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Abstract 

Background Highlighted by the rise of COVID-19, climate change, and conflict, socially vulnerable populations 
are least resilient to disaster. In infectious disease management, mathematical models are a commonly used tool. 
Researchers should include social vulnerability in models to strengthen their utility in reflecting real-world dynamics. 
We conducted a scoping review to evaluate how researchers have incorporated social vulnerability into infectious 
disease mathematical models.

Methods The methodology followed the Joanna Briggs Institute and updated Arksey and O’Malley frameworks, 
verified by the PRISMA-ScR checklist. PubMed, Clarivate Web of Science, Scopus, EBSCO Africa Wide Information, 
and Cochrane Library were systematically searched for peer-reviewed published articles. Screening and extracting 
data were done by two independent researchers.

Results Of 4075 results, 89 articles were identified. Two-thirds of articles used a compartmental model (n = 58, 
65.2%), with a quarter using agent-based models (n = 24, 27.0%). Overall, routine indicators, namely age and sex, 
were among the most frequently used measures (n = 42, 12.3%; n = 22, 6.4%, respectively). Only one measure related 
to culture and social behaviour (0.3%). For compartmental models, researchers commonly constructed distinct 
models for each level of a social vulnerability measure and included new parameters or influenced standard param-
eters in model equations (n = 30, 51.7%). For all agent-based models, characteristics were assigned to hosts (n = 24, 
100.0%), with most models including age, contact behaviour, and/or sex (n = 18, 75.0%; n = 14, 53.3%; n = 10, 41.7%, 
respectively).

Conclusions Given the importance of equitable and effective infectious disease management, there is potential 
to further the field. Our findings demonstrate that social vulnerability is not considered holistically. There is a focus 
on incorporating routine demographic indicators but important cultural and social behaviours that impact health 
outcomes are excluded. It is crucial to develop models that foreground social vulnerability to not only design more 
equitable interventions, but also to develop more effective infectious disease control and elimination strategies. 
Furthermore, this study revealed the lack of transparency around data sources, inconsistent reporting, lack of collabo-
ration with local experts, and limited studies focused on modelling cultural indicators. These challenges are priorities 
for future research.
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Background
The rising number of global disasters due to COVID-19, 
climate change, and conflict, commonly known as the “3 
Cs,” have demonstrated that our world is more vulnerable 
than ever [1]. Among the notable global health risks are 
infectious diseases, which pose a dire threat. Even with 
medical innovations advancing the science of disease 
prevention, infectious diseases still accounted for over 
13 million deaths globally in 2015 [2]. Global increases 
in urbanisation, deforestation, trade, and transport make 
our modern world more vulnerable than ever to the 
rapid spread of infectious disease [3]. Most recently, the 
COVID-19 pandemic resulted in an estimated 18 mil-
lion deaths worldwide in just the first year [4]. Inequal-
ity often exacerbates the impact of infectious disease and 
vice versa [5]. The current global crisis of rising inequal-
ity and poverty, coupled with easier circulation of disease 
due to globalisation, creates an urgent need for social vul-
nerability to be addressed in infectious disease research 
and management [6].

Recently coined in the natural hazard and disas-
ter fields, the term social vulnerability (SV) is used to 
describe limited resilience during crises resulting from 
societal and social systems [7]. Socially vulnerable pop-
ulations face challenges in anticipating, responding 
to, coping with, and recovering from disasters, includ-
ing disease outbreaks [8]. SV is not simply the biologi-
cal processes that affect disease dynamics but rather the 
conditions and environments that confer vulnerability 
and therefore impact disease progression. The 3 Cs have 
caused a major setback to global poverty and SV, which 
evidence shows has been unprecedented in recent dec-
ades [1, 9]. With the rise of the 3 Cs, the SV field is grow-
ing in momentum.

SV is multidimensional with ongoing research being 
done to define and measure it [8]. However, various 
researchers have attempted to define SV. The United 
States (US) Centers for Disease Control and Prevention 
(CDC) developed a SV index that incorporates age, pov-
erty, household composition, race, and access to a vehi-
cle, among other factors [7]. In discussion with various 
experts and research around what social dimensions 
affect disease progression, the following categories were 
identified as contributors to the concepts of SV: vulnera-
ble populations, the social determinants of health (SDH), 
culture, knowledge, attitudes, and practices (KAP), geo-
graphic location, and contact and movement behaviour. 
Examples are outlined below.

Vulnerable populations face disproportionate hard-
ships because of their identity or status due to histori-
cal injustice, discrimination, and social exclusion. The 
COVID-19 pandemic, for example, disproportionately 
affected ethnic and racially marginalised populations 
as the disease began its spread throughout countries 
including the US, Brazil, and South Africa [10–12].

SDH, such as poverty, educational attainment, dis-
ability, access to housing, household sanitation, and 
access to clean water, are key contributing factors to 
differential health outcomes [13–15]. Moreover, cul-
tural behaviour and traditions often influence health. 
This was notable during the West African Ebola epi-
demic of 2014–2016, when burial rites that involved the 
washing and touching of infected corpses contributed 
to community spread [16]. Culture underpins KAP, 
which influences disease risk. For example, a survey of 
American university students found that a young per-
son’s assertiveness in practising condom use varied by 
cultural identity [17].

Infectious diseases also have geographic hotspots. 
For example, health outcomes are often poorer in rural 
areas given limited access to health care [18]. Further-
more, the movement and contact patterns of people 
greatly impact transmission. People often have specific 
contact patterns and behaviours, reflected in contact 
matrices [19]. The type of contact also impacts disease 
progression. For instance, sexually transmitted infec-
tions (STIs) require intimate contact while airborne 
infections can be spread through casual contact [20].

Given the impact infectious diseases have on human 
health, prompt and equitable preparedness and 
response are vital. Mathematical models are com-
monly used to predict or simulate the progression of 
infectious diseases and may incorporate interventions 
or policy responses [21]. Two common types of math-
ematical models used in infectious disease research 
are compartmental models and agent-based models 
(ABMs). Compartmental models assign homogenous 
populations to a category or “compartment” based on 
their disease state, with individuals moving between 
compartments as their disease state shifts [22]. These 
models frequently use deterministic ordinary differ-
ential equations but can also incorporate stochasticity 
[22]. ABMs, also known as individual-based models, 
consist of individual, autonomous agents with assigned 
characteristics [23]. ABMs allow for stochasticity by 
sampling the characteristics and behaviours of each 
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agent from random distributions or by treating the 
characteristics as random variables. These agents 
interact with each other and their environment [23]. 
There are other types of models similar to ABMs, 
including network analysis and cellular automata 
models. Network analysis focuses on the linkages or 
relationships between actors (e.g. populations, organi-
sations, or individuals) [24]. At each time step, the 
actor’s status—disease or social—can change depend-
ing on their relationships with those around them. Cel-
lular automata models make use of a grid of cells, with 
the grid representing the geographic area and the cells 
representing an individual [25, 26].

