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Abstract

and after therapy.

and benign adjacent kidney tissues from 96 patients.

datasets.

Background: Renal cell carcinoma (RCQ) is the tenth most commonly diagnosed cancer in the United States. While
it is usually lethal when metastatic, RCC is successfully treated with surgery when tumors are confined to the kidney
and have low tumor volume. Because most early stage renal tumors do not result in symptoms, there is a strong
need for biomarkers that can be used to detect the presence of the cancer as well as to monitor patients during

Methods: We examined genome-wide DNA methylation alterations in renal cell carcinomas of diverse histologies

Results: We observed widespread methylation differences between tumors and benign adjacent tissues, particularly
in immune-, G-protein coupled receptor-, and metabolism-related genes. Additionally, we identified a single panel
of DNA methylation biomarkers that reliably distinguishes tumor from benign adjacent tissue in all of the most
common kidney cancer histologic subtypes, and a second panel does the same specifically for clear cell renal cell
carcinoma tumors. This set of biomarkers were validated independently with excellent performance characteristics
in more than 1,000 tissues in The Cancer Genome Atlas clear cell, papillary, and chromophobe renal cell carcinoma

Conclusions: These DNA methylation profiles provide insights into the etiology of renal cell carcinoma and, most
importantly, demonstrate clinically applicable biomarkers for use in early detection of kidney cancer.
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Background

In 2013, approximately 65,000 cases of renal cell carci-
noma (RCC) were diagnosed in the United States and
13,600 patients died of the disease. RCC incidence is rising
by approximately 2 to 3% per year [1-4], in large part due
to the increasing use of abdominal imaging [5]. Nearly half
of all renal tumors are discovered incidentally [5,6], 20%
of small tumors (less than 4 cm) are benign [7], and there
are no imaging features or biomarkers that reliably dis-
tinguish benign from malignant disease [8]. For cancers
confined to the kidney, the standard of care is resection,
with high 5-year survival rates. Survival rates are directly
correlated with tumor stage and size, demonstrating the
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importance of early detection of lesions when the lesions
are small. Following tumor resection, patients must be
monitored for recurrence at regular intervals by imaging
studies (usually CT scanning), and thus incur significant
radiation exposure with the attendant risks [9,10]. Once
metastatic, RCC is usually fatal, despite treatment with
targeted therapies, although a small fraction of patients
show durable responses to IL-2 immunotherapy [3,11,12].

RCC is classified into histological subtypes with distinct
clinical and pathogenic features [13]. Clear cell renal cell
carcinoma (ccRCC), the most clinically aggressive subtype,
comprises 75% of cases and is characterized by inactiva-
tion of the von Hippel-Lindau (VHL) tumor suppressor
gene, a regulator of oxygen sensing in the cell by con-
trolling HIFla protein levels [14]. Papillary RCC (pRCC;
10% of cases) commonly has trisomy of chromosomes 7
and 17 and may be less clinically aggressive than ccRCC.
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Chromophobe carcinomas (chRCC) are the least aggres-
sive tumors and comprise 5% of cases. Additionally, less
common RCC subtypes arise from various cells of the
nephron and present diverse clinical behavior [15]. Per-
haps because of the histologic, molecular, genetic, and
clinical diversity of RCC and its origin from different cell
types in the nephron, biomarkers for use across the most
common histologic subtypes types of RCC for detection
or monitoring have not been previously reported.

Detection of DNA methylation at candidate loci in
RCC suggests that tumor-specific methylation changes
could be used diagnostically. However, the performance
characteristics of these markers have limited their utility.
Small studies have shown that simultaneous measure-
ment of several differentially methylated loci could im-
prove performance [16-18]. We hypothesized that better
biomarkers could be identified by using genome-wide
studies of DNA methylation in RCC. Such previous stu-
dies indicated that DNA methylation changes are early
events in carcinogenesis, but these experiments were not
designed to identify cancer-specific diagnostic biomar-
kers [19-24]. In this study, we profiled DNA methylation
in tumor and adjacent normal tissue in 96 RCC patients
with Illumina HumanMethylation27 microarrays. Using
the predictive analysis of microarray (PAM) classification
tool [25], we identified a biomarker panel capable of dif-
ferentiating kidney tumors from benign adjacent kidney
tissue, irrespective of tumor histology. This study provides
insight into RCC etiology, presents validated tissue-based
diagnostic biomarkers, and supplies a framework for the
development of DNA methylation-based molecular diag-
nostics for RCC detection in patients.

