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Abstract

Background: The world is closer than ever to a polio-free Africa. In this end-stage, it is important to ensure high
levels of population immunity to prevent polio outbreaks. Here, we introduce a new method of assessing
vaccination campaign effectiveness and estimating immunity at the district-level. We demonstrate how this
approach can be used to plan the vaccination campaigns prospectively to better manage population immunity in
Northern Nigeria.

Methods: Using Nigerian acute flaccid paralysis surveillance data from 2004-2014, we developed a Bayesian
hierarchical model of campaign effectiveness and compared it to lot-quality assurance sampling data. We then
used reconstructed sero-specific population immunity based on campaign history and compared district estimates
of immunity to the occurrence of confirmed poliovirus cases.

Results: Estimated campaign effectiveness has improved across northern Nigeria since 2004, with Kano state
experiencing an increase of 40 % (95 % Cl, 26-54 %) in effectiveness from 2013 to 2014. Immunity to type 1 poliovirus
has increased steadily. On the other hand, type 2 immunity was low and variable until the recent use of trivalent oral
polio vaccine. We find that immunity estimates are related to the occurrence of both wild and vaccine-derived
poliovirus cases and that campaign effectiveness correlates with direct measurements using lot-quality assurance
sampling. Future campaign schedules highlight the trade-offs involved with using different vaccine types.

Conclusions: The model in this study provides a novel method for assessing vaccination campaign performance and
epidemiologically-relevant estimates of population immunity. Small-area estimates of campaign effectiveness can then
be used to evaluate prospective campaign plans. This modeling approach could be applied to other countries as well
as other vaccine preventable diseases.
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Background

The Global Polio Eradication Initiative (GPEI) is closer
than ever to a polio-free world. This success can be
attributed in part to the wuse of supplementary
immunization activities (SIAs) or campaigns, at the
largest scale ever seen in public health [1, 2]. In order to
achieve poliovirus (PV) eradication, it is crucial for
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policymakers to know which areas are most vulnerable
to PV and what impact SIAs are having in addressing
this vulnerability.

During a SIA, health workers attempt to provide oral
polio vaccine (OPV) to all children under 5 years old in
a given area, typically through house-to-house vaccin-
ation campaigns. Reaching all children is difficult for a
variety of reasons, including out-of-house children,
vaccine refusals, and incomplete household maps. Cur-
rently, two types of post-campaign surveys are used to
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assess campaign coverage: independent monitoring [3],
and cluster lot quality assurance sampling (LQAS) [4].
However, coverage estimates from independent monitor-
ing are often unrealistically high and inconsistent with
observed epidemiology [5]. On the other hand, coverage
estimates from LQAS are considered more accurate, but
are less precise and not as widely available. Further, both
LQAS and independent monitoring are household-based
surveys, and may miss children in informal settlements,
hard-to-reach areas, and mobile populations [4].

In order to gauge the need for SIAs, policymakers use
indicators of vulnerability based primarily on dose-
histories of non-polio Acute Flaccid Paralysis (NP-AFP)
cases collected through the global polio surveillance net-
work [6]. While reported dose histories may suffer from
recall bias, they have been shown to be robust indicators
of individual immunity [7, 8], and the collection of dose-
histories from AFP cases in a particular area serve as
useful indicators of population immunity [9]. However,
sparse data limits accuracy of vulnerability estimates at
small spatial scales [9], and also the responsiveness of
the estimates to immunization activities. Perhaps more
importantly, reported doses are the result of past SIAs,
but the impact of SIAs on reported doses is not directly
measured or used in SIA planning.

In this manuscript, we introduce a novel method for
estimating campaign quality, which we call campaign ef-
fectiveness, from dose histories of non-polio AFP data in
northern Nigeria, and demonstrate how these quality es-
timates can be used to estimate population immunity.
We use the Bayesian hierarchical model to account for
sparse data and improve estimates at the district level.
We then show how these quality estimates and immun-
ity can be used prospectively in SIA planning. We
validate our method by comparing estimated popula-
tion immunity to the occurrence of confirmed wild
poliovirus (WPV) and circulating vaccine-derived polio-
virus (cVDPV) cases, and by comparing campaign effect-
iveness estimates to LQAS data.