Considering the use of mathematical models for 
infectious disease research, and the close ties between 
health outcomes and SV, models benefit from the 
inclusion of SV. But despite the demonstrated impact, 
many mathematical models do not consider SV meas-
ures [27–29]. Disregarding SV can lead to biased and 
unreliable forecasts and neglecting communities at 
risk, which can impact the success of policy and pro-
grammatic interventions [27]. For example, excluding 
limited access to life-saving healthcare for relevant 
sub-populations might lead to an underestimation in 
the predicted number of deaths. Reporting popula-
tion-level results might also be misleading for specific 
sub-populations as their outcomes may differ due to 
their SV status.

Researchers can incorporate SV measures into their 
models in various ways. Methods to do so include 
accurately estimating and parameterizing sub-popu-
lations, using the validation and calibration processes 
to ensure real-world dynamics inform the model, and 
engaging multidisciplinary stakeholders to evaluate 
the model’s structure, biases, and interpretation [27, 
28]. Furthermore, model populations can be stratified 
or characteristics assigned to individual agents. Recog-
nising heterogeneities allows for a more holistic view 
of the population and, therefore, supports more accu-
rate and targeted predictions [29]. While select studies 
highlight SV in their mathematical models, no one has 
methodically assessed the ways in which SV has been 
included in modelling.

In this paper, we conducted a scoping review to 
evaluate and discuss how researchers have incorpo-
rated social vulnerability into mathematical models for 
infectious diseases. Understanding how these models 
have been developed is a crucial step towards building 
upon former innovations, sharing strategies for new 
research methods, and inspiring future models for dis-
ease preparedness and response.

Methods
Search strategy and selection criteria
Given the goal was to identify key themes and trends, a 
scoping review was determined to be the most suitable 
method as opposed to other types of reviews [30]. Scop-
ing review methodology followed the steps outlined by 
the Joanna Briggs Institute [31] and Arksey and O’Malley 
methodological framework [32] and was verified by the 
Preferred Reporting Items for Systematic reviews and 
Meta-Analyses extension for Scoping Reviews (PRISMA-
ScR) checklist [33]. The Arksey & O’Malley framework 
[32], updated by Levac, Colquhoun, and O’Brien [34], 
was used to guide the scoping review process. This 
framework consists of six stages: (1) identifying the 
research question, (2) identifying relevant studies, (3) 
study selection, (4) charting the data, (5) collating, sum-
marising, and reporting results, and (6) optional consul-
tation [32, 34].

The following databases were systematically searched 
for peer-reviewed published articles on 10 June 2022: 
PubMed, Clarivate Web of Science, Scopus, EBSCO 
Africa Wide Information, and Cochrane Library. These 
sources were selected given their breadth and topical 
relevance. Moreover, the reference list of every second 
article included in the final full-text review was scanned 
for additional articles not identified during the database 
search. Keywords were identified from PubMed and 
Cochrane Institute MESH terms. Variants and combi-
nations of search terms relating to infectious diseases, 
mathematical models, and SV were used. See Appendix 1 
for search terms for each database. EndNote X9 reference 
management software was used to import the references 
and delete duplicates, and title and abstract screening 
was conducted using the online systematic literature 
review tool Rayyan. Screening titles and abstracts, read-
ing full-text sources, and extracting findings were done 
by at least two independent researchers. Any conflicts 
were resolved through discussion, with the final deci-
sion made by the first author if consensus could not be 
reached.

Eligibility criteria were primary research publica-
tions that utilised mathematical modelling for infectious 
diseases and explicitly considered SV. A mathematical 
model was defined as a model that simulates a system 
over time to represent a mechanistic dynamic [35]. Spe-
cifically, these dynamics recognise that a population or 
an individual’s state at a point in time depends on their 
previous state. They often also include assumptions 
about the values or distribution of select model param-
eters [35]. An infectious disease was defined as an illness 
caused by a pathogen, such as a bacterium or virus, that 
is able to spread to a susceptible host through an infected 
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person, animal, or contaminated object [36]. From dis-
cussions with experts and literature research, structural 
and individual indicators that may influence a communi-
ty’s resilience were identified as social vulnerabilities [7]. 
This included vulnerable or marginalised populations, 
SDH measures, cultural traditions, contact and move-
ment behaviours, geographic distribution, and KAP 
indicators.

No timeframe bound inclusion. Only peer-review 
articles written in English were included. Commentar-
ies, editorials, randomised controlled trials, books, blog 
posts, and conference abstracts were excluded. Articles 
that included interventions or economic analyses but 
did not explicitly incorporate an SV indicator were also 
excluded. Furthermore, models were excluded if the 
entire studied population was a vulnerable or margin-
alised population but no differences were highlighted 
within the group because this study’s objective was to 
understand how researchers incorporated SV into model 
methods and equations.

Data analysis
The primary outcomes of interest were the techniques 
used to include SV into a mathematical model and the 
variables selected. The extracted data were summarised 
in a table in Microsoft Excel to facilitate identifying gaps, 
trends, and variations across the selected articles, and to 
categorise relevant information. The results were further 
mapped across sub-groups. Qualitative data were ana-
lysed using an inductive thematic analysis. Notably, the 
risk of bias and quality of the studies were not evaluated, 
as the objective was to simply map the evidence [30, 33]. 
However, a form of quality control was to only include 
peer-reviewed publications.

Data collected are listed in Table  1. Regarding the 
inclusion of SV, indicators were grouped into the follow-
ing categories: contact and movement behaviour, cul-
ture, demographics, geographic location, KAP, SDH, and 

vulnerable populations. This research categorised the 
methods of inclusion as stratification overall, stratification 
within, including or influencing parameter(s), and assign-
ing characteristics to agents. More than one method could 
be used. Stratification overall was defined as the devel-
opment of separate models for different levels of an SV 
measure, with possible interactions between these mod-
els (i.e. a metapopulation model). See Fig. 1 for an exam-
ple. Stratification within was defined as one model with 
forking stratification at a point in the model process. See 
Fig.  2 for an example. Influencing a parameter(s) related 
to adjusting standard or existing model parameters that 
would be present whether or not SV was incorporated. 
In comparison, including a parameter(s) was defined as 
the inclusion of a new term related to SV. See Fig. 3 for 
an example. Although stratification overall implies each 
level of the SV measure has specific parameters, influenc-
ing a parameter(s) was applicable when the journal article 
highlighted a change in a particular parameter(s) to reflect 
an SV dynamic. Assigning characteristics were relevant for 
ABM or network models in which an individual agent or 
node could have a set of associated variables.