Methods

Sample collection and preparation

Kidney samples used in this study were collected at
Stanford University in accordance with approved insti-
tutional review board protocol (6208, Panel: 8) with pa-
tients’ informed consent under protocols approved by
the Stanford University and HudsonAlpha Institute for
Biotechnology Institutional Review Board. Signed patient
consent for use of kidney tissue states that clinical and
pathological data can be associated with their clinical
samples and tissue would otherwise be discarded after
processing for clinical care. Consent forms are stored at
Stanford University and available for review according
to local, state, and federal regulations. Immediately after
surgical removal of the kidney, fresh normal and tumor
tissue samples were harvested, flash frozen in liquid
nitrogen, and stored at —80°C until they were used. For
each sample, a frozen section was taken, stained with
hematoxylin and eosin, and evaluated by a genitouri-
nary pathologist. Normal samples were harvested distant
from the tumor and confirmed by histology to have no
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contamination with malignant cells. Cancer samples were
also confirmed to be enriched (>80% epithelial cells) for
cancer cells relative to stroma. Cancer samples were ma-
croscopically dissected to remove normal contamination
and necrotic tissue using the hematoxylin and eosin-
stained sections as a guide.

Clinical information associated with each patient is
summarized in Additional file 1: Table S1. We isolated
DNA from fresh-frozen tissue samples using the QITAGEN
AllPrep DNA kit (QIAGEN) following the manufacturer’s
protocol.

Sodium bisulfite conversion and lllumina Infinium
HumanMethylation27 assay

We performed sodium bisulfite conversion of gDNA
using the EZ-96 DNA Methylation Kit (Deep-well for-
mat, ZymoResearch) with the alternative incubation
protocol for the Illumina Infinium Methylation Assay, as
described by the manufacturer. We assayed 500 ng of
sodium bisulfite-converted gDNA from patient tissues
by Infinium HumanMethylation27 RevB Beadchip Kits
(lumina) per the manufacturer’s protocol.

Beta score calculations, filtering, and batch normalization
of methylation data

We analyzed HumanMethylation27 array results using
[llumina BeadStudio software with the Methylation Mo-
dule v3.2. Any negative beta scores were converted to a
zero and any beta scores with an associated detection P
value of >0.01 were converted to “NA” and filtered from
analysis. To correct any array-by-array variation, we im-
puted all missing values with KNN Impute, followed by
array batch normalization using the ComBat R-package
[26]. Previously imputed values were converted back to
“NA” for all further analyses. CpGs with “NA” in more
than 10% of samples were removed from the data set. As
previously reported, we removed CpGs with question-
able mapping or those including a SNP of >3% minor
allele frequency within 15 bp of the assayed CpG to
avoid potential variation in probe hybridization [27].
After quality control and filtering, we had 96 patients
with 26,148 CpGs assayed in both kidney tumor and
benign adjacent tissues.

Linear mixed and logistic regression analysis

For the regression analysis we used RStudio (version
0.97.551) in R (version 3.0.0). For the linear mixed mo-
del analysis of the methylation data we used the lme
command treating patients as a random effect and age
and gender as fixed effects. We used the glm command
with family set to binomial for the logistic regression of
the diagnostic biomarkers. We selected our best model
based on a maximum receiver operating characteristic
(ROC) curve area and a minimum Akaike Information
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Criterion (AIC) value. All regression models have P values
adjusted for multiple hypothesis testing (false discovery
rate, FDR) using the Benjamini and Hochberg (BH) algo-
rithm and significant CpGs have an adjusted P <0.05.

Hierarchical clustering

Prior to hierarchical clustering, we mean-centered beta
scores. We performed hierarchical clustering of the me-
thylation data by both gene and array using Cluster 3.0
with average linkage [28].

Prediction analysis of microarrays (PAM)

We performed PamR (version 1.54) analysis on all filtered
CpGs as described in the PamR manual with RStudio (ver-
sion 0.97.551) in R (version 3.0.0) [25]. Based on visual
examination of the training errors and cross-validation
results, we minimized the miss-rate and set the shrinkage
threshold to 10.74 for all tumor and benign adjacent nor-
mal classification, and 14.8 for clear cell tumor and benign
adjacent normal classification.

