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Abstract

per disability-adjusted life year (DALY), remains unclear.

Background: Current approaches are unlikely to achieve the aggressive global tuberculosis (TB) control targets set
for 2035 and beyond. Active case finding (ACF) may be an important tool for augmenting existing strategies, but
the cost-effectiveness of ACF remains uncertain. Program evaluators can often measure the cost of ACF per TB case
detected, but how this accessible measure translates into traditional metrics of cost-effectiveness, such as the cost

Methods: We constructed dynamic models of TB in India, China, and South Africa to explore the medium-term
impact and cost-effectiveness of generic ACF activities, conceptualized separately as discrete (2-year) campaigns
and as continuous activities integrated into ongoing TB control programs. Our primary outcome was the cost per
DALY, measured in relationship to the cost per TB case actively detected and started on treatment.

Results: Discrete campaigns costing up to $1,200 (95% uncertainty range [UR] 850-2,043) per case actively detected
and started on treatment in India, $3,800 (95% UR 2,706-6,392) in China, and $9,400 (95% UR 6,957-13,221) in South
Africa were all highly cost-effective (cost per DALY averted less than per capita gross domestic product). Prolonged
integration was even more effective and cost-effective. Short-term assessments of ACF dramatically underestimated
potential longer term gains; for example, an assessment of an ACF program at 2 years might find a non-significant 11%
reduction in prevalence, but a 10-year evaluation of that same intervention would show a 33% reduction.

Conclusions: ACF can be a powerful and highly cost-effective tool in the fight against TB. Given that short-term
assessments may dramatically underestimate medium-term effectiveness, current willingness to pay may be too low.
ACF should receive strong consideration as a basic tool for TB control in most high-burden settings, even when it may
cost over $1,000 to detect and initiate treatment for each extra case of active TB.

Keywords: Mathematical Modeling, Screening, Cost-Effectiveness, Active Case Finding, Tuberculosis, TB

Background

Global targets for tuberculosis (TB) control now in-
clude a 95% reduction in TB deaths and less than 10
cases per 100,000 population by 2035 [1]. Such targets will
not be met without strategies to diagnose and treat people
with active TB earlier in their disease course [2-4]. Recent
World Health Organization (WHO) guidelines recom-
mend, for the first time, routine TB screening of certain
high-risk groups (e.g., people living with HIV) [5], and
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active TB case finding is increasingly becoming part of an
essential package of TB prevention and care. However,
with limited resources available to improve health world-
wide, it is critical to implement those interventions likely
to provide greatest impact and value for money.

Although passive (symptom-driven) diagnosis and
treatment of sputum smear-positive TB is among the
most cost-effective health interventions available, most
economic evaluations of TB interventions have not, to
date, included active TB case finding [6]. As such, the
potential impact and cost-effectiveness of active case
finding (ACF) remains largely unknown. Recently, a large
community-randomized trial in Zambia and South Africa

© 2014 Azman et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:ddowdy1@jhmi.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Azman et al. BMC Medicine 2014, 12:216
http://www.biomedcentral.com/1741-7015/12/216

found non-significant reductions in community-wide TB
prevalence and incidence from a household-based contact
investigation intervention, and no impact of community-
based enhanced case-finding, but was only powered to
detect a very large effect (30% prevalence reduction
over 4 years) [7]. Similarly, a systematic review of earlier
evidence concluded that the population-level effect of
active TB case finding remains uncertain [8].

Though population-level reduction in TB incidence
and prevalence has been difficult to demonstrate empir-
ically, active case-finding initiatives could nevertheless
reduce TB transmission to an important degree. If such
reductions in transmission can be achieved, they could
also generate cost savings for TB control programs,
making ACF potentially both epidemiologically relevant
and cost-effective in the medium-term (10 years), even if
shorter-term research studies cannot detect a population-
level effect. In this setting of empirical uncertainty, math-
ematical models can provide “best available evidence”
estimates [9]. Here, we use combined transmission-
economic models of TB epidemics in China, India, and
South Africa (Figure 1) to estimate the most likely
medium-term epidemiologic impact and cost-effective-
ness of feasible case-finding approaches. By modeling
generic interventions, we create a tool for converting
data that are easily estimable by people considering
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specific case-finding programs (i.e., program costs and
number of additional TB cases detected from ACF
campaigns using a specific approach) into data that are
important for decision making (i.e., cost per disability
adjusted life year (DALY) averted). We use these results
to provide guidance as to how much donors and in-
country TB control programs should be willing to pay to
find one additional case of active TB.

