hybridized to microarray platforms. Each
microarray experiment was done in duplicate, inverting
the labeling dye. Microarrays were read in a Perkin-Elmer
LITE confocal laser scanner, and images were analyzed
with QuantArray Software (GSI Lumonics, Ottawa, Can-
ada). Statistical analysis of data was performed as detailed
in Additional file 2. Expression datasets are compiled
according to the standards proposed by the Microarray
Gene Expression Data Society and are available at the
GEO database with ID series GSE8359.

Real-time quantitative PCR
Real-time quantitative PCR (qRT-PCR) was carried out
using the SYBRTM Green chemistry with GeneAmp 5700
Sequence Detection System (Applied Biosystems). The
sequences of gene-specific primers and experimental con-
ditions are reported in Additional file 2.

Results
Genomic characterization of patients with SMA
We demonstrated a diagnostic deletion of exon 7 and 8 of
the SMN1 gene in all patients with SMA I and III. For the
SMN2 gene we found two copies in all patients with SMA
I and in a single patient with SMA III, and three or four
copies in the remaining four patients with SMA III. We
also studied the NAIP gene, since deletions in this gene
have been associated with SMA [19]. No variation in the
NAIP gene structure was found in any of the SMA
genomes. Table 1 summarizes the results of our genomic
studies.

Expression profiling
RNA from each SMA muscle sample was competitively
hybridized with age-matched muscle control samples to
microarrays. The differential gene expression profiles were
subjected to hierarchical clustering, resulting in the
patients with SMA being classified in two different groups
corresponding to the clinical categorization (Figure 1).
This suggests a different gene profile for each muscle
atrophic condition (SMA I and III). We determined the
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concordance between patient classification resulting from
microarrays and clinical data with prediction analysis for
microarrays (PAM) [22]. The cross-validation test showed
that each patient is assigned to the correct clinical class by
expression signature. In particular, the transcription level
of only 22 significant genes appears to be sufficient to dis-
criminate between SMA I and III profiles, with a misclas-
sification error of 0 (Additional file 3).

The expression data were then analyzed with significance
analysis of microarrays for the identification of differen-
tially expressed genes. We only analyzed transcripts with a
false discovery rate equal to 0, and with values that
showed ratios >0.7 or <-0.7. To study in detail the specific
alterations in gene expression caused by the atrophic con-
dition in different SMA muscles we analyzed four differ-
ent groups of expression data: a) 33 genes that are
differentially expressed in patients with SMA I in compar-
ison with controls (10 up- and 23 down-regulated, Addi-

tional file 4); b) 10 genes differentially expressed in SMA
III in comparison with controls (seven up- and three
down-regulated, Additional file 5); c) 46 genes differen-
tially expressed between SMA I and SMA III (15 up- and
31 down-regulated, Additional file 6); d) 19 genes differ-
entially expressed in both SMA I and SMA III in compari-
son with normal controls (12 up- and seven down-
regulated, Additional file 7). These genes have been classi-
fied with FatiGO into a number of functional categories:
cellular metabolism, muscle contraction, signal transduc-
tion, transport, RNA metabolism, molecular recognition
system, immune/defense response, cell cycle and others.
The similarities in the functional classification of the four
groups of differentially expressed transcripts suggest that
there should be few metabolic mechanisms involved in
the pathological status of SMA muscles.

The analysis of differentially expressed genes in patients
with SMA III (Additional file 5) shows a reduced number

Table 1: Genotype of SMA patients.