Gene ontology (GO)-term and gene set enrichment
analysis (GSEA)

We associated CpGs identified as significant with the
closest gene and then those genes were analyzed for com-
mon pathways and functions. Terms reported have an
adjusted (FDR) P <0.05. We performed GO-term analysis
using the web version of GOrilla [29] and we performed
GSEA using the web version of GSEA [30,31] with KEGG,
BIOCARTA, and REACTOME gene sets selected.

The Cancer Genome Atlas (TCGA) data

We downloaded TCGA Illumina HumanMethylation27
and HumanMethylation450 Level 3 array results for all
kidney cancer patients available at the time of manu-
script preparation. Diagnostic biomarker validation for
ccRCC patients utilized HumanMethylation27 tumor
and matched benign adjacent normal ccRCC TCGA data
only. Diagnostic biomarker validation for the general RCC
patients utilized both HumanMethylation27 and Human-
Methylation450 tumor and matched benign adjacent
normal ccRCC, pRCC, and ChRCC TCGA data. We
downloaded RNA expression data for ccRCC patients
using the RNA-seq Level 3 data available at the time
of manuscript preparation.

Results

Identification of differential methylation between kidney
tumor tissue and benign adjacent kidney tissue

We collected clinical data, including histologic sub-
type, tumor grade and stage, and clinical follow-up,
for 96 patients (Additional file 1: Table S1). We pro-
filed DNA methylation of both kidney tumor and adja-
cent benign normal tissue from each patient by using
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[lumina HumanMethylation27 arrays, which interro-
gate 27,578 CpGs located primarily in the promoter
regions of genes in the human genome. After quality
control and filtering, we performed DNA methylation
analysis on results from 96 patients and 26,148 CpGs.
Methylation at 127 CpGs was validated in 19 of the
benign adjacent kidney tissues with Bis-seq, as reported
previously [32]; concordance was 0.82. Additionally,
our group has previously validated this same platform
with PyroMark in prostate cancer [27]. To identify CpGs
carrying tumor-specific aberrant methylation, we per-
formed linear mixed modeling with paired tumor/normal
data at each CpG. Our models treated patient ID as a
random effect and included gender and age as fixed
effects. When we analyzed all CpGs and patients with
these models, 9,800 CpGs were significantly different
between kidney tumor and benign adjacent kidney
tissue (FDR <0.05). Of these, 5,155 CpGs had increased
methylation and 4,645 had decreased methylation in
tumors compared to benign adjacent tissue (Additional
file 1: Table S2).

Using the most significant CpGs from the linear mixed
effects model (1,172 CpGs, FDR <1 X 10™%), we performed
hierarchical clustering by sample and CpG (Figure 1). We
observed one cluster with shorter branch lengths that con-
tained all but three of the normal tissue samples (Figure 1).
Most of the tumors were in the surrounding clusters and
off-shoots with longer branch lengths, indicating greater
heterogeneity in the tumor methylation profiles [33].

We performed a GSEA of the GO-terms and pathways
associated with genes nearest CpGs exhibiting increased
and decreased methylation in tumors compared to be-
nign adjacent normal tissues (Additional file 1: Table S3)
[29-31] to assist interpretation of significant findings. In
the tumors, decreased methylation showed enrichment in
genes associated with immune function and G-protein
coupled receptor (GPCR) signaling. Previous reports have
indicated upregulation of immune-related genes and sug-
gested some of that deregulation might be explained by
epigenetic changes [34]. Terms associated with increased
methylation included cell-cell signaling and gated chan-
nel activity. Genes associated with GPCR signaling also
showed increased methylation. While gene expression
changes in GPCR signaling have been previously re-
ported [35,36], to our knowledge, this is the first report
of widespread differential methylation in genes related
to GPCR signaling in RCC. Additionally, pathways as-
sociated with integration of energy metabolism, extra-
cellular matrix organization, and WNT signaling were
significantly enriched.