Methods

TB transmission model

We developed a compartmental model of adult TB
transmission represented by a system of ordinary diffe-
rential equations (Figure 1, Table 1, Additional file 1). This
model follows the basic structure of other widely-used TB
transmission models, but incorporates additional structure
to account for early disease stages that do not involve
sufficient symptomatic severity (e.g., a prolonged cough)
to drive patients to seek care [10]. We assume that
individuals in these early disease stages — as well as
anyone whose disease never progresses to the point of
detectability by sputum smear — are less infectious than
individuals with smear-positive pulmonary TB [2-4,11].
We divide latent TB into two non-infectious classes to
reflect the increased risk of TB progression soon after (re-)
infection [5,12]. We assume that, for patients who are
diagnosed and started on therapy, treatment immedi-
ately renders TB as non-infectious and lasts an aver-
age of 6 months, during which reinfection does not
occur. We also incorporate an increased risk of re-
lapse for an average of 2 years after treatment [6,13].
For simplicity, we do not explicitly consider population
growth or migration. Source code for the model and
analyses from this manuscript, written in R version 3.0.1
(R Foundation for Statistical Computing), is available from
github.com [14].

As the focus of our inference is on TB, we choose
a simple representation of HIV transmission with
compartments for individuals who are HIV-uninfected,
HIV-infected with CD4 count 2350 cells/mm?®, HIV-
infected with CD4 count <350 cells/mm?® and not on
antiretroviral therapy (ART), and HIV-infected on ART.
Rather than explicitly modeling HIV transmission, we
assume that new HIV infections occur at a constant rate,
as does progression of CD4 decline and, among those
with CD4 < 350 cells/mm?®, ART initiation. We assume
that individuals who are either on ART or have CD4
count >350 cells/mm® can be characterized using a
weighted average of the attributes associated with no
HIV infection (70%) and CD4 count <350 not on
ART (30%) (Additional file 1). Our approach to par-
ameterizing HIV states within this model is similar to
previously published data-driven and modeling ana-
lyses [23,24].
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Parameter description HIV- HIV* ¢pa »350 HIV* cpa <350 HIV* on ART Source
no ART
Number of TB infections per smear-positive case® (yr™) 16.16/11.16/23.63 16.16/11.16/23.63 16.16/11.16/23.63 16.16/11.16/23.63  Fit
Relative transmissibility of smear-negative TB 022 022 022 0.22 [11,15]
Relative risk of reinfection when latent infected 021 045 1.00 045 [7,13,16]
Relative transmissibility of pre-symptomatic TB 0.22 0.22 022 022 Assumed
Rate of stabilization” (yr™) 050 050 050 050 [12,17]
Rate of stabilization after successful treatment (yr’]) 020 020 0.20 0.20 [12]
Duration of treatment (yr) 0.50 0.50 0.50 0.50 [8,18]
Rate of rapid progression to active TB after recent 0.07 0.26 0.70 0.26 [12,19]
infection (yr”)
Rate of endogenous reactivation to active TB after remote 049 x 10 0.024 0.08 0.024 [20]
infection (yr ")
Relapse rate (yr™) 0.02 0.02 0.02 0.02 Assumed
Duration of pre-symptomatic TB (yr) 0.75 0.25 0.10 0.25 Assumed
Proportion of pulmonary TB that is smear-positive 0.75 0.65 040 0.65 [18]
Proportion of TB that is extra-pulmonary 0.15 023 040 023 Assumed
Mortality rate from smear-positive TB (yr") 023 0.56 133 0.56 [21]
Mortality rate from smear-negative and extra pulmonary 018 0.53 133 0.53 [21]
TB(yr ")
Self-cure rate, smear-positive (yr”) 0.10 0.07 0.00 0.07 [21]
Self-cure rate, smear-negative and extra-pulmonary (yr”) 0.15 0.11 0.00 0.11 [21]
Detection (and diagnosis) rate (yr') ® 1.01/1.05/1.94 1.01/1.05/1.94 1.01/1.05/1.94 1.01/1.05/1.94 fit
Rate of new HIV infections (yr )°® 0.34e-3/0.39¢-6/0.02  0.00 0.00 0.00 fit
Mean time from HIV infection to CD4 count of 350 (yr) 0.00 419 0.00 0.00 [22]
Rate of progression from ART eligibility to on ART (yr ')* 0,00 0.00 0.04/0.06/0.19 0.00 fit
Mortality rate from HIV (yr’w) 0.00 0.01 013 0.04 [23]

SFitted values shown for India/China/South Africa.