Biopsy code SMA
type

Sex Age at biopsy
(years)

SMN1
Deletion

SMN2
copy number

NAIP
deletion

SMA I samples

A 1A M 0,2 7,8 ex. 2 NO

B 1B F 0,3 7 ex. 2 NO

C 1B M 0,5 7,8 ex. 2 NO

D 1B F 0,9 7,8 ex. 2 NO

SMA I control

Cont. 1 NO M 0,6 NO - NO

SMA III samples

E 3A M 7 7 ex. 3 NO

F 3A F 7 7,8 ex. 2 NO

G 3A F 8 7,8 ex. 3 NO

H 3A F 7 7,8 ex. 4 NO

I 3A F 11 7,8 ex. 4 NO

SMA III control

Cont. 2 NO M 8 NO - NO

High-molecular weight genomic DNA was obtained from all patients with SMA type I and III enrolled for this study. This was used to control for the 
presence of SMN1 and NAIP gene deletions and SMN2 copy number. Genomic DNA from age-matched unaffected donors was used to perform 
parallel control analyses.
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of altered genes, mainly involved in signal transduction.
This suggests proximity of SMA III to the normal muscle
condition. Also, the comparison of expression profiles of
SMA I and III (Additional file 6) demonstrates that the dif-
ferences are entirely due to altered genes in SMA I muscles.
It is interesting to note that the lists of differentially
expressed genes shown in Additional files 4 and 6 are sim-
ilar, and that there is also good agreement between these
lists and the discriminate genes obtained with PAM anal-
ysis (Additional file 3).

Finally, Additional file 7 lists deregulated genes that are
shared by the two classes of SMA. As can be seen, these are
the same genes listed in Additional file 5. Therefore
patients with SMA I and III seem to share all those genes
whose expression differentiates SMA III muscles from nor-
mal controls.

Many transcripts involved in glucose and glycogen metab-
olism were found to be down-regulated, mainly in SMA I
(Additional file 4). mRNAs encoding several enzymes cat-
alyzing different steps of glycolysis, the tricarboxylic cycle
and oxidative phosphorylation were reduced. The impair-
ment of cell energy systems seems to be distinctive of the
severe disease. Genes implicated in muscle contraction
were consistently deregulated, mainly in SMA I samples.
Among this class we found genes that codify proteins of
the Z disc such as nebulin (up-regulated), desmin and titin
(down-regulated) and titin-associated such as MYBP-C
(down-regulated). At the same time, some genes regulated
by MYBP-C such as MYH 1 and 7 showed a reduced
expression. The analysis also showed a significant under-
expression of CKM.

qRT-PCR was applied to validate the microarray results.
The following transcripts were studied: Glutathione peroxi-
dase 4 (GPX4) and Muscle creatine kinase (CKM), that
resulted respectively in over and under-expression in SMA
I; Complement factor H (CFH), that resulted in over-expres-
sion in both SMA classes. The results confirm those
obtained with microarray, and also revealed the under-
expression of the CKM transcript in SMA III. This is prob-
ably due to the higher sensitivity of qRT-PCR technology
with respect to microarray [23].

Molecular pathways of atrophy in SMA I and SMA III 
muscles
In SMA muscles we monitored the principal pathways
involved in atrophic conditions, namely the IGF/PI3K/
Akt, TNF-α/p38 MAPK and Ras/ERK pathways. The results
are summarized in Table 2 and indicate a different picture
for SMA I and III. The analysis of transcriptional profiles
showed an under-expression of the eukaryotic translation
initiation factor 4E binding protein 3 gene (eIF4EBP3) only
in SMA I, while in other studies the homologous gene
eIF4EBP was indicated as over-expressed [24]. To study
this discrepancy, we decided to probe by qRT-PCR the
mRNA levels of some of the principal members of IGF/
PI3K/Akt pathway, namely IGF-1R, FRAP1 (MTOR),
FOXO, eIF4EBP1 and FBOX32 (Atrogin-1). The patients
with SMA I showed over-expression of IGF-1R and FOXO,
and under-expression of FBOX32 and eIF4EBP1, confirm-
ing the microarray data. Conversely, in SMA III samples
there is a general under-expression of this group of tran-
scripts, with the exception of MTOR. Therefore, MTOR
over-expression might result in the more favorable SMA
III phenotype due to its positive signal for protein synthe-
sis activation.