Methods

Data

Acute Flaccid Paralysis (AFP) database

The global polio surveillance network detects AFP cases
of any cause [10]. Surveillance officers collect stool sam-
ples from each case, which are tested in order to deter-
mine whether paralysis was caused by PV. Surveillance
officers also collect basic demographic information on
each AFP case, including age, sex, date of onset, and
number of polio vaccinations received. Importantly, this
information is collected before the cause of paralysis is
known. The vast majority of AFP cases are classified as
NP-AFP and serve as the basis of our analysis. In this
analysis, we used the Nigerian AFP database and the
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LQAS database maintained by the Nigerian country of-
fice of the World Health Organization (WHO).

Lot quality assurance sampling (LQAS)

Following a vaccination campaign in which vaccine
recipients had their fingers marked by vaccinators, in-
dependent surveyors visited six randomly chosen vil-
lages within a district and checked for the presence
of finger-marking on 10 children [4]. Only a subset of
districts participating in a vaccination campaign were
visited by LQAS surveyors. In the course of a year,
most districts were visited by surveyors at least one
time. We included LQAS surveys from 2009 through
2015 in our analysis.

Supplementary immunization activities (SIA) database

The dose-histories of NP-AFP cases are referenced
against the SIA database maintained by the Nigerian
WHO. This records basic information for each polio
vaccination campaign, including the date and location of
the campaign, which vaccines were used, and which age
groups were targeted. Case date of onset, age, and dis-
trict were used herein to determine campaigns that
could have contributed to reported doses.

Vaccine efficacy
There are five different formulations of OPV: trivalent
OPV (tOPV), bivalent OPV (bOPV), and monovalent
OPV (mOPV) for each serotype of PV (1, 2, or 3). tOPV
contains antigen for types 1, 2, and 3 PV, while bOPV
contains antigen for only types 1 and 3 PV. Each vaccine
has a different associated efficacy against each serotype,
which may vary with socio-economic context [7, 8, 11].
In our analysis, we used vaccine efficacy estimated by
comparing dose-histories of polio and NP-AFP cases in
northern Nigeria [8].

Institutional ethics approval was not sought for AFP
surveillance and LQAS monitoring data as they are
retrospective and anonymized.

Overview of statistical analysis

Figure 1 provides a visual overview of the statistical pro-
cedure. The first step in the process was estimating cam-
paign effectiveness through NP-AFP data by comparing
the reported doses — observed with error — with cam-
paigns experienced (Fig. 1a). This effectiveness and an
assumption of random, independent participation in-
duces a distribution of doses for the population of inter-
est as well as subgroups of interest. Generally, the more
SIAs experienced, the more doses received (Fig. 1b); in
particular, a SIA changes the dose distribution in the
population over the short period in which it was exe-
cuted. This change in the dose distribution is accompan-
ied by a change in the immune fraction by serotype,
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Fig. 1 Overview of the modeling procedure. (a) We first estimated campaign effectiveness, a measure of how reported doses respond to campaigns.
(b) Using campaign effectiveness, we estimated the number of doses reported by a child, given the number of SIAs experienced. (c) We estimated
immunity based on the 6- to 59-month-old age distribution, the number of doses for a given age, and vaccine effectiveness

related to the efficacy of the vaccine used and the cam-
paign effectiveness (Fig. 1c).

Bayesian hierarchical modeling of campaign effectiveness
We considered model campaign effectiveness at the dis-
trict level, called local government areas (LGA) in
Nigeria. LGAs are an administrative level lower than
province or states in Nigeria and are particularly
meaningful units of analysis as many polio eradication
operations (including vaccination and monitoring) are
organized by LGAs.

We specified a Bayesian hierarchical model of cam-
paign effectiveness to account for temporal patterns and
between-LGA differences, with the aim of producing
smoothed estimates by LGA and year. Let p;;, be the
campaign effectiveness for state i, LGA j, year ¢, and age
stratum a. We modeled yearly LGA-level campaign
effectiveness by age p;;;, with

log it (Pi;‘m) = Bia + bij + it + vii,

where f;, is an age effect, b;~N(0, 0?) is a random
effect for LGA, and [u;, ..., 7]’ ~ NAO, 2(0;,%) and
Wits - V,',-T]T~ N0, Z(0,,>)) are first order normal ran-
dom walk priors for state and LGA temporal variation,
respectively [12]. The index i appears in the subscript
for parameters as we executed separate models for
each state i. Priors for age effects and hyperpriors for
variance parameters governing the random effects are
diffuse; details of Bayesian specification may be found in
Additional file 1.