IStabilization refers to the rate of transition between a fast latent phase (“recent infection”) and a slow latent phase (“remote infection”).
Columns represent the parameter values for different HIV classes with the final column indicating the source for the parameter assumption.

ART, Antiretroviral therapy; TB, Tuberculosis.

Model calibration

We calibrated models separately to published data in
each country (Table 2) by iteratively fitting the TB and
HIV components of the model. In the TB components,
we fit the rates of TB transmission and detection to esti-
mates of TB incidence and case detection, respectively.
In the HIV components, we fit the rates of HIV infection
and ART initiation to estimates of adult HIV prevalence
and population ART coverage. To capture the decreasing
trend in TB incidence in India and China, we first fit the
model to steady state in 2004 based on data from the
WHO [7,18], then solved for a constant rate of decrease
in the transmission rate yielding a population with the
target 2011 incidence (Table 2).

Intervention

The goal of this analysis was to evaluate the appropriate
cost per additional case detected through ACF, not to
evaluate the precise impact and cost-effectiveness of any

Table 2 Key epidemiologic and economic variables for
representative communities in China, India, and South
Africa

China* India* South Africa
TB incidence 2011 (per 100,000) [18] 75 181 993
TB case detection proportion [18] 067 065° 0.69
Adult HIV prevalence (per 100) [25] 0.058 04 17.3

Adult ART coverage (%) [25,26] 50 40 75
Per capita GDP (2011 USD) 5439 1,528 8,090
1,029 81 232

*These countries were fit to data from 2004 then fit to 2011 incidence by
adjusting the transmission parameter.

SUsed the upper bound of the 95% confidence interval of the 2011 case
detection proportion from [18] to account for cases seen and treated in the
private sector.

ART, Antiretroviral therapy; TB, Tuberculosis.

Cost of first-line treatment [18]
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specific intervention activity. We assume that the cost of
an ACF campaign, as well as the additional number of
TB cases diagnosed and treated, can be locally measured
(or estimated) for any given campaign. Thus, we con-
sider ACF in its most straightforward representation
through a one-time increase in the rate of transition
from active TB to “on treatment” (Figure 1). We refer to
this rate as the detection rate, though it incorporates
detection, diagnosis, and initiation of appropriate therapy.
We separately simulated discrete ACF campaigns lasting
2 vyears (ending immediately thereafter), and program-
matic changes incorporating ACF into routine TB control
activities for the duration of the analysis period (10 years).
We conservatively assume that those in the pre-symptom-
atic stage cannot be detected by ACF. For the main ana-
lyses, roughly following the proportion of smear-positive
TB cases detected through enhanced case finding in the
ZAMSTAR study (29.7%) [7], we consider interventions
that would increase the number of cases detected during
the first intervention year by 25% of the 2011 counterfac-
tual/baseline. After the first year, the number of additional
cases detected falls, as a constant detection rate is applied
to a smaller prevalent TB pool.

Economic evaluation

We calculate TB-specific DALYs as the sum of years of
life lost plus years of life with disability over a time hori-
zon of one to ten years. To estimate years of life with
disability, we use disability weights for TB and HIV from
the Global Burden of Disease Study 2010 [27]. To relate
the cost per case detected by ACF to its cost-effectiveness,
we calculate the number of cases detected and treated
under the counterfactual (no intervention) scenario and
compare this to the number of cases detected and treated
with ACF in place. We then calculate the incremental cost
of the intervention as:

incremental intervention cost
= (incremental number of cases detected)
X (cost per case detected + cost per case treated),

and the incremental cost-effectiveness ratio (ICER, ex-
pressed in year 2012 US dollars per DALY averted) as:

ICER = (incremental interventions cost)
~+ (incremental number of DALYs averted).