Many studies have demonstrated the important role
played by tumor necrosis factor alpha (TNF-α) in regulating
muscle size through apoptosis [25]. The MAPK14 (p38)
gene belongs to TNF-α/p38 MAPK pathway and regulates
MAP kinase interacting serine/threonine kinase (MNK1/
2). MNK2 is down-regulated in patients with SMA I, like
IL-32, a positive regulator of p38 and TNF-α. Finally TXN,
a negative regulator of MEKK5 (ASK1) that is upstream of
p38, is even more up-regulated in SMA I samples. Consid-
ering all these data and the notion that MNK1/2 phospho-
rylates eIF4E [26], we monitored the TNF-α/p38 MAPK
pathway looking for TRAF2 and MAPK14 (p38). SMA I
muscles showed an under-expression of p38 that may be
the protein synthesis regulator. In SMA III there was
instead a general up-regulation of these genes.

Finally, we investigated the Ras/Raf/MEK/ERK pathway,
testing the expression of two members of this pathway
(RRAS2 and ERK) because ERK, like p38, regulates the
MNK1/2 activity. This analysis showed that muscles from
both groups of SMA resulted in the same expression pro-

Hierarchical cluster analysis of SMAI and III profilesFigure 1
Hierarchical cluster analysis of SMAI and III profiles. 
This dendrogram was constructed with the expression pro-
files of SMA muscle biopsies using the complete linkage clus-
ter method and the Euclidean distance measure. Patients 
with SMA are clearly divided into two groups corresponding 
to the clinical classification: cluster 1 for the more severe 
type I and cluster 2 for the milder type III.

Cluster by rows
45

4 0
35

30
25

20

H
e

ig
ht

Agglomerative Coefficient =  0.54

AB
C

D

E
F

G H I
Page 4 of 9
(page number not for citation purposes)



BMC Medicine 2009, 7:14 http://www.biomedcentral.com/1741-7015/7/14
file for these factors: RAS is down-regulated and ERK is up-
regulated.

Correlation of altered molecular pathways with SMA 
muscle histopathology
The different expression data obtained from the SMA I
and III biopsies (Figure 2), and above all the over-expres-
sion of MTOR, led us to investigate for the possible pres-
ence of hypertrophic fibers in SMA III muscle specimens.
Stained sections of the patient biopsies were analyzed and
the diameter of muscle fibers was measured in order to
calculate atrophy and hypertrophy rate. The result of this
investigation (Figure 3) shows that, as expected, both
SMA I and III muscles have an increased rate of atrophy in
comparison with normal muscle of the same type. The
atrophy factor of SMA I is 509 and of SMA III is 1116, the
control varying from 0 to 150. On the other hand, fiber
measurements show an increased hypertrophy phenotype
only for SMA III muscles: the average factor of hypertro-
phy is indeed 680 when the control varies from 0 to 150.

Discussion
We studied the differences in the expression signatures of
muscles affected by the mild (III) and severe (I) SMA phe-
notype. All patients with SMA presented an SMN1 dele-
tion, and the SMN2 copy number was variable and not
correlated with the phenotype severity (see Table 1).

Therefore, the phenotype of these patients is probably
affected by SMN protein level. Deficiency of the SMN pro-
tein could lead to this neuromuscular pathology, having a
specific role in RNA metabolism of motor neurons or trig-
gering a primary involvement of skeletal muscle which
may contribute to motor defects [10]. We investigated
these muscle-specific signals by studying the gene expres-
sion signatures of SMA muscles. The microarray data out-
come gives a different gene expression profile for each of
the two forms of SMA. In SMA III muscles the low number
of genes presenting an altered expression level suggests a
proximity to the normal condition, while in SMA I mus-
cles there is a more complex picture. The hierarchical clus-
tering separates the gene profiles into two groups that
correspond to the clinical classification, identifying a
shortlist of 22 discriminant transcripts out of 4670 meas-
ured by the microarray.

We have compared our results with the list of 'atrogenes'
proposed by Goldberg and colleagues as a set of genes that
are found commonly deregulated in various types of mus-
cle atrophy in mouse and rat [24,27]. The goal was to
understand if the muscular atrophy of patients with SMA
involves the same set of genes or a specific transcriptional
program. There is a different picture for the two SMA phe-
notypes. The great majority of genes deregulated in SMA I
belonging to the functional classes of energy metabolism
and muscle contraction are found among the 'atrogenes'
and show a similar expression alteration. With SMA III
muscles, this concurrence is found for the genes included
in the signal transduction class. This finding indicates
once more that SMA I and III muscles are in different
phases with distinct transcriptional patterns.