The articles were further evaluated to determine if 
the study focused on an active outbreak (cases exceed-
ing the expected threshold), conducted a sensitivity 
analysis, and/or calibrated or validated the model. A 
sensitivity analysis was defined as varying or sampling 
select parameters to assess their influence on the out-
comes of the model [37]. Model calibration is the pro-
cess whereby parameter values that have limited data 
are estimated using a model-fitting approach [35].

In order to understand: the extent of collaboration 
between high-income countries (HICs) and low- and 
middle-income countries (LMICs), the  collaboration 
with researchers from the study setting, and which 
countries are leading the research on SV in math-
ematical modelling, authors’ research affiliations 
and the study setting were collected. Countries were 

Table 1 List of data collected in full-text screening of published articles which included an infectious disease mathematical model 
with social vulnerability incorporated (N = 89)

Metadata Article details Inclusion of social vulnerability

Article title Study setting(s) Indicator(s)

Date of publication Disease(s) studied Indicator category

Author(s) Mathematical model type(s) Method(s) of incorporation

Author’s research affiliations Data sources If relevant, parameter influenced/ 
included

Journal Limitations listed Stratification method

Article’s full reference Did the model focus on an outbreak?

Did the authors conduct a sensitivity analysis?

Did the authors calibrat/ fit/ verify the model with real-
world data?
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categorised according to the World Bank regional lists 
[38].

Results
A total of 4075 studies were identified from the database 
search: 2691 from PubMed, 775 from Scopus, 446 from 
Clarivate Web of Science, 163 from EBSCO Africa Wide 
Information and none from the Cochrane Library. After 
the duplicates were removed, 3224 articles remained for 
screening. In total, 3122 (96.8%) were excluded based 
on the eligibility criteria, leaving 102 articles for full-text 
screening. Thirty-five of the 102 articles were excluded 
based on the eligibility criteria. An additional 22 articles 
were found from full-text reference scanning. The final 
number of studies included for data extraction was 89. 
See Fig. 4 and Appendix 2 for the list of articles.

The date of publication ranged from 1993 to 2022 (the 
year of the database search). Among the studies included, 
around half (n = 42, 47.2%) were published in the last 
5 years with a spike in 2020–2021 when 30 studies were 
published (33.7%). Twenty of those  30 articles focused 
on COVID-19 (66.7%). See Fig.  5. Geographic locations 
of study ranged from single settings to several countries 
or regions. The most common countries studied were 
the US (n = 14, 14.7%) and Canada (n = 7, 7.4%), with a 

dearth in the Middle East and North Africa (n = 3, 3.2%) 
and South Asia (n = 3, 3.2%). See Fig.  6. Twelve articles 
(13.5%) spanned a collection of countries or region(s). 
Notably, 23.6% (n = 21) of all  articles modelled a hypo-
thetical “Setting X”. COVID-19 (n = 23, 25.0%), influenza 
(n = 19, 20.7%), and HIV/AIDS (n = 18, 19.6%) were the 
most commonly modelled diseases. Strikingly, the fourth 
most common disease studied was “Disease X” (n = 9, 
9.8%); a hypothetical disease based on a model of a res-
piratory, STI, or waterborne-like disease. See Table 2.

Institutions from HICs generated most of the models 
(n = 56, 62.9%) whereas only five articles were developed 
solely by LMIC institutions (5.6%). A third of all arti-
cle affiliations were from the US (n = 102, 32.4%). The 
United Kingdom (UK), Canada, and Italy accounted for 
nearly another third (n = 90, 28.6%). A quarter of articles 
did not include affiliations from the setting(s) studied 
(n = 18, 25.4%, excluding Setting X). Furthermore, half 
of articles about LMICs did not include a LMIC author 
affiliation (n = 20, 50.0%). Regarding data source trans-
parency, nearly one in ten studies (n = 8, 9.0%) did not list 
any data sources for parameters in the main text, with the 
general source (empirical and/or expert opinion) often 
needing to be inferred from text. A quarter of the arti-
cles (n = 23, 25.8%) made no clear mention of limitations 

Fig. 1 Example of stratifying overall in compartmental modelling: S’1 and I’1 is a set of equations for the susceptible and infectious housed 
population, respectively. S’2 and I’2 is a set of equations for the susceptible and infectious unhoused population, respectively. β2 represents 
interactive transmission between the models

Source: Romaszko J, Siemaszko A, Bodzioch M, Buciński A, Doboszyńska A. Active Case Finding Among Homeless People as a Means of Reducing 
the Incidence of Pulmonary Tuberculosis in General Population. Adv Exp Med Biol. 2016;911:67–76. https:// doi. org/ 10. 1007/ 5584_ 2016_ 225. PMID: 
26,992,399

https://doi.org/10.1007/5584_2016_225
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and six articles (6.7%) made no direct acknowledgement 
of assumptions.

Among the articles that detailed their limitations 
(n = 66, 74.2%), the following themes emerged: lack of 
generalizability (n = 25, 37.9%); limitations in account-
ing for disease complexity (n = 19, 28.8%); limitations in 
recognising variability in contact mixing patterns (n = 16, 
24.2%); limitations in accounting for a social vulnerability 
(n = 15, 22.7%); insufficient data (n = 10, 15.2%); assump-
tions around vaccination (n = 5, 7.6%); and limitations in 
accounting for individual susceptibility (n = 4, 6.1%).

Two-thirds of articles used a variation of the Suscep-
tible, Infectious, Recovered (SIR) compartmental model 
(n = 58, 65.2%), with one in four articles using ABMs 
(n = 24, 27.0%). Four (4.5%) were network models. The 
remaining three (3.4%) were cellular automata models 

Fig. 2 Example of stratifying within in compartmental modelling: Behaviour was modelled in two ways: an increase in the proportion 
of the population vaccinated led to an increase in non-compliance of preventative measures, and an increase in deaths resulted 
in an increase in compliance of preventative measures. Susceptible (S) and vaccinated (V) compartments also had susceptible and vaccinated 
non-compliant compartments  (SNC,  VNC, respectively)

Source: Source: Gozzi N, Bajardi P, Perra N. The importance of non-pharmaceutical interventions during the COVID-19 vaccine rollout. PloS Comput 
Biol. 2021: 17(9):e1009346. https:// doi. org/ 10. 1371/ journ al. pcbi. 10093 46

Fig. 3 Example of influencing or including parameters in compartmental 
modelling: The transmission rate β is influenced by dt, a social distancing 
index between zero and one. Dt comprises measures of civic capital 
(k), the perceived riskiness of the virus (r), and policy response adopted 
over the course of the pandemic (p). Included are two civic capital 
parameters: one based on the internalisation of the externalities (η, belief 
in other’s well-being) and another on law-abidingness (v)