We repeated the regression analysis including only the
63 patients with ccRCC in our patient collection and
found that about 85% of the differentially methylated
CpGs continued to be significant (FDR <0.05) (Additional
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Figure 1 Hierarchical clustering of kidney tumor and benign adjacent tissues with most significant DNA methylation changes.
Hierarchical clustering by both sample and CpG of 192 kidney tumor (red color bar) and kidney benign adjacent (blue color bar) tissues with
linear mixed model significant CpGs (FDR <1x 107'%; 1,172 CpGs); (blue pixels) low DNA methylation; (yellow pixels) high DNA methylation;
(orange color bar) ccRCC tissues; (green color bar) other subtype RCC tissues; (grey color bar) benign adjacent tissues.

. Kidney Tumor
. Benign Adjacent

. Clear Cell
= . Other Subtypes
2 Benign Adjacent

0%
50%
100%

file 1: Table S2). These included CpG loci near VHL,
SETD2, BAPI, and UQCRH, all genes previously shown
to be mutated in RCC patients [37,38]. However, we
did not see significant DNA methylation changes for
PBRM1, a gene previously shown to have truncating
mutations in RCC at a level superseded only by VHL [38].
Likewise, a gene set enrichment and GO-term analysis of
the significantly altered CpGs in the ccRCC specimens
revealed functions and pathways very similar to the results
we obtained when analyzing all 96 of the tumors in our
study set (Additional file 1: Table S3).

Diagnostic methylation markers

We used PAM to identify a set of markers that best dis-
tinguished normal from malignant kidney samples [25,27].
PAM uses a shrunken centroid classification algorithm to
identify significant CpGs whose methylation distinguishes
tumor tissue from benign adjacent tissue. When all 192
tissues were included in the analysis, we identified 20
CpGs that discriminated between benign adjacent tissue
and tumor tissue (Additional file 1: Table S4). Using this
list of 20 CpGs, we performed hierarchical clustering on
both the samples and CpGs (Figure 2, panel A). Visual in-
spection showed that 91 of 96 tumors cluster together and
93 of 96 benign adjacent normal tissues cluster toge-
ther. Nineteen of these 20 CpGs were significant in our
linear mixed model analysis of CpGs that are differentially

methylated between tumor and benign adjacent kidney
tissue (FDR <0.05).

When we repeated this analysis with only the 63 ccRCC
patient specimens, PAM identified 11 CpGs that dis-
criminated between benign adjacent and tumor tissues
(Additional file 1: Table S4). Hierarchical clustering on
both the samples and the CpGs (Figure 2, panel B) showed
almost perfect classification with only one tumor sample
clustering with the benign adjacent normal tissues. These
11 CpGs were also significant in our linear mixed model
analysis of the ccRCC tumor data and the benign adjacent
normal data (FDR <0.05). The better classification of the
¢cRCCs compared to all of the subtypes was most likely
because of the greater heterogeneity in the DNA methyla-
tion profiles between all of the subtypes. There were 4
CpGs that overlapped between the ¢ccRCC and all tumor
CpG loci identified by PAM.

Using our data as a training set, we built a logistic
regression model from the PAM diagnostic list capable
of discriminating between tumor and benign adjacent
tissues. From the 20 CpG panel for the multiple subtype
PAM list, we selected a model with the greatest ROC
area under the curve (AUC) and an AIC at a local minima
compared to models with 1 to 20 CpGs. This 5 CpG mo-
del (comprised of cg13156411, cgl14456683, cg18003231,
¢g12782180, and ¢g22719623) had a ROC area of 0.991
and a BH-adjusted highly significant P value of 8.10 x 10"
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Figure 2 Hierarchical clustering of kidney tumor and kidney benign adjacent tissues with PAM classifier panel CpGs. (A) Hierarchical
clustering by both sample and CpG of all 192 kidney tumor and kidney benign adjacent tissues with PAM classifier panel CpGs (20 CpGs). (B)
Hierarchical clustering by both sample and CpG of 126 clear cell kidney tumor and kidney benign adjacent tissues with PAM classifier panel CpGs
(11 CpGs); (blue pixels) low DNA methylation; (yellow pixels) high DNA methylation; (red color bar) tumor tissues; (orange color bar) ccRCC
tissues; (green color bar) other subtype RCC tissues; (blue/grey color bar) benign adjacent tissues.
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for the null hypothesis that the ROC curve area is 0.5
(which would indicate that a model would not discriminate
between tumor and benign adjacent tissue).