We used a negative binomial distribution to model
reported doses per child, where the expected value
(mean) is the sum of campaign effectiveness across
campaigns experienced by the child. The negative

binomial distribution allows the variance to be flexibly
fit in the estimation procedure, which may accommo-
date imprecise recall and heterogeneous vaccination
coverage (further discussion of model details can be
found in Additional file 1).

We assessed three models of different complexity. The
full model was as specified above; other models con-
sidered were nested within this full model, removing
age and then the district random walks. The Deviance
Information Criterion was used to pick the model
that best balanced fit and complexity [13].

Campaign-derived immunity

Polio has three serotypes, and high population immunity
to each type is key to achieving elimination. Vaccines
have different efficacies for different types [8]. Variable
campaign effectiveness, the SIA database, and vaccine
efficacies can be used to model the time course of ex-
pected immunity for an individual and the population of
interest.

Let ¢ be the efficacy — the probability of
seroconversion — of the vaccine used in the kth
campaign experienced by a child of age a by time ¢,
and p; be the associated campaign -effectiveness.
With independent participation in campaigns and inde-
pendent seroconversion, the probability of vaccine-based
seroconversion for the child given all the campaigns expe-
rienced is

I(t,a) = I_H(l_pk¢k)'

k

Population immunity can then be calculated by inte-
grating over an age distribution F: I(t) = [I(t, a)dF(a).
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Computational methods may be found in Additional
file 1.

Implementation

All analyses were performed in R [14]. We used MC-
STAN [15, 16] to obtain samples from the posterior
distribution of campaign effectiveness p;,, for each
campaign in each LGA, following the model described
above. Using these posterior samples, we estimated ef-
fectiveness through the posterior mean and summarized
uncertainty with 95 % credible intervals. We approxi-
mated the posterior distribution of functions of LGA-
level campaign effectiveness, such as state-wide cam-
paign effectiveness and immunity, by applying these
functions to the posterior samples. As with campaign ef-
fectiveness, we summarized these distributions through
their posterior means and 95 % credible intervals.

Results

Campaign effectiveness

Studying data from Kano state (Fig. 2a) first, we found
that the relationship between reported number of doses
received and the number of campaigns experienced has
strengthened over time: for children born in 2004, the
rate was 0.11 doses per campaign experienced (Fig. 2b),
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while for children born in 2010, this rate was 0.36
(Fig. 2c). Model results indicate that campaign effective-
ness shows a steady increase, before it increases rapidly
in 2014 (Fig. 2d). The maximum district campaign ef-
fectiveness achieved in 2014 was 89 % (95 % CI, 76—
97 %), while the minimum was 56 % (34—80 %). Four
years prior, the best performing district was achieving
30 % (20-42 %) effectiveness, while the worst was
achieving 13 % (7-19 %). State average campaign effect-
iveness (calculated based on population-weighted district
estimates) increased 40 % between 2013 and 2014, from
35 % (30—41 %) to 75 % (64—86 %) (Fig. 2e).

Campaign effectiveness increased across states in
northern Nigeria since 2004 (Fig. 3a—c). Despite im-
provements, campaign effectiveness remained low in
Borno, Bauchi, and parts of Yobe and Kaduna. On
average, campaign effectiveness remained below 50 % in
these four states in 2014. Campaign effectiveness in-
creased by more than 40 % between 2010 and 2014 in
Jigawa, Kano, Katsina, Sokoto, and Zamfara (Additional
file 1).