Source: Durante R, Guiso L, Gulino G. Asocial capital: Civic culture 
and social distancing during COVID-19. J Public Econ. 2021 
Feb;194:104,342. https:// doi. org/ 10. 1016/j. jpube co. 2020. 104342. Epub 
2021 Jan 4. PMID: 35,702,335; PMCID: PMC9186120

https://doi.org/10.1371/journal.pcbi.1009346
https://doi.org/10.1016/j.jpubeco.2020.104342
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(n = 2, 2.2%) and a goals simulation model (n = 1, 1.1%). 
Among the 58 compartmental models, 62.1% (n = 36) 
included contact or movement behaviour, suggest-
ing metapopulation models were a common means to 
model SV. ABMs were more frequently associated with 
HIC institutions (n = 18, 75.0%) than LMIC institu-
tions. Only six ABM studies included a LMIC affiliation 
(25.0%), of which only one ABM was developed solely 
by LMIC institutions. Nearly half of the articles using 
ABMs were designed for HIC settings (n = 11, 45.8%) 
whereas 37.5% were designed for LMICs (n = 9). See 
Fig.  7. Conversely, compartmental models were more 
commonly used for LMIC settings (n = 25, 43.1%) than 
HICs (n = 19, 32.8%). See Fig. 7. There was also a closer 
split between compartmental models generated solely by 
HIC institutions (n = 34, 58.6%) and those that included a 
LMIC institution(s) (n = 24, 41.4%). Setting X most often 

employed the use of a compartmental model (n = 10, 
58.8%). See Fig.  7. Modelling for COVID-19 and HIV/
AIDS made use of compartmental models 91.3 and 72.2% 
of the time, respectively (n = 21, n = 13). Conversely, stud-
ies modelling influenza used both ABM (n = 10, 52.6%) 
and compartmental models (n = 8, 42.1%), with two-
thirds of articles about a Disease X employing ABM and 
network models (n = 6, 66.6%).

The majority of articles focused on an active outbreak 
scenario (n = 65, 73.0%), driven by the high number of 
articles about COVID-19 (n = 23, 35.4%) and outbreak 
influenza (n = 19, 29.2%). Among articles about out-
breaks, the majority used a compartmental model (n = 43, 
66.62%). Half of the articles conducted a sensitivity analy-
sis (n = 45, 50.6%) and more than half calibrated or vali-
dated their models (n = 52, 60.5%, excluding theoretical 
frameworks).

Fig. 4 Flow-chart of database searching and article screening process
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Nearly half of all models included four or more SV indi-
cators (n = 42, 47.2%). Among both compartmental mod-
els and ABMs, the mean number of indicators included 
was 3.9. A third of all SV indicators (N = 342) were SDH 
measures (n = 114, 33.3%). Demographic factors were 

the second most commonly used measure of SV (n = 68, 
19.9%). See Fig. 8. Of individual indicators, the most fre-
quent were contact behaviour (n = 47, 13.7%), age (n = 42, 
12.3%), and sex (n = 22, 6.4%; no article considered non-
binary sex or other gender identities). The only identified 

Fig. 5 Number of published articles which included an infectious disease mathematical model with social vulnerability incorporated by publication 
date (to 10 June 2022, N = 89)

Fig. 6 Study setting(s) of published articles which included an infectious disease mathematical model with social vulnerability incorporated 
(N = 89). Twenty-one articles were written about a hypothetical “Setting X” and 12 articles were written about a collection of countries or region(s)
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cultural indicator was civic capital (n= 1, 0.3%); the con-
cern around others’ well-being and law-abidingness 
[39]. The most common vulnerable populations studied 
(n = 24) were those living in poverty (n = 5, 20.8%), female 
sex workers (n = 4, 16.7%), and men who have sex with 
men (n = 4, 16.7%). Most geographic distribution indi-
cators were based on administrative boundaries such as 
region (n = 6, 18.8%), neighbourhood (n = 5, 15.6%), or 
county (n = 4, 12.5%). Unlike other SV categories which 
were more evenly spread across diseases, among KAP 
measures and vulnerable populations, more than half 
were used in studies on HIV/AIDS (n = 24, 54.5%; n = 14, 
58.3%, respectively). See Table 3.

SV was modelled using several methods. Compart-
mental models utilised a mix of stratification overall, 
stratification within, and/or including or influencing 
parameter(s). As part of their methodology, 44 articles 
incorporated stratification overall (75.9%), 13 articles 
included stratification within (22.4%), and 47 articles 
involved including or influencing parameter(s) (81.0%). 
The single most common method for compartmental 
models was to both stratify overall and include or influ-
ence parameter(s) (n = 30, 51.7%). See Fig.  9. Assigning 
characteristics was a method exclusive to ABMs and net-
work models. In these cases, SV indicators were assigned 
to individual agents. Based on their demographic pro-
file, the individual had a probabilistic routine that  they 

Table 2 Disease(s) of study in published articles which 
included an infectious disease mathematical model with social 
vulnerability incorporated (N = 89)

Disease Count Percentage

COVID-19 23 25.0%

Influenza 19 20.7%

HIV/AIDS 18 19.6%

Disease X 9 9.8%

Tuberculosis 4 4.3%

Measles 3 3.3%

Cholera 2 2.2%

Malaria 2 2.2%

Respiratory syncytial virus 2 2.2%

Chlamydia 1 1.1%

Cutaneous Leishmaniasis 1 1.1%

Ebola 1 1.1%

Gonorrhoea 1 1.1%

Hepatitis A 1 1.1%

Polio 1 1.1%

Rubella 1 1.1%

SARS 1 1.1%

Schistosomiasis 1 1.1%

Typhoid fever 1 1.1%

Total 92 100.0%

Fig. 7 Study setting by mathematical model type in published articles which included an infectious disease mathematical model with social 
vulnerability incorporated (N = 89)
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followed which influenced their disease state and health 
outcomes. Additionally, researchers could delineate the 
virtual space (neighbourhoods, villages, census tracts, 
etc.) with predefined locations for activity. Agents can 
have area-associated characteristics and move between 
areas [23]. Among ABMs, most indicators were SDH 
measures (n = 43, 34.7%) and demographic variables 
(n = 32, 25.8%). Specifically, age, contact behaviour, and 
sex were the most common individual indicators (n = 18, 
14.5%; n = 14, 11.3%; n = 10, 8.1%, respectively). The 
method of Other was only relevant for cellular autom-
ata models (n= 2), which focuses on spatial distribution 
using a grid to define a geographic area [25, 26].

Age, poverty, and sex were the most common SV indi-
cators in compartmental models (n = 22, 11.2%; n = 10, 
5.1%; and n = 10, 5.1%, respectively). They were most 
frequently modelled through stratification overall and 
including or influencing parameter(s). Age was included 
through a combination of age-structured models and 
age-based contact rates or matrices (stratification overall 
and including or influencing parameter(s), n = 15, 71.4%). 
Poverty was also introduced through stratification over-
all (n = 6, 60.0%) and adjusting the contact rate (n = 4, 
40.0%). Additionally, scalars were added to adjust param-
eters such as transmission, recovery, and mortality rates 
to account for poverty-related issues like malnutrition, 
decreased treatment, and overcrowding (n = 5, 50.0%). 
Separate models for males and females were constructed 
to incorporate sex (stratification overall, n = 9, 90.0%).