Thus, after estimating the number of incremental cases
detected and the incremental DALYs averted from the
transmission model, and taking estimates of the cost per
case treated, we can calculate the ICER as a function of
the cost per case detected (Additional file 1).

We adopt the perspective of the national TB program
(assumed to be responsible for ACF campaigns and
treatment of TB, but not HIV) and discount all future
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costs and health outcomes at 3% per year [28,29]. Since
the cost-effectiveness of ACF depends strongly on the
analytic time horizon (becoming less cost-effective if
future cases averted are ignored), we vary the time horizon
from 1 to 10 years. Thus, for 2-year campaigns, we con-
sider effects for up to 8 years after the campaign ends. We
define interventions with an incremental cost per DALY
averted less than 2012 per capita gross domestic product
(GDP) as highly cost-effective [29].

Sensitivity and uncertainty analysis

We conducted one-way sensitivity analyses for key model
parameters with a focus on the cost-effectiveness threshold
(i.e., maximum cost per-case detected for an ICER equal to
each country’s per capita GDP) for 2-year campaigns at 2-,
5-, and 10-year analytic horizons. We also conducted
multivariate uncertainty analyses by selecting 20,000 par-
ameter sets from independent prior beta distributions
using Latin Hypercube sampling (Additional file 1) [30].
We calculated the cost-effectiveness thresholds from each
run and used the 2.5™ and 97.5™ percentiles as the 95%
uncertainty ranges. To compare the effect of each param-
eter, adjusted for all other parameters, we calculated
partial rank correlation coefficients from the multivariate
uncertainty analyses [30].

Results

We simulated ACF programs in representative communi-
ties of China, India, and South Africa. ACF interventions
that increased the number of cases diagnosed and treated
by 25% in their first year (ie., an additional 13 cases
detected in a community of 100,000 in China, 31 per
100,000 in India, and 171 per 100,000 in South Africa)
reduced the average duration of untreated disease from
15.2 to 12.7 months in South Africa, 20.0 to 17.3 months
in India, and 20.4 to 17.0 months in China.

Discrete ACF campaigns

Two-year ACF campaigns of this magnitude had small
but important population-level effects. In representative
communities of 1 million individuals in India, China,
and South Africa, respectively, a campaign that increased
case finding by 25% in year one and ended after 2 years
could avert 277 (95% uncertainty range [UR] 173-557),
100 (95% UR 63-201), and 2,165 (95% UR 1,504-3,307)
deaths over 10 years, with 39 to 56% of deaths occurring
during the time period of the intervention (Figure 2).
Even in South Africa, however, this would correspond to
only a 1.4% reduction in all-cause mortality during the
intervention (1,548 averted deaths of a total 1,123,567
expected deaths [31]); an unfeasibly large study would
be required to detect the effect of this rare disease. In
contrast to effects on mortality, effects of ACF on inci-
dence and DALYs were largely felt not during the study
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Figure 2 Impact of a discrete 2-year active case finding campaign in India. Panel A illustrates the incidence rate (dark green), case detection
rate (light green), and mortality rate (red) for a baseline/counterfactual scenario (dashed) compared against an intervention scenario (solid) in
which TB case detection is increased, through active case finding, by 25% from the cases detected in the first year (2012). Panel B shows the
cumulative incidence (per 100,000) for both the intervention (solid) and baseline (dashed) scenarios with the area between the two curves
representing the cases averted through active case finding. Panel € shows the cases averted by the intervention (green), and DALYs averted by
the intervention (brown) — a function of cases averted and mortality averted by intervention. The grey shading highlights the component of the
intervention effect that would be observable during the course of a 2-year intervention study.

period but after the end of the 2-year campaign, reflecting
known delays between transmission and detectable dis-
ease. Of the cumulative cases averted by ACF over 10 years
in an Indian community, less than one in eight (12%) oc-
curred during the intervention timeframe (Figure 2B,C).
Thus, an evaluation conducted over the course of the
2-year intervention, not considering future effects, would
underestimate medium-term (10-year) impact on incidence
by over 85%. Results were similar in communities in China
and South Africa (Additional file 1).