The age-based participation effects in the model were
similar across states, and suggested older children were
less likely to report doses from additional campaigns.
In Kano, relative to 6- to 11-month-olds, 1-year-olds
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Fig. 2 Kano campaign effectiveness. (@) Map showing location of Kano state with 10 other high-risk states in northern Nigeria. (b, €) Reported
number of doses received relative to estimated number of campaigns experienced for NP-AFP cases in Kano born in 2004 (b) and 2010 (c).
(d) District traces of modeled campaign effectiveness with highest and lowest performing districts in 2014 colored red and blue, respectively. Shaded
regions represent 95 % credible intervals (Cl). (e) Kano state average campaign effectiveness by time period with 95 % Cl

1.00-

O

paign Effectiveness
o o
[4)) ~
o (9]

o

)

a
1

Estimated Cam

0.00-

2002 2004 2006 _ 2008 2010 2012 2014
Period

N

o

o
I

paign Effectiveness
o o
(%)) ~
o (4]

o

)

a
1

0.00-

Estimated Cam

2002 2004 2006 _ 2008 2010 2012 2014
Period




Upfill-Brown et al. BMC Medicine (2016) 14:60

Page 5 of 10

1.00- A

Province
— Bauchi

<)

~

o
f

Borno
— Jigawa
— Kaduna
— Kano
— Katsina
— Kebbi
— Niger

Sokoto

Estimated Campgign Effectiveness
I
o

— Yobe

o

N

a
1

Zamfara

0.00-

2002 2004 2006 2008 2010 2012 2014
Period

Fig. 3 Northern state campaign effectiveness. (@) Mean campaign effectiveness estimates for northern high-risk states. Shaded region represents
pointwise 95 % credible interval. (b, ¢) Estimated district campaign effectiveness in 2010 (b) and 2014 (c)

(12-23 months) had 1.2 (0.9-1.6) times lower odds of
reporting a dose from a campaign, 2-year-olds had 6.2
(3.6—13.5) time lower odds, 3-year-olds had 2.3 (1.6-3.4)
times lower odds, while 4-year-olds had 2.8 (1.5-7.0)
lower odds (Additional file 1).

By comparing 5,770 LQAS lots collected across
northern Nigeria, from 2009-2015, with matched cam-
paign effectiveness, we found a robust relationship be-
tween the two measures of SIA coverage. The global
correlation coefficient between LQAS coverage and cam-
paign effectiveness was 0.42, capturing 18 % of the
variance in the LQAS data; both measures showed in-
creasing coverage across the north of Nigeria and cam-
paign effectiveness was on average 33 % below the
corresponding LQAS value (i.e. it was biased with re-
spect to the LQAS data). The difference between average
LQAS coverage and average campaign effectiveness
decreased to 15 % and their correlation increased to
0.45 if we considered campaign effectiveness for the 0- to
1-year-old age group only (Fig. 4 and Additional file 1).

Reconstructing immunity

Using model outputs of campaign effectiveness, along
with the historical campaign calendar and estimated vac-
cine effectiveness, we reconstructed sero-specific popu-
lation immunity (Fig. 5). Type 1 immunity increased
consistently over time across all states (Fig. 5a), while
type 2 immunity decreased substantially after 2012 until
the latter half of 2014, when tOPV (containing type 2

vaccine) was used for the first time in more than a year
(Fig. 5b). The saw-tooth pattern captures the spike in
population immunity immediately following a campaign,
and the decay in immunity appeared as older children
left the target age group and unimmunized infants
replaced them.

District immunity estimates were significantly associ-
ated with the subsequent presence or absence of WPV1
and cVDPV2. We related the estimated immunity at the
beginning of a 6-month period to the presence or ab-
sence of a case(s) of PV in 2004 through 2014. Average
type 1 immunity was 29 % in districts that reported at
least one WPV case in the following 6 months compared
to 53 % in districts that did not (P <0.001, using a two-
sided #-test). Furthermore, we found that 0.9 % of dis-
tricts with estimated type 1 immunity above 80 % re-
ported a WPV1 case in the following 6 months. Average
type 2 immunity was 27 % in districts that reported at
least one cVDPV2 case in the following 6 months
compared to 39 % in districts that did not (P <0.001).
Additionally, only 0.6 % of districts with estimated
type 2 immunity above 50 % reported a cVDPV2 case
in the following 6 months (Additional file 1).

District-level immunity estimates (Fig. 5c,d) suggested
that, as of the end of 2014, all districts in Jigawa,
Kano, Katsina, Kebbi, and Zamfara had greater than
80 % average type 1 population immunity. In Niger
and Sokoto, only one district was below 80 %, while
Bauchi and Kaduna had six districts each below 80 %
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Fig. 4 Comparison of calculated campaign effectiveness and LQAS
data, using 5,770 LQAS lots matched to calculated campaign
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immunity. In Borno and Yobe, states with inaccessible
districts, there were 21 and six districts, respectively,
below 80 %.