Select SV indicators were modelled using innova-
tive approaches. For example, an ABM for Disease X 
incorporated the health belief model by basing agents’ 
health behaviour decisions on perceived susceptibil-
ity, severity, benefits, and barriers [40]. In another arti-
cle, a compartmental model for Setting X included 

fear [41]. Susceptible agents could be “infected” by fear 
(through contact with an infected person, by the idea of 
being infected, or both) which led to protective behav-
iour or fleeing which increased the spread of Disease X 
[41]. Civic capital was factored into a compartmental 
model for COVID-19 in Italy by including key param-
eters [39]. In calculating the number of infected peo-
ple, a social distancing index value was introduced [39]. 
The index included one parameter representing belief in 
others’ well-being and another on law-abidingness [39]. 
Given HIV/AIDS transmission is multifactorial, a power 
dynamic was incorporated in a compartmental model 
for sub-Saharan Africa, with stratified compartments 
for choice-enabled or choice-disabled males and females 
[42]. Choice class was affected by social interactions and 
indicated if someone was more or less likely to transmit 
or acquire HIV [42].

Discussion
The COVID-19 pandemic and rising health emergencies 
due to climate change and conflict have highlighted the 
world’s vulnerability to infectious diseases. In response, 
there has been an urgent call to foreground social vul-
nerability in infectious disease mathematical modelling 
[27]. Inclusion is vital for more accurate, bespoke results, 
implementing effective interventions, and for the integra-
tion of social justice into equitable policy-making. This 
is the first study to thoroughly review the measures and 
the methodologies used to incorporate social vulnerabil-
ity into mathematical disease models. Social vulnerability 
was not considered holistically. Only one article included 
a cultural and social behaviour indicator, whereas rou-
tine demographic indicators, namely contact behaviour, 
age, and sex, were the most common across model types. 
For compartmental models, researchers most often  

Fig. 8 Distribution of the social vulnerability indicators (n = 342) by category type in published articles which included an infectious disease 
mathematical model with social vulnerability incorporated (N = 89)
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Table 3 Indicators (N = 342) used in published articles which 
included an infectious disease mathematical model with social 
vulnerability incorporated

COVID-19 81 100.0%
Social determinants of 
health

31 38.3%

 Medical capacity 6 19.4%

 Population density 4 12.9%

 Access to healthcare 3 9.7%

 Health risk 3 9.7%

 Access to water 2 6.5%

 Employment 2 6.5%

 Income 2 6.5%

 Poverty 2 6.5%

 Sanitation 2 6.5%

 Socioeconomic 
status

2 6.5%

 Access to food 1 3.2%

 Access to housing 1 3.2%

 Household size/ 
composition

1 3.2%

Contact and move-
ment behaviour

16 19.8%

 Contact 12 75.0%

 Movement 4 25.0%

Demographics 15 18.5%

 Age 12 80.0%

 Sex 2 13.3%

 Race 1 6.7%

Geographic location 9 11.1%

 County 2 22.2%

 Region 2 22.2%

 Census block 1 11.1%

 Cluster 1 11.1%

 District 1 11.1%

 Neighbourhood 1 11.1%

 Province 1 11.1%

Knowledge, attitudes, 
and practices

7 8.6%

 Adherence to non-
pharmaceutical 
interventions

3 42.9%

 Adherence to social 
distancing

3 42.9%

 Knowledge 1 14.3%

Vulnerable populations 2 2.5%

 Nationality 1 50.0%

 Poverty 1 50.0%

Culture 1 1.2%

 Civic capital 1 100.0%

HIV/AIDS 78 100.0%

Knowledge, attitudes, 
and practices

24 30.8%

 Condom use 5 20.8%

Table 3 (continued)

 Number of sexual 
partners

4 16.7%

 Adherence to treat-
ment

2 8.3%

 Circumcision 2 8.3%

 HIV testing 2 8.3%

 Injection sharing 
and hygiene

2 8.3%

 Sexual behaviour 2 8.3%

 Information 
and education cam-
paign

1 4.2%

 Knowledge 1 4.2%

 Relationship dura-
tion

1 4.2%

 Treatment use 1 4.2%

 Type of sexual act 1 4.2%

Social determinants of 
health

16 20.5%

 Poverty 3 18.8%

 Relationship type 3 18.8%

 Choice class 2 12.5%

 Access to treatment 1 6.3%

 Drug and alcohol 
abuse

1 6.3%

 Education 1 6.3%

 Health risk 1 6.3%

 HIV status 1 6.3%

 Malnutrition 1 6.3%

 Marital status 1 6.3%

 Medical capacity 1 6.3%

Demographics 15 19.2%

 Sex 10 66.7%

 Age 4 26.7%

 Race 1 6.7%

Vulnerable populations 11 14.1%

 Men who have sex 
with men

4 36.4%

 Female sex workers 3 27.3%

 People who inject 
drugs

2 18.2%

 Poverty 2 18.2%

Contact and movement 
behaviour

9 11.5%

 Contact 9 100.0%

Geographic location 3 3.8%

 County 1 33.3%

 Location 1 33.3%

 Urban vs rural 1 33.3%

Influenza 76 100.0%

Social determinants of 
health

26 34.2%

 Household size/ 
composition

7 26.9%
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Table 3 (continued)

 Health risk 3 11.5%

 Employment 2 7.7%

 Income 2 7.7%

 Population density 2 7.7%

 Age gaps 
between household 
members

1 3.8%

 Age of the head 
of the household

1 3.8%

 Disease risk 1 3.8%

 Education enrol-
ment

1 3.8%

 Educational system 1 3.8%

 Marital status 1 3.8%

 Poverty 1 3.8%

 Relation-
ship to the head 
of the household

1 3.8%

 SEIFA  indexa 1 3.8%

 Social deprivation 
index

1 3.8%

Demographics 21 27.6%

 Age 15 71.4%

 Sex 5 23.8%

 Race 1 4.8%

Contact and move-
ment behaviour

17 22.4%

 Contact 13 76.5%

 Movement 4 23.5%

 Geographic location 8 10.5%

 Neighbourhood 2 25.0%

 Poverty 2 25.0%

 Region 2 25.0%

 Census tract 1 12.5%

 County 1 12.5%

Knowledge, attitudes, 
and practices

3 3.9%

 Adherence to non-
pharmaceutical 
interventions

1 33.3%

 Adherence to social 
distancing

1 33.3%

 School attendance 1 33.3%

 Vulnerable popula-
tions

1 1.3%

 Pregnancy 1 100.0%

Disease X 39 100.0%

Social determinants of 
health

17 43.6%

 Employment 3 17.6%

 Household size/ 
composition

2 11.8%

 Medical capacity 2 11.8%

 Migration 2 11.8%

Table 3 (continued)