We used publicly available renal cell carcinoma genomic
data from TCGA as a validation test set for our predictive
model. TCGA has DNA methylation data available for
732 RCC (ccRCC, papillary, and chromophobe) tissues
and 410 normal kidney tissues. When we applied our 5
CpG model to all of the TCGA samples (Additional file 2:
Figure S1), the ROC AUC was 0.990 and we correctly pre-
dict 87.8% of the normal and 96.2% of the tumor tissues
(Figure 3, panel A). When this model was applied to each
histologic subtype of kidney cancer and the normal tissues
(n=410), the ROC AUC remained outstanding in all
tumor types. For ccRCC (n =509), the AUC was 0.98,
and we correctly predicted 96.1% of the tumor samples
(Figure 3, panel B). For pRCC (n = 157), the ROC AUC
was 0.97 and we correctly predicted 94.9% of the tumor
samples (Figure 3, panel C). The ROC AUC for chRCC
(n=66) was 0.99 and we correctly predicted 100% of
the tumor tissues (Figure 3, panel D). Model sensitivity
was largely independent of cancer stage and primary
tumor size (Additional file 1: Table S5).

When the ccRCC patients were analyzed separately,
4 CpGs (cg04511534, ¢gl11098259, cgl4391855, and
€g26366091) produced a ROC AUC of 0.990 with a
BH-adjusted P = 1.46 x 10™° for the null hypothesis that
the ROC AUC is 0.5. In TCGA specimens (208 tumor
tissues and 200 normal tissues), the 4 CpG model showed
an AUC of 0.972 (Figure 4, Panel A) and we correctly
identified 91.4% of the tumors and 98.9% of the benign ad-
jacent tissues. Model sensitivity remained high regardless

of cancer stage and primary tumor size (Additional file 1:
Table S6). A comparison of the DNA methylation diffe-
rences between tumor and benign adjacent normal tis-
sues demonstrated good agreement between our and the
TCGA datasets. For example, at cg04511534, we saw no
statistical difference between our data and TCGA data
(P =0.25 and 0.18); however, the difference between tumor
and normal was consistent between the two data sets
(P <0.0001) (Figure 4, Panel B) (Additional file 2: Figure S1).

RNA-seq expression data was available for a subset of
ccRCC patients in the TCGA data, allowing us to
investigate whether the changes in DNA methylation we
observed are correlated with transcript levels at nearby
genes. In 9 of 11 genes, significantly different levels of
gene expression were observed in the gene closest to the
significant CpG (Mann-Whitney test, P <0.05) in the ex-
pected direction based on methylation status. For exam-
ple, cg04511534, located in the first intron of the gene
encoding gamma-glutamyltransferase 6 (GGT6), is hyper-
methylated in tumors compared to normal tissues. Tran-
script levels of GGT6 were significantly decreased in the
tumor samples compared to the normal tissues (Mann-
Whitney, P <0.0001; Figure 4, Panel C) (Additional file 3:
Figure S2). The relationship between cg04511534 DNA
methylation and GGT6 expression shows significant
correlation, following the expected canonical model of
increased DNA methylation in the tumors leading to
decreased expression (linear regression, P <0.0001; R* =
0.503; Figure 4, Panel D). For the other 10 CpGs from
the diagnostic panel and the genes to which they are
near, we found a range of P values (0.0001 to 0.8540) and
R? values (0.0001671 to 0.503), with significant correlation
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Figure 3 PAM diagnostic panel model for renal cell carcinoma. (A) ROC curve of best 5 CpG model (Benjamini and Hochberg-adjusted
P=2810x107") from PAM diagnostic panel produced via the HudsonAlpha/Stanford data (ROC AUC = 0.991), and applied to the TCGA data
(ROC AUC =0.990). (B) ROC curve of best 5 CpG model applied to TCGA ccRCC and normal kidney tissue data (ROC AUC = 0.98). (C) ROC curve of
best 5 CpG model applied to TCGA pRCC and normal kidney tissue data (ROC AUC =0.97). (D) ROC curve of best 5 CpG model applied to TCGA
chRCC and normal kidney tissue data (ROC AUC = 0.99). Random model is 50 random draws of 5 non-significant training set CpGs.

between RNA expression and DNA methylation in 8 of
11 pairs.