Our approach allowed full propagation of uncertainty
in campaign effectiveness into immunity calculations
(see shaded regions, Fig. 5a,b). Prediction intervals could
then be used to assess which districts were significantly
below or above a target immunity threshold. For example,
we found that only Borno (11 districts), Yobe (3), and
Kaduna (2) had estimated type 1 population immunity sig-
nificantly below 80 % as of the end of 2014 (i.e. posterior
95 % CI is below the target immunity level).

Evaluation of proposed campaign calendars

Campaign effectiveness estimates can be used to project
future immunity given a set of planned campaigns. As
an example, we compared three different future cam-
paign calendars for northern Nigeria in advance of the
removal of tOPV from vaccination globally in April 2016
[17]. All districts experienced vaccination rounds of
bOPV, tOPV, tOPV, and bOPYV in January, March, April,
and June, respectively. Beginning in the second half of
2015, there were three potential calendars (Table 1). One
calendar represents the planned schedule (‘Planned’), one
includes more bOPV in place of tOPV (‘bOPV’), and the
last includes only tOPV campaigns (‘tOPV’).

LQAS data The impact of these three calendars is compared in
Fig. 6 and Table 2. In the planned calendar, almost all
districts would experience a small drop in type 1

100- p

Estiamted Population Immunity

2004 2006 2008 2010 2012 2014

Fig. 5 Northern state reconstructed population immunity. (a, b) Average type 1 (a) and type 2 (b) population immunity for northern states,
shaded region represents pointwise 95 % credible interval. (c, d) Estimate district-level type 1 (c) and type 2 (d) population immunity as of

December 31st, 2014
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Table 1 Future potential campaign calendars

Page 7 of 10

Name July-15 Sept-15 Oct-15 Dec-15 Jan-16 Feb-16 Mar -16 Apr-16 Jun-16
Planned tOPV tOPV tOPV bOPV bOPV tOPV tOPV bOPV bOPV
bOPV tOPV bOPV tOPV bOPV bOPV tOPV bOPV bOPV bOPV
tOPV tOPV tOPV tOPV tOPV tOPV tOPV tOPV bOPV bOPV

Each of the three hypothetical campaign calendars uses a different combination of tOPV and bOPV campaigns

b, bivalent; OPV, Oral polio vaccine; t, trivalent

immunity with a corresponding 10 % increase in type 2
immunity (Fig. 6a,b). Under the bOPV calendar, the
average district would maintain the same level of type 1
immunity, but the corresponding increase in type 2 im-
munity would be reduced to 5 %. Finally, under the
tOPV calendar, there would be a 4 % drop in type 1 im-
munity in most districts, but the average increase in type
2 immunity would be 15-20 %.

Under the tOPV calendar, all states would have
greater than 75 % immunity to type 2 PV before the
removal of OPV2 from use in immunization except
for Borno, since 16 of 21 districts in the province
would remain inaccessible through 2016 due to inse-
curity under our model.

Discussion

The Nigeria polio program underwent a restructuring
process in October 2012 that led to the creation of the
Polio Emergency Operation Center, an assembly of polio

public health experts from international development
agencies, such as WHO, UNICEF, Red Cross, and CDC,
working closely together under the leadership of the
Federal Government of Nigeria.

The recent success against polio has been attributed to
the widespread use of data for action, innovative
methods such as GIS/GPS tracking [18], use of dash-
boards, and statistical modeling to project population
immunity. These population immunity projections and
maps provided valuable guidance to the program in de-
termining areas of low population immunity where the
PV was likely to take seed and cause an outbreak. By
studying these immunity maps, the program was able to
take pre-emptive actions to ensure that the best vac-
cination teams and supervisors were deployed to
these weak or vulnerable areas, to ensure that the
immunization campaigns were of the highest quality,
improve population immunity and, therefore, stave off
any PV outbreaks.
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Table 2 Northern state projected type 2 immunity