 Socioeconomic 
status

2 11.8%

 Access to health-
care

2 11.8%

 Household type 1 5.9%

 Income 1 5.9%

 Medical hygiene 1 5.9%

 Poverty 1 5.9%

Contact and move-
ment behaviour

6 15.4%

 Contact 4 66.7%

 Movement 2 33.3%

Demographics 5 12.8%

 Age 2 40.0%

 Sex 2 40.0%

 Race 1 20.0%

Knowledge, attitudes, 
and practices

4 10.3%

 Adherence to non-
pharmaceutical 
interventions

2 50.0%

 Fear 1 25.0%

 Health belief model 1 25.0%

Vulnerable populations 4 10.3%

 Communities 
in conflict

1 25.0%

 Net consumers 1 25.0%

 Net producers 1 25.0%

 Poverty 1 25.0%

Geographic location 3 7.7%

 Neighbourhood 1 33.3%

 Poverty 1 33.3%

 Spatial distribution 1 33.3%

Tuberculosis 12 100.0%

Social determinants of 
health

4 33.3%

 Population density 2 50.0%

 HIV status 1 25.0%

 Malnutrition 1 25.0%

Vulnerable populations 3 25.0%

 Unhoused 1 33.3%

 Miners 1 33.3%

 Poverty 1 33.3%

Demographics 2 16.7%

 Age 1 50.0%

 Sex 1 50.0%

Contact and move-
ment behaviour

1 8.3%

 Contact 1 100.0%

Geographic location 1 8.3%

 Neighbourhood 1 100.0%

Knowledge, attitudes, 
and practices

1 8.3%
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Table 3 (continued)

 Treatment use 1 100.0%

Measles 9 100.0%

Contact and move-
ment behaviour

3 33.3%

 Contact 3 100.0%

Demographics 3 33.3%

 Age 2 66.7%

 Sex 1 33.3%

Knowledge, attitudes, 
and practices

2 22.2%

 Adherence to social 
distancing

1 50.0%

 Cooperation 1 50.0%

Social determinants of 
health

1 11.1%

 Poverty 1 100.0%

Respiratory syncytial 
virus

7 100.0%

Social determinants of 
health

3 42.9%

 Household size/ 
composition

3 100.0%

Demographics 2 28.6%

 Age 2 100.0%

Contact and move-
ment behaviour

1 14.3%

 Contact 1 100.0%

Geographic location 1 14.3%

 Setting 1 100.0%

Schistosomiasis 7 100.0%

Social determinants of 
health

3 42.9%

 Employment 1 33.3%

 Household size/ 
composition

1 33.3%

 Sanitation 1 33.3%

Demographics 2 28.6%

 Age 1 50.0%

 Sex 1 50.0%

Geographic location 1 14.3%

 Patch 1 100.0%

Knowledge, attitudes, 
and practices

1 14.3%

 Water contact 1 100.0%

Hepatitis A 6 100.0%

Social determinants of 
health

2 33.3%

 Household size/ 
composition

1 50.0%

 Household type 1 50.0%

Contact and move-
ment behaviour

1 16.7%

 Contact 1 100.0%

Demographics 1 16.7%

Table 3 (continued)

 Age 1 100.0%

Geographic location 1 16.7%

 Municipality 1 100.0%

Knowledge, attitudes, 
and practices

1 16.7%

 Food hygiene 1 100.0%

Malaria 6 100.0%

Social determinants of 
health

4 66.7%

 Economic condi-
tions

1 25.0%

 Medical capacity 1 25.0%

 Migration 1 25.0%

 Sanitation 1 25.0%

Contact and move-
ment behaviour

1 16.7%

 Movement 1 100.0%

Geographic location 1 16.7%

 Area 1 100.0%

Cholera 4 100.0%

Social determinants of 
health

3 75.0%

 Medical capacity 1 33.3%

 Malnutrition 1 33.3%

 Sanitation 1 33.3%

Geographic location 1 25.0%

 Region 1 100.0%

Ebola 4 100.0%

Social determinants of 
health

2 50.0%

 Medical capacity 1 50.0%

 Vulnerability 1 50.0%

Contact and move-
ment behaviour

1 25.0%

 Movement 1 100.0%

Geographic location 1 25.0%

 Country 1 100.0%

Sexually transmitted 
infection (Chlamydia 
and Gonorrhoea)

4 100.0%

Vulnerable populations 3 75.0%

 Female sex workers 1 33.3%

 People living 
with HIV

1 33.3%

 Youth 1 33.3%

Contact and move-
ment behaviour

1 25.0%

 Contact 1 100.0%

Rubella 3 100.0%

Contact and move-
ment behaviour

1 33.3%

 Contact 1 100.0%

Demographics 1 33.3%

 Age 1 100.0%
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constructed distinct models for each level of a social vul-
nerability measure (e.g. separate models for males and 
females, with possible interaction between) and varied 
the parameters. For agent-based models, various char-
acteristics related to social vulnerability were assigned to 
hosts.

As aforementioned, the concept of SV and the 
indicators encompassing it have yet to be standardly 
defined [8]. Methodological challenges, data qual-
ity and access gaps, and conceptual challenges limit 
the development of consistent measures [8]. In this 
study, SV was mostly measured through age, sex, and 
contact and movement behaviours. While pertinent, 
these indicators do not reflect a holistic view of SV. 
Age and sex are often routine indicators in disease 
modelling. They affect disease dynamics but their 
representation as SV indicators needs to be examined. 
While age was included in the CDC’s SV index (and 
as a result considered as a SV indicator in this study), 
it was related to identifying vulnerable populations of 
people aged 65 or older and 17 or younger [7]. This 
is compared to an age-based contract matrix which 
may reflect the epidemiological transmission process 
but may not highlight a condition or environment that 
confers vulnerability [19]. Sex is highly relevant to the 
transmission of STIs [42]. However, if it represents 
vulnerability is based on how sex is modelled and with 
what intention. In de Boer et al.’s paper, sex reflected 
the choices men and women could make and the sub-
sequent transmission and acquisition of HIV [43]. Age 
and sex cannot simply be checkboxes as a means to 
include SV in modelling. The intention and considera-
tion of how age and sex confer vulnerability needs to 
be examined.