Discussion
We found large scale, genome-wide changes in 5-
methylcytosine encompassing 9,800 CpGs that differenti-
ated malignant from normal kidney tissues. Furthermore,
we developed a panel of 20 CpGs that can discriminate
ccRCC, pRCC, and chRCC from normal renal tissue, as
well as a panel of 11 CpGs that discriminate between
ccRCC tumor and normal tissues. These methylation dif-
ferences were validated independently in TCGA data and
retained high sensitivity and specificity for distinguishing
malignant from adjacent normal tissue for all three histo-
logic subtypes. Because of the high sensitivity and specifi-
city of our biomarkers in both data sets, these panels are
strong candidates for development of a clinical test for
detection of all three major histologic types of RCC.

The candidate biomarkers we identified were all located
in the promoter regions or first introns of nearby genes,
many of which are interesting in RCC. For example,

our most predictive CpG is in the first intron of
gamma-glutamyltransferase 6 (GGT6). GGT6 partici-
pates in leukotriene synthesis, glutathione metabolism,
and gamma-glutamyl transfer. GGT6 has been linked to
immune infiltration and inflammation and putatively to
alterations in DNA methylation via changing levels of
glutathione and methyl group availability [39,40]. Other
CpGs are associated with genes related to immune func-
tion, including T cell regulation and inflammation, tumor
initiation and angiogenesis (EBI3) [41,42], while other
genes have been implicated in cancer aggressiveness
(AQP9, RIN1) [43-47].

Some panel CpGs are in the promoters of genes previ-
ously implicated as biomarkers, or involved in carcino-
genesis, cancer progression, or treatment response. For
example, PENK promoter methylation was demonstrated
in prostate cancer, breast cancer brain metastasis, and
pulmonary adenocarcinoma, and as a potential methyla-
tion biomarker for colorectal, meningioma, and bladder
cancer [48-53]. KLKI0 promoter methylation has been
implicated in head and neck squamous cell carcinoma
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tumor and normal tissue data (Mann-Whitney test; P <0.0001). (D) GGT6 expression versus cg04511534 methylation in TCGA tumor tissue data
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progression, as well as a potential prostate cancer and
non-small cell lung cancer biomarker [54-56]. ZIC1 was
implicated as a tumor suppressor silenced via promoter
methylation in malignant pleural mesothelioma and gas-
tric cancer [57,58]. ZICI promoter methylation has also
been suggested as a potential prognostic marker in ovar-
ian cancer [59]. Additionally, C210ORFI23 promoter
methylation has been implicated in cisplatin resistance
in non-small cell lung cancer and RINI is a tumor sup-
pressor that is deregulated through aberrant promoter
methylation in breast cancer [60,61]. Interestingly, one
of the CpGs showing decreased DNA methylation in
tumors is in the promoter of serum amyloid Al (SAAI),
which has been previously implicated in RCC. SAAI is
highly expressed during inflammation and has been
identified as a potential Wilms’ tumor marker [62], as
one of a two-protein signature model for prognosis
prediction in metastatic RCC [63], and as a predictor in
fatal outcome in RCC [64].

While it is possible that additional genomic biomarkers
could be identified with higher resolution methylation
assays, the exceptional performance of these biomarkers
in training and test sets, as well as their ability to identify
RCC tumors of diverse histology, make them outstanding
candidates for development of clinical grade assays. As an
increasing number of small renal lesions are being de-
tected through cross-sectional imaging, targeted biopsies
of lesions are used to determine whether these lesions are
malignant or benign. An assay based on detection of me-
thylated sequences could find immediate application in
these diagnostic renal biopsies. However, in a significant
fraction of biopsies, insufficient tissue is obtained for
histologic diagnosis of malignancy and a genomic assay
incorporating our methylation loci could be useful for de-
tecting malignant cells in small biopsies. Furthermore, de-
tection of these methylated sequences could be deployed
as a non-invasive detection test in patient blood or urine.
Measurement of differential genomic marks in patient
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blood and urine has already proven useful for diagnosis
of cancer in the clinical setting. For example, differen-
tial methylation of Sept9 in patient blood is used for
diagnosis of colorectal cancer [65,66] and detection of
the non-coding RNA PCA3 in patient urine is used for
risk assessment of prostate cancer [67-70]. In RCC of
all types, a blood or urine assay could be used for early
detection in high risk populations, for monitoring patients
after definitive surgical treatment, or possibly in monitor-
ing response to therapy in patients with advanced disease.