Province Before® Planned® bOPV? tOPVP

Bauchi 0.57 (0.50-0.63) 0.74 (0.68-0.80) 0.64 (0.58-0.70) 1 (0.75-0.86)
Borno 0.37 (0.31-043) 0.38 (0.33-044) 0.34 (0.29-0.40) 041 (0.36-0.46)
Jigawa 0.84 (0.79-0.87) 0.93 (0.91-0.95) 0.87 (0.83-0.89) 0.96 (0.95-0.97)
Kaduna 0.60 (0.54-0.67) 0.77 (0.69-0.83) 0.67 (0.60-0.74) 0.82 (0.76-0.88)
Kano 0.83 (0.77-0.87) 0.92 (0.89-0.94) 0.85 (0.82-0.88) 0.95 (0.93-0.96)
Katsina 0.83 (0.79-0.86) 0.93 (0.91-0.94) 0.86 (0.83-0.88) 0.96 (0.94-0.96)
Kebbi 0.73 (0.68-0.78) 0.88 (0.84-0.91) 0.80 (0.75-0.83) 0.92 (0.89-0.95)
Niger 0.74 (0.68-0.79) 0.87 (0.82-0.91) 0.79 (0.73-0.83) 0.91 (0.86-0.94)
Sokoto 0.77 (0.73-0.81) 0.90 (0.87-0.92) 0.82 (0.79-0.85) 0.94 (0.92-0.95)
Yobe 0.62 (0.55-0.70) 0.73 (0.67-0.79) 0.65 (0.59-0.71) 0.78 (0.73-0.83)
Zamfara 0.78 (0.72-0.83) 0.91 (0.88-0.93) 0.83 (0.79-0.86) 0.94 (0.92-0.96)

The projected mean population immunity following application of three separate campaign calendars is compared to the estimated population immunity in June

2015. 95 % credible interval in parentheses

2 Population immunity as of June 20th, 2015
b Population immunity as of April 10th, 2016
b, bivalent; OPV, Oral polio vaccine; t, trivalent

In 2012-2013, when PVs were being frequently iso-
lated despite improving campaign quality, population
immunity maps * were used as advocacy tools to en-
courage political office holders not to relent on their
political and financial support to the program despite
setbacks.

Because population immunity maps closely matched
the other indices used to assess the quality of supple-
mental immunization activities, they provided real proof
to the GPEI that Nigeria was making progress towards
stopping polio transmission despite skepticism on the
part of many about the quality of data generated from
immunization activities.

Furthermore, over the course of several months, popu-
lation immunity maps were used as an additional layer
of evidence to determine the performance of LGA teams
in the implementation of the accountability framework.
Thus, LGA programs were more likely to be acknowl-
edged and rewarded if population immunity projections
also aligned with other criteria used for performance
management.

Our calculations of campaign effectiveness showed
steadily increasing quality from 2004-2014, in line
with increased focus and resources devoted to the
country’s polio program [19, 20]. In Kano, the large
improvement in 2014 was correlated with the wide-
spread use of GPS vaccinator tracking [18] and GIS-
based micro planning [19] to ensure all settlements
are visited by vaccinators. In addition, mobile health
camps providing additional routine immunizations,
oral rehydration salts, and other medications delivered
during vaccination campaigns began to be used at
scale in 2014 — especially in Kano.

In contrast, campaign effectiveness showed mixed
improvement in northeast states, particularly Borno,
comparing 2010 and 2014 results. The northeast has
been the center of civil conflict between the extremist
group Boko Haram and civil authorities, and accessibility
of areas to polio vaccinators has been affected [21]. Our
results suggest that efforts to improve campaign effect-
iveness in the northeast have been impeded, most likely
due to regional insecurity.

When comparing our campaign effectiveness estimates
with LQAS data, we found a good correlation but a sys-
tematic downward bias of our estimates [5], suggesting
that the number of doses reported by AFP cases could
be systematically under-reported, that the populations
captured by AFP are relative underserved compared to
those captured by the LQAS surveys, or that the LQAS
estimates are biased upwards, e.g. when difficult to ac-
cess populations are not surveyed.