From an economic perspective, ACF campaigns — even
those lasting only 2 years — were highly cost-effective
across a range of scenarios. Specifically, 2-year ACF
campaigns that cost $1,200 (95% UR 850-2,043) per case
detected (and started on treatment) in India, $3,800 (95%
UR 2,706-6,392) per case detected in China, and $9,400
(95% UR 6,957-13,221) per case detected in South Africa
were all “highly cost-effective” by traditional standards
(cost per DALY averted less than per capita GDP) over a
10-year time horizon (Figure 3C, Additional file 1) [29].
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effects that occur in the first 2 years (i.e., ignoring longer-term effects), whereas panels B and C consider costs and effects over 5 and

However, failure to account for future effects reduced these
cost-effectiveness thresholds by nearly 75% (Figure 3A).
For example, to be considered highly cost-effective in India
using a 2-year time horizon, an ACF campaign would
need to cost under $300 (95% UR 275-343) per case
detected.

Sustained ACF programs

Unlike short-term campaigns, sustained ACF programs
over 10 years showed dramatic population-level impact
on both incidence (22 to 27% reduction) and mortality
(40 to 44% reduction) (Figure 4A). Owing to compounded
impact on transmission over time, such sustained cam-
paigns are also substantially more cost-effective; by seven
years, sustained campaigns costing even as much as
$5,000 per case detected were projected to be highly cost-
effective in two of three scenarios (Figure 4D-F, top
of y-axis). A sustained ACF intervention in India would
reduce TB prevalence by only 11% after 2 years, but could
reduce prevalence by 33% within 10 years (Additional
file 1). Similarly, only about one of eight deaths averted
would occur during the first 2 years.

Sensitivity analyses

The estimated cost per DALY averted in each setting
was robust to the intensity of the ACF intervention.
Varying the increase in number of cases detected in year
one from 5% to 50% had little effect (<3.5% change,
Additional file 1: Section 4 and Figure S2) on the esti-
mated cost per DALY averted, as long as the cost per
additional case detected and treated remained constant.
Thus, while larger ACF campaigns had greater impact

(and greater cost), the relationship between cost and
impact was not strongly dependent on campaign size. The
cost-effectiveness thresholds in all three communities
were robust to parameter selection in both one-way and
multivariable uncertainty analyses. The rate of rapid pro-
gression to active TB after recent infection, the transmis-
sion rate, and the detection rate (all in HIV-uninfected
classes) had the largest effect on ACF cost-effectiveness in
India (Additional file 1). In South Africa, where HIV plays
a critical role in TB epidemiology, the transmission rate,
the smear-negative TB mortality rate amongst HIV-in-
fected individuals with CD4 <350 not on ART, and the
detection rate, had the largest effects (Additional file 1).

Discussion

Although the impact of ACF campaigns on population-
level epidemiology remains empirically uncertain, this
model demonstrates that campaigns of feasible inten-
sity can be highly cost-effective and exert important
population-level effects — effects that even large studies
may be incapable of detecting. For example, a 2-year case-
finding campaign in India that increased case detection by
25% at a cost of $500 per case (detected and started on
treatment) might, over 10 years, avert 960 TB cases,
2,100 DALYs, and save 280 lives in a city of one million
people — at a cost of $620 per DALY averted, far less than
India’s per-capita GDP. However, a study that assessed
outcomes after 2 years would detect less than 15% of
the epidemiological impact and would overestimate
the long-term cost per DALY averted by a factor of four.
In summary, rapid action is needed if TB control targets
for 2035 are to be reached [32], and ACF may have strong
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Contour lines are labeled in these plots as the cost per DALY averted, with “highly cost-effective” corresponding to a country’s per-capita GDP.

population-level benefits in this time frame, but even large
short-term studies are unlikely to detect those effects. By
demonstrating these realities in silico, we argue for higher
prioritization of active TB case finding on the global
health agenda.