Our study show a complex down-regulation of sarcomeric
genes with a reduced metabolic activity more pronounced
in the severe form of SMA. mRNAs encoding several
enzymes of glycolysis, the tricarboxylic acid cycle and oxi-
dative phosphorylation are reduced (Additional file 4).
These changes in gene expression would be expected to
suppress the muscle capacity for utilizing glucose and to
generally reduce energy production in this tissue. The
impairment of the energetic system seems to be distinctive
of the more severe SMA I. Indeed, in SMA III muscles we
found only two under-expressed transcripts: isocitrate
dehydrogenase 2 (IDH2) and adenylosuccinate synthase 1
(ADSSL1), enzymes which function downstream of glyco-
lysis. It might be that in the milder form of SMA only the
final phases of glucose metabolism are impaired, whereas
in the more severe form the impairment is extended also
to glycolysis. Genes implicated in muscle contraction
were also found consistently deregulated, including some
codifying for structural proteins (nebulin, desmin, MYH 1
and 7) as well as for regulative proteins (myosin-binding
protein C), confirming the data obtained by others [28].

Table 2: Real-time quantitative PCR analysis.

SMA I SMA III
Gene Expression value Expression value

IGF-1R +3.2 -2.9

FRAP1
(MTOR)

1 +2.8

FOXO3A +1.3 -1.6

eIF4EBP1 -1.4 -1.7

FBOX32
(Atrogin-1)

-1.6 -1.7

TRAF2 1 +4.2

MAPK14
(p38)

-1.25 +1.6

RRAS2 -2 -2.5

MAPK1
(ERK)

+1.2 +2.4

Expression ratios of selected intracellular signaling molecules of 
atrophy and hypertrophy pathways tested in affected SMAI and III 
muscles versus control muscles (p < 0.05).
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Both the microarray and qRT-PCR experiments showed
the involvement of some molecular pathways that have
been already associated with the establishment and main-
tenance of atrophy in skeletal muscle, namely the IGF/
PI3K/Akt pathway and those that regulate MNK1–2 (TNF-
α/p38 MAPK and Ras/ERK). Figure 2 summarizes these
molecular pathways as determined in the SMA I and III
muscles. Akt-1 activity on FOXO and MTOR leads respec-
tively to inhibition or activation of eukaryotic translation
initiation factor 4E binding protein (eIF4EBP), determin-
ing in turn the depression or the enhancement respec-
tively of cap-dependent protein synthesis [29].

The analysis of these factors, as well as of FBOX32
(Atrogin-1), gives interesting results, indicating two differ-
ent conditions for SMA I and III. In SMA I muscle there is
a 'prolonged' atrophic pathway where FOXO is over-
expressed and potentially able to sustain atrophy. It
should be pointed out, however, that our study is done at
the transcriptional level and it is known that the FOXO
protein needs not only to be up-regulated but also
dephosphorylated to enter the myonuclei and activate
atrogenes. In contrast, probably by a survival mechanism,
there is under-expression of atrogenes downstream of
FOXO such as Atrogin-1 and eIF4EBP. This is in agreement

with expression profiles obtained for denervated mouse
or rat muscles because the expression of these genes in
patients with SMA I correlates closely with the profiles of
animal muscle in advanced stage of atrophy [30,31]. The
inhibition of cap-dependent protein synthesis is probably
due to MNK activity regulated by p38 (down-regulated)
rather than by ERK. The microarray data corroborate this
hypothesis since they show over-expression of thioredoxin
that inhibits ASK1, which is an upstream positive regula-
tor of p38 [32], and under-expression of IL32 that can also
activate p38 [33]. Moreover, it was found that the low
amount of active MNK resulted in a selective increase of
the cap-independent protein synthesis [34]. Therefore, in
SMA muscle the under-expression of MNK might favor
the switching of protein synthesis from cap-dependent to
cap-independent.