While models included four indicators on aver-
age, this study found that cultural indicators were 
ignored. This is likely due to a lack of available data, 
whereas age and sex are routinely collected. Fur-
thermore, many anthropological measures are chal-
lenging to objectively quantify. A review of cultural 
influences on the transmission and outcomes of the 
COVID-19 pandemic noted that “the social transmis-
sion of infectious diseases means that their spread, and 

Table 3 (continued)

Social determinants of 
health

1 33.3%

 Disease risk 1 100.0%

Polio 3 100.0%

Contact and movement 
behaviour

1 33.3%

 Contact 1 100.0%

Demographics 1 33.3%

 Age 1 100.0%

Geographic location 1 33.3%

 Region 1 100.0%

Cutaneous Leishma-
niasis

1 100.0%

Geographic location 1 100.0%

 Country 1 100.0%

Severe acute respira-
tory syndrome

1 100.0%

Knowledge, attitudes, 
and practices

1 100.0%

 Avoidance behaviour 1 100.0%

Typhoid fever 1 100.0%

Social determinants of 
health

1 100.0%

 Socioeconomic 
status

1 100.0%

a SEIFA is a continuous variable and summarises average socio-economic 
characteristics, including education, occupation, and wealth and can be used to 
describe the distribution of social and economic well-being

Fig. 9 Methods of including social vulnerability indicators in infectious disease compartmental models. See “ Methods” section for an explanation 
of the approaches
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hence their impact on a population, is driven in part 
by social behaviours which, in turn, are shaped by pat-
terns of culturally shared beliefs in that population” 
[44]. For example, countries which highly value a cul-
ture of individualism (focusing on the individual as an 
autonomous agent, as opposed to part of a collective) 
experienced lower adherence to preventive measures 
such as social distancing and mask wearing, resulting 
in higher COVID-19 prevalence and mortality [45]. 
Given the potential impact on disease transmission 
and outcomes, there should be a greater effort to col-
lect, consider, and incorporate cultural measures into 
infectious disease modelling.

Among models that integrated SV, compartmental 
models were the most widely used. As a result, stratifying 
overall and including new or influencing existing param-
eterswere the most common approaches for incorporat-
ing SV measures. This may be because compartmental 
models are generally easier to develop than ABMs, and 
stratifying overall (developing a model for each level of 
a measure) and varying parameters reveal heterogeneity 
and highlight vulnerable populations [46].

Nevertheless, compartmental models have both their 
merits and drawbacks. Compartmental models are 
computationally inexpensive, replicable, and scalable 
and can be developed in a relatively short time frame 
[46]. For these reasons, compartmental models are 
ideal for outbreaks and resource-limited settings, as 
was the case for COVID-19 and HIV/AIDS (pandemics 
that disproportionately impacted LMICs) [11, 12, 47], 
and is  affirmed by this study’s results. However, one 
criticism of compartmental models is that they sim-
plify real-world dynamics, especially as disease states 
are represented by homogenous populations [46]. The 
results from this study demonstrate that SV can be 
successfully introduced into a compartmental model 
through stratification and adjusting model parameters, 
but not to the extent of an ABM, which provides a 
detailed model of individual characteristics and behav-
iour. The additional flexibility and complexity of an 
ABM allows for elaborate scenario building, as seen in 
its frequent use in studies modelling Disease X. On the 
other hand, ABMs are computationally expensive and 
more challenging to scale and replicate [46]. Further-
more, the individual-level data they require is often 
lacking, particularly data on SV [46]. This reality aligns 
with this study’s findings that ABMs were used primar-
ily for HIC settings and generated by HIC institutions, 
which often have more resources and data on SV. Given 
ABMs are well-suited for incorporating heterogeneity, 
particularly related to SV, more effort should be made 
to support ABMs by LMICs.

Beyond the structure of the model, researchers have 
suggested the following approaches should be taken 
into consideration when incorporating SV: (1) explic-
itly acknowledging study limitations and assumptions, 
(2) using validation and calibration (where appropriate) 
to strengthen results, and (3) engaging stakeholders and 
authors with relevant and ideally local knowledge on the 
study population [27, 28]. These considerations are dis-
cussed below.

Researchers must communicate their studies’ limi-
tations and contextualise findings related to SV. 
Transparency around model limitations and how SV 
parameters are estimated, especially if using expert opin-
ion as opposed to empirical evidence, are both necessary 
to critique, reproduce, and expand on established work. 
However, this study revealed that data sources for param-
eters and research limitations were not always or clearly 
stated, in particular for measures and parameters of SV. 
Consistent reporting is needed.

In this study, only half of articles conducted a sensi-
tivity analysis and little more than half validated or cali-
brated their models. Although not always appropriate 
(e.g. if exploring theoretical frameworks), model valida-
tion, calibration, and sensitivity analyses can strengthen 
the robustness of results [46]. This is particularly relevant 
for SV indicators as these measures are often only prox-
ies. Additionally, while complex, examining whether SV 
has been successfully incorporated into a model is an 
important part of model evaluation. To do this, research-
ers may consider conducting sensitivity analyses to com-
pare estimates, trajectories, uncertainties, and other 
aspects of the model with and without the incorporation 
of SV.

A quarter of studies did not include an author from 
the study setting. This was particularly notable in the 
case of LMICs. Most articles were generated by insti-
tutions in the global north. This is in line with another 
article’s finding that most infectious disease outbreak 
modelling is being done by researchers in the US and 
UK [48]. The dearth of articles from the global south 
is a potential indicator of limited collaboration and 
resources (e.g. limited data, modelling experience, 
funding, and institutional support). A recent review of 
infectious disease models found that international col-
laborations with less-developed countries were limited 
[48]. The accuracy of model outcomes highly depends 
on the quality of input parameter values. Local knowl-
edge of the setting is important for ensuring that input 
data are reliable and context-appropriate. This is espe-
cially important for SV, which is often challenging 
to represent faithfully in models without knowledge 
of the local context, socioeconomic dynamics, and 
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available data. Collaboration with local stakeholders 
should be prioritised.

While SV measures have previously been incorporated 
into infectious disease mathematical models (although 
researchers may not use the term), there has been a grow-
ing recognition to make the concept of SV a mainstay. A 
key driver of bringing SV to the forefront has been the 
COVID-19 pandemic. This influence is reflected in this 
study, which found a spike of published studies in 2020–
2022 and found that COVID-19 was the most frequently 
modelled disease incorporating SV. This momentum can 
potentially be leveraged to further innovate methods 
for including a variety of SV measures in mathematical 
models.

However, with this momentum, care needs to be 
taken in how SV is incorporated. Not all indicators 
should be included into a model to avoid overfitting 
[49]. For calibration, it is necessary to prioritise the 
most relevant indicators [49]. Furthermore, SV must 
be integrated thoughtfully and purposefully, and the 
method of inclusion needs to be appropriate for the 
disease. While age and sex have often been considered, 
other key indicators may be neglected, which can lead 
to biased and ineffective models [27]. Several articles 
in this study noted limitations in being able to account 
for disease complexity and SV. Having a holistic under-
standing of the complexities in the system helps ensure 
essential components are considered. Causal loop dia-
grams can aid researchers in visualising priority rela-
tionships and feedback between variables in an entire 
system [50]. Nevertheless, data availability of key 
measures may be a limiting factor, as noted by several 
authors in this review. In the absence of data, proxy 
measures can be used if appropriate and results can be 
contextualised for the setting.