To date, empirical evidence of the population-level
effect of ACF has been sparse and conflicting [8]. As
a result, enthusiasm for ACF as a tool for population-level
TB control is muted. Our results demonstrate that short-
term evaluations are unlikely to correlate with long-term
gains. For example, our model of sustained ACF in a rep-
resentative Indian community was projected to reduce TB

prevalence by 11% after 2 years — far lower than that seen
in Zimbabwe using a mobile-van approach [15], and well
within the confidence intervals of both arms of the
ZAMSTAR trial, which has been cited as evidence of
no population-level benefit of ACF [7]. However, after
10 years, this same intervention could reduce TB preva-
lence by a projected 33%; shorter-term studies would not
detect this important population-level effect without a
prolonged follow-up period.

Our results, consistent with a previous theoretical model
[33], also suggest that our current willingness to pay for
active TB case finding may be too low. For example, the
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Stop TB Partnership initially set a limit of $350 per smear-
positive case found and started on treatment as a bench-
mark for grants through the TB REACH mechanism. Our
analysis suggests that, in countries like China and South
Africa, national TB programs should be willing to pay
(at the WHO “highly cost-effective” threshold) 10 to
40 times as much per case detected and treated. A
recent summary of 28 different ACF programs across
12 high-burden countries estimated that 17,236 additional
smear-positive cases (relative to control populations) were
detected at a cost of $14.9 million, or an average cost per
smear positive case detected of $865 [34]. If these cases
were linked to treatment, our model suggests that the
average ACF campaign would be highly cost-effective in a
setting like India within a 5-year horizon, and in settings
like China or South Africa within a 2-year horizon. To the
extent that additional smear-negative cases were also diag-
nosed and treated without additional expense, ACF would
be even more cost-effective. Active TB case finding may
compare favorably in cost-effectiveness terms to other
widely implemented health interventions. For example,
other models project that ART for HIV may cost $500 to
$2,000 per DALY averted in most settings [17]. Our model
suggests that a “best available evidence” approach might
place TB screening programs costing $1,000 per case
detected in the same basket of essential services as ART.
As with any model-based analysis, our findings are
subject to certain limitations. We sought to simulate a
generic ACF intervention in multiple countries without
specifying the details of the target population or the case
finding strategy. While we based the main intervention
on an estimate from a large trial in South Africa [7], this
is likely an upper limit on its impact. In sensitivity analyses
(Additional file 1: Section 4 and Figure S2) we show that
cost per DALY averted is relatively constant for different
ACF campaign sizes, as long as the cost per additional
case detected and treated remains constant. Campaigns
that detected more cases had greater impact, but (for a
given cost per additional case detected and treated) also
had greater cost, and the relationship between cost per
additional case detected/treated and cost per DALY aver-
ted was robust to the campaign size (Additional file 1:
Figure S2). Thus, we expect that our findings would hold
even if our estimate of ZAMSTAR’s impact was overly
optimistic. If interventions are targeted to key populations
(e.g., household contacts) or areas of high local transmis-
sion, even more favorable cost-effectiveness ratios may be
achievable. Individuals detected through ACF approaches
may have mild or asymptomatic illness and thus be less
likely to complete their full course of medication. Though
a recent review suggests that treatment outcomes are
similar [8], others have suggested worse adherence among
such cases [19]. We present our results in terms of cost
per case detected in the first year of the campaign in order
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to allow for comparisons between countries and to be
consistent with metrics used by the donor community.
This specification, however, requires knowledge of the
costs (fixed and variable) and case yields of a campaign a
priori. Finally, we adopted a simple modeling approach in
order to maximize transparency and generalizability, in-
cluding fitting our models to communities that are repre-
sentative of WHO notification data. More detailed data,
and data from other settings, could be integrated to pro-
vide more locale-specific estimates in the future.

Conclusions

In summary, our results suggest that ACF for TB, both
short-term and sustained, may have important impact and
are likely to be highly cost-effective within 10 years, even
for campaigns costing $1,000 or more per case detected
and linked to care. Since most gains in incidence are real-
ized in subsequent years, evaluations over a shorter time
span may grossly underestimate the full benefits of ACF.
Both longer-term follow-up of existing campaigns and
rapid evaluations of highly intensive interventions are
needed to fully assess the potential of active TB case find-
ing to avert TB incidence and mortality. In the interim,
our “best available evidence” estimates suggest that, if we
are to undertake a serious effort to meet TB control tar-
gets by 2035, active TB case finding deserves a prominent
place on the global health agenda.

Additional file

[ Additional file 1: Supplemental Methods and Results. J
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