The situation of atrophy molecular pathways in SMA III
muscle is very different. IGF-1R, FOXO, Atrogin-1 and
eIF4EBP1 are all down-regulated while MTOR is up-regu-
lated. These results suggest a possible activation of protein
synthesis through the mRNA binding capacity of eIF4
without the inhibiting influence of eIF4EBP. MTOR acti-
vation might therefore prevent a general atrophy degener-
ation, typical of SMA I patients, inducing a compensative

Summary of expression profiles of SMA I and III muscles of different molecular pathways involved in muscle atrophy/hypertro-phyFigure 2
Summary of expression profiles of SMA I and III muscles of different molecular pathways involved in muscle 
atrophy/hypertrophy.

SMA I SMA III

IGF-1 TNF-alphaIGF-1 TNF-alpha
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ERK
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IL-32

TRX
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IGF1R
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CAP
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Panel 1. Fiber size measurements in SMA I and III muscle sections, compared with normal age-matched muscle specimensFigure 3
Panel 1. Fiber size measurements in SMA I and III muscle sections, compared with normal age-matched mus-
cle specimens. Portions of patient biopsies used for microarray experiments were sectioned and stained with haematoxylin 
and eosin. Diameters of sample fibers were obtained and atrophy/hypertrophy values were calculated by the methods 
described in the Additional file 2. Panel 2. Cross-sections of biopsies of quadriceps muscle of patients with SMA I (A) and SMA 
III (B) photographed at the same enlargement. Muscle from a patient with SMA I shows generalized fiber atrophy and few scat-
tered hypertrophic fibres (asterisks; microscope magnification ×200). Muscle from a patient with SMA III shows groups of 
atrophic and normotrophic fibers (on the upper-right) and groups of large hypertrophied fibers (asterisks; microscope magnifi-
cation ×200).

A)

Biopsy
code

Atrophy
factor

Hypertrophy
factor

SMA I 

A 705 85 

B 690 40 

C 213 73 

D 427 13 

mean 509 53 
SMA III 

E 220 210 

F 195 1180 

G 679 609 

H 2051 284 

I 2437 1117 

mean 1116 680 

Control 0 -150 0 -150 

B)
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skeletal muscle hypertrophy [35]. Indeed, the analysis of
the diameter of SMA III fibers shows the presence of a con-
sistent number of hypertrophic fibers that are not detected
in SMA I muscle. The histological analysis of SMA I and III
muscle has also evidenced atrophy. It is probable there-
fore that the transcriptome of SMA III muscle is not very
different from normal muscle, because it is actually the
sum of two opposite transcriptional profiles. Our micro-
array and qRT-PCR analyses have been carried out with
whole muscle biopsies and therefore we have measured
the co-existing atrophy and hypertrophy transcriptional
profiles with the mutual cancellation of some specific sig-
nals, with the exception of MTOR.

Conclusion
We have studied the transcriptional signature of skeletal
muscle tissue affected by spinal muscular atrophy with the
significant analysis of very rare human muscle biopsies of the
severe SMA type I. Other authors have used this approach to
study the transcriptional changes in mouse or rat muscle
undergoing atrophy following different physiopathological
conditions, but this is the first study focused on human mus-
cle tissues affected by a genetically determined atrophic con-
dition. Our work indicates that SMA I and III muscles are in
different phases: the 'prolonged' atrophic condition typical
of the SMA I muscle and the co-existence of atrophy and
hypertrophy in SMA III muscle. In SMA I muscle there is an
extended atrophic pathway with FOXO over-expression, the
under-expression of downstream FOXO atrogenes and p38
as a probable protein synthesis regulator. Conversely, SMA
III muscle appears to have a complex transcriptome arising
from co-existence of atrophic and hypertrophic signals. This
more favorable condition might be caused by the action of
MTOR, whose over-expression could lead to a compensative
hypertrophy.
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