Similarly, immunity reconstructions show overall im-
provement in northern Nigeria, particularly for type 1.
This is mirrored in case incidence: the last case of type 1
WPV was in July 2014 [22]. However, the explicit link
between vaccine usage and our immunity model shows
that type 2 results are far more mixed: long periods of
no or limited tOPV use result in declining immunity.
Efforts to rapidly increase type 2 immunity before cessa-
tion of type 2 OPV in April 2016 with increased cam-
paigns are reflected in our immunity results, which also
illustrate what may be expected by applying different
campaign calendars. These results emphasize lingering
concerns over type 2 immunity in Borno.

Our estimates of campaign effectiveness and popula-
tion immunity rely on the accuracy of AFP data. The
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varying causes and detection rates of AFP make bias in
surveillance data both likely and difficult to quantify
[23]. It is possible that AFP data is more effective than
traditional cluster surveys in measuring under-served
populations, as those people who become paralyzed may
seek treatment even if they are not represented within a
sampling frame or present at the time of the survey.
Conversely, remote populations may not have access to
health services and thus not report their cases of
paralysis.

Assessing campaign quality from surveillance data is
also complicated by the difficulty to recall vaccination
dose history, for example in areas which receive many
campaigns, or when the child is older. Poor recall in
older age groups may be captured by the age-structure
model to some extent. In our model, we saw that the es-
timated campaign effectiveness for older children was
lower than for younger children, which could be evi-
dence of inaccurate dose recall.

Our method also relies on the quality and granularity
of historical campaign data. In certain special cases, the
official campaign calendar may not reflect circumstances
when campaigns were cancelled due to accessibility is-
sues (e.g. in Borno state), or when special interventions
are conducted to deliver additional doses (e.g. health
camps and permanent vaccination teams). In these rare
cases, it is possible for our estimates of campaign effect-
iveness to be biased downward (when campaigns are
cancelled) or upward (when vaccination is conducted
outside of campaigns).

Explicitly incorporating information about routine
immunization (RI) coverage into our methods would im-
prove the accuracy of our estimates of immunity and
campaign coverage. Currently, we estimate the vaccine
mix received by an AFP case using only the campaign
history. This is a good approximation in areas which use
tOPV exclusively or where RI coverage is low. In areas
where multiple types of vaccines are used (tOPV,
mOPV1, mOPV3, bOPV), the accuracy of immunity es-
timates would be improved by considering RI: increasing
the type 2 and decreasing the types 1 and 3. Our esti-
mates of campaign effectiveness assume all received
OPV doses are due to vaccination campaigns, such that
the ratio of received doses to the number of campaigns
exposed to is a measure of campaign effectiveness. In
areas where RI coverage is high, multiple OPV doses can
be attributed to RI instead of campaigns; incorporating
this effect, our estimates of campaign effectiveness
would be reduced, and the accuracy of our estimates
would be improved. In northern Nigeria, RI coverage is
low and the number of vaccination campaigns is high,
such that the method presented produces good results.

Going forward, we could also incorporate regional dif-
ferences and the uncertainty in per-dose vaccine efficacy,
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and we could attempt to explicitly model within-district
heterogeneity in campaign coverage to better capture
the effect of chronically missed children.

Conclusions

Surveillance data is central to GPEI eradication efforts
and dosing data in AFP has proven programmatic use-
fulness [7, 8]. The campaign effectiveness and immunity
model presented here advance the use of these data and
can help polio eradication efforts.

The use of Bayesian hierarchical modeling allows esti-
mation of campaign quality and immunity at small
spatial scales, e.g. LGA. These can be used to highlight
effectiveness or immunity gaps in such areas, allowing
the possibility of sharper programmatic focus.

Previous methods of polio immunity modeling have
relied on time binning, with hierarchical modeling of
binned observations to handle low sampling rates for
small area estimation [9]. This method of immunity re-
construction and forecasting improves on past methods
by explicitly linking campaign effectiveness and cam-
paign event history, the latter including the vaccine used.
The result is immunity estimation that responds dynam-
ically to campaign events — past and proposed — to yield
immunity by serotype. This is useful in the polio eradi-
cation endgame for elimination modeling for multiple
polio types, evaluation of prospective campaign calen-
dars, and changes in vaccine usage. The methods may
also be partially extensible to other vaccine preventable
diseases that rely on campaigns to build population
immunity.

Endnote
!Using older methods, for example [9].
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