A limitation of our review is that it included articles 
written only in English. Furthermore, grey literature 
was not searched, nor were experts in the field con-
sulted to identify additional publications. As aforemen-
tioned, the quality of the studies was not assessed given 
the focus on mapping the evidence. However, a form of 
quality control was to only include peer-reviewed pub-
lications. SV is a relatively new term from the disaster 
field in mostly HICs [7, 8]. While this may skew the arti-
cle filtering to HICs, the database search included terms 
related to SV, such as health equity and SDH. While a 
standard definition and associated variables are still 
to be determined [8], there are many factors that con-
tribute to SV. Articles that incorporated SV measures 
in their models but did not explicitly highlight them in 
their title or abstract were excluded during the screen-
ing process. Therefore, the results of this study may be 
underestimated. However, the aim of this study was to 

select articles that foreground SV, using the inclusion 
of key terms in the title and abstract as an indication 
of intention. In the absence of representative SV data, 
stratification may not be possible. One approach to 
include SV is to focus the whole model population on 
a specific vulnerable population and/or build the model 
at a level of granularity commensurate with representa-
tive data and then discuss the applicability to SV sub-
populations. However, this was outside the scope, as 
this study aimed to understand how researchers incor-
porated SV into model methods and equations.

Conclusions
The COVID-19 pandemic has caused a major setback to 
global poverty and social vulnerability, which is unprec-
edented in recent decades. The resulting crisis has been 
further worsened by climate shocks and conflicts among 
the world’s major food producers [9]. In the current con-
text, incorporating social vulnerability in infectious dis-
ease mathematical modelling is of utmost importance. 
Models should consider social vulnerability to not only 
design more equitable interventions, but also to promote 
more effective infectious disease control and elimination 
strategies [27]. Select researchers have explored various 
methods to highlight social vulnerability in infectious 
disease modelling. While much attention has been paid 
to routine demographic variables and creating distinct 
models for different measures, there is potential to fur-
ther the field. Our findings indicate social vulnerability 
is not considered holistically, often excluding important 
cultural and social behaviours that impact health out-
comes. Transparency around data sources, consistency 
in reporting, collaboration with local experts, and stud-
ies focused on modelling cultural indicators are priorities 
for future research. The recognition of heterogeneities 
and inclusion of diverse measures of social vulnerability 
strengthens a mathematical model’s accuracy and utility 
and ensures models are more reflective of the world in 
which we live.

Appendix 1
PubMed
("Communicable Diseases"[MeSH Terms] OR "infectious 
disease"[Text Word] OR "infectious diseases"[Text Word] 
OR "Communicable Diseases"[Text Word] OR "communi-
cable disease"[Text Word] OR "outbreak"[Text Word] OR 
"outbreaks"[Text Word] OR "Pandemics"[MeSH Terms] 
OR "Pandemics"[Text Word] OR "pandemic"[Text Word] 
OR "Epidemics"[MeSH Terms] OR "Epidemics"[Text 
Word] OR "epidemic"[Text Word] OR "communicable 
diseases, emerging"[MeSH Terms] OR "emerging infec-
tious diseases"[Text Word] OR "emerging communicable 



Page 17 of 24Naidoo et al. BMC Medicine          (2024) 22:125  

diseases"[Text Word] OR "emerging infectious disease"[Text 
Word] OR "re-emerging infectious diseases"[Text Word] 
OR "re-emerging infectious disease"[Text Word]).

AND
("models, theoretical"[MeSH Terms] OR "mathemati-

cal model"[Text Word] OR "mathematical models"[Text 
Word] OR "mathematical modeling"[Text Word] OR 
"mathematical modelling"[Text Word] OR "compartmen-
tal model"[Text Word] OR "compartmental models"[Text 
Word] OR "compartmental modeling"[Text Word] OR 
"compartmental modelling"[Text Word] OR "agent-based 
model"[Text Word] OR "agent-based models"[Text Word] 
OR "agent-based modeling"[Text Word] OR "agent-based 
modelling"[Text Word] OR "deterministic"[Text Word] 
OR "stochastic"[Text Word] OR "dynamic"[Text Word] 
OR "ordinary differential equation"[Text Word] OR 
"microsimulation"[Text Word] OR "infectious disease 
model"[Text Word] OR "infectious disease models"[Text 
Word] OR "infectious disease modeling"[Text Word] 
OR "infectious disease modelling"[Text Word] OR 
"SEIR"[Text Word] OR "SIR"[Text Word] OR "SIS"[Text 
Word] OR "SIRD"[Text Word] OR "SEIRD"[Text Word] 
OR "SIRV"[Text Word] OR "MSIR"[Text Word] OR 
"SEIS"[Text Word] OR "MSEIR"[Text Word]).

AND
("Social Vulnerability"[MeSH Terms] OR "Social 

Vulnerability"[Text Word] OR "Social Determinants 
of Health"[MeSH Terms] OR "Social Determinants of 
Health"[Text Word] OR "health equity"[Text Word] 
OR "health equality"[Text Word] OR "poverty"[Text 
Word] OR "socioeconomic"[Text Word] OR "socio-
economic"[Text Word]).

SCOPUS
TITLE-ABS-KEY ("infectious disease" OR "infectious dis-
eases" OR "Communicable Diseases" OR "communicable 
disease" OR "outbreak" OR "outbreaks" OR "Pandemics" 
OR "pandemic" OR "Epidemics" OR "epidemic" OR "emerg-
ing infectious diseases" OR "emerging communicable dis-
eases" OR "emerging infectious disease" OR "re-emerging 
infectious diseases" OR "re-emerging infectious disease").

AND
TITLE-ABS-KEY ("mathematical model" OR "mathe-

matical models" OR "mathematical modeling" OR "math-
ematical modelling" OR "compartmental model" OR 
"compartmental models" OR "compartmental modeling" 
OR "compartmental modelling" OR "agent-based model" 
OR "agent-based models" OR "agent-based modeling" OR 
"agent-based modelling" OR "deterministic" OR "stochas-
tic" OR "dynamic" OR "ordinary differential equation" 
OR "microsimulation" OR "infectious disease model" OR 
"infectious disease models" OR "infectious disease mod-
eling" OR "infectious disease modelling" OR "SEIR" OR 

"SIR" OR "SIS" OR "SIRD" OR "SEIRD" OR "SIRV" OR 
"MSIR" OR "SEIS" OR "MSEIR").

AND
TITLE-ABS-KEY ("Social Vulnerability" OR "Social Deter-

minants of Health" OR "health equity" OR "health equality" 
OR "poverty" OR "socioeconomic" OR "socio-economic").

EBSCO Africa Wide Information
"infectious disease" OR "infectious diseases" OR "Com-
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