Additional work will be necessary to evaluate the per-
formance of these methylation markers in less common
RCC histologies, as well as benign entities such as angio-
myolipoma or hemorrhagic cysts. Further investigation
of the consequences of DNA methylation at these pre-
dictive loci, including assessments of gene expression
and other DNA alterations, could provide insights into
important biological processes common to ccRCC, pRCC,
and chRCC.

Conclusions

RCC survival rates are directly correlated with tumor
stage and size and, once metastatic, RCC is usually fatal,
demonstrating the importance of early detection when
lesions are small. However, RCC tumors are difficult to
diagnose because of non-specific symptoms and a reli-
ance on imaging technologies. Due to the molecular and
clinical diversity of RCC, biomarkers for use across the
most common histologic subtypes of RCC for detection
or monitoring have not been previously reported. We
have discovered and validated a DNA methylation bio-
marker panel that is capable of differentiating kidney
tumor from benign adjacent kidney tissue, irrespective
of tumor histology and with high sensitivity and specifi-
city across all tumor stages. These biomarkers could po-
tentially aide in early clinical detection of kidney cancer,
distinguishing between benign and malignant lesions, and
monitoring patients after therapy.

Additional files

Additional file 1: Table S1. Clinical information associated with kidney
patients. For each patient, Tumor ID# (unique identification 1D for tumor
tissue sample), Normal ID# (unique identification ID for benign adjacent
normal tissue sample), Age (patient age at time of resection), Gender,
Surg type (surgical type for tissue resection), Tumor type, Grade, Stage,
Margins, Tumor size (in centimeters), Recurrence status, Status code, Time
FU event (time to follow-up event after surgery, in months), and Time
death (time to death after surgery, in months). Table S2. Significant linear
mixed model analysis results. For each CpG significant in a linear mixed
model analysis of the methylation data treating patient as a random
effect and age and gender as fixed effects (FDR <0.05), the CpG and
which model it was significant in are reported. Table S3. Significant GO
and GSEA terms (adjusted P <0.05) for genes identified in linear mixed
model analysis. For each significant GO and GSEA term identified from
the linear mixed model analysis, the term identifier, term description, the
model the term was significant for, and whether the term was significant
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for genes associated with CpGs with increasing or decreasing methylation
in tumors compared to benign adjacent normal is reported. Table S4.
Significant CpGs by PAM analysis. For each CpG significant in the PAM
analysis, the cancer type the CpG was significant for, and the associated
gene is reported. Table S5. Model sensitivity by cancer stage for five CpG
multiple cancer models. For each cancer subtype, model sensitivity was
calculated by stage for TCGA patients. Asterisks (*) indicate the inclusion of
patients in the total without a specified cancer stage: ccRCC (n=11), pRCC
(n=138), chRCC (n=2), and total (n=51). Model sensitivity in tumors smaller
than 4 cm (T1a) was also calculated for each subtype: ccRCC (0.92, n=125),
PRCC (0.92, n=37), chRCC (1.00, n =5), and total (092, n = 167). Table S6.
Model sensitivity by cancer stage for four CpG ccRCC model. Model
sensitivity was calculated by stage for TCGA patients. Model sensitivity in
tumors smaller than 4 cm (T1a) was also calculated (0.86, n = 50).

Additional file 2: Figure S1. Remaining diagnostic panel biomarker
CpG values from models. DNA methylation of the five CpGs in both
HudsonAlpha/Stanford patients and TCGA patients in the best RCC
diagnostic model (cg13156411, cg14456683, cg18003231, cg12782180,
and cg12782180; panel A-E), and the other three CpGs in both
HudsonAlpha/Stanford patient and TCGA patients in the best ccRCC
diagnostic model (cg11098259, cg14391855, and cg26366091; panel F-H).
In all panels, HudsonAlpha/Stanford Data N versus HudsonAlpha/Stanford
Data T and TCGA Data N versus TCGA Data T comparisons are significant
(Mann-Whitney test; Bonferroni-adjusted P <0.0001).

Additional file 3: Figure S2. RNA expression values for genes nearest
other three predictive CpGs in ccRCC. RNA expression of the three other
genes in TCGA patients in the best ccRCC diagnostic model (panel A-C,
Mann-Whitney test; P <0.0001). The CpGs are all in the promoter regions
of the respective genes (cg11098259 and AQP9; cg14391855 and RINT;
€g26366091 and CHI3L2; panel A-Q).
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