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Abstract

Pediatric soft tissue sarcomas are rare tumors of
childhood, frequently characterized by specific
chromosome translocations. Despite improvements in
treatment, their clinical management is often
challenging due to the low responsiveness of
metastatic forms and aggressive variants to
conventional therapeutic approaches, which leads to
poor overall survival. It is widely thought that soft
tissue sarcomas derive from mesenchymal progenitor
cells that, during embryonic life, have developed
chromosomal aberrations with de-regulation of the
main pathways governing tissue morphogenesis. The
Notch signaling pathway is one of the most
important molecular networks involved in
differentiation processes. Emerging evidence
highlights the role of Notch signaling de-regulation in
the biology of these pediatric sarcomas. In this review,
we present an outline of recently gathered evidence
on the role of Notch signaling in soft tissue sarcomas,
highlighting its importance in tumor cell biology. The
potential challenges and opportunities of targeting
Notch signaling in the treatment of pediatric soft
tissue sarcomas are also discussed.
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Review

Differences between adult and pediatric tumors

What makes the majority of pediatric tumors different
from adult ones is their ‘embryonal’ origin. An inflamma-
tory microenvironment and/or the age-dependent accu-
mulation of genetic mutations and epigenetic alterations
have a well-recognized importance in the pathogenesis of
adult tumors. Conversely, in tumors arising in newborns
and children, de-regulation of developmental pathways
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during embryonic life seems to play a major role. This
view is also supported by the observation that the most
aggressive pediatric tumors frequently harbor chromoso-
mal translocations involving genes that regulate embryo-
genesis and tissue determination.

Several critical developmental pathways have been
involved in pediatric tumor biology such as Hedgehog
(Hh), Wnt and, more recently, Notch signaling. All are
crucial regulators of differentiation, balancing prolifera-
tion versus differentiation and defining the tissue lineage
commitment of precursor cells. Mutations of molecular
components of Notch signaling have been involved in
different genetic disorders [1-3]. As of this writing, Notch
signaling de-regulation is recognized as a feature of sev-
eral types of adult cancers [4-9]. However, the first evi-
dence that human Notchl is a proto-oncogene came
from a predominantly pediatric malignancy, acute T-cell
leukemia (T-ALL) [10]. Notchl was subsequently shown
to be the most commonly mutated oncogene in T-ALL
[11]. Over the past few years, growing evidence also
points to a role of abnormalities of Notch signaling in
pediatric solid tumors. Recently, Notch signaling has
been investigated, by our and other groups, in tumors of
childhood that are thought to originate from mesenchy-
mal progenitors, that is, soft tissue sarcomas (STS). The
unresponsiveness to current conventional therapies
observed for metastatic STS and the higher relapse rate
seen for the translocation-bearing aggressive histological
subtypes, together with the significant adverse effects of
current therapy in young people, prompted the research
community to seek new markers/targets for treatment of
these tumors. In this context, therapies aimed at modu-
lating the Notch signaling pathway are considered pro-
mising for tailored approaches. Notch inhibitors are
currently being evaluated in a growing number of clinical
trials, mainly in adults.

The present review aims at summarizing recent
insights on the role of Notch signaling in pediatric
STSs, highlighting the context/tumor-dependent role of
specific Notch components. Current therapeutic strate-
gies aimed at inhibiting Notch signaling and their poten-
tial pros and cons are discussed.
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Soft tissue sarcomas: a developmental defect?

Pediatric STSs consist of a group of heterogeneous
malignancies of mesenchymal origin that accounts for 1%
of all human cancers and up to 15% of all pediatric
tumors (Figure 1). STSs represent a clinical challenge
because, due to their infiltrating potential, they are gener-
ally difficult to eradicate surgically and, especially when
metastatic at diagnosis, are unresponsive to conventional
therapy [12,13].

Our growing knowledge of the molecular pathogenesis
of STS suggests new antitumor treatments based on tar-
geted molecular strategies. Consistent with the hypothesis
that aberrant embryonic developmental molecular path-
ways may be involved in the development of pediatric
STS, there is evidence that clonal cell populations harbor-
ing only one specific chromosomal translocation are main-
tained throughout tumor progression [14]. Is it possible
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that mesenchymal progenitor cells (MSC) that undergo a
physiological cellular maturation become neoplastic at
discrete stages of differentiation? Evidence for such a
mechanism has been reported for Ewing sarcoma (ES)
[15,16] and rhabdomyosarcoma (RMS) [17]. A high histo-
logical differentiation degree in STSs correlates with a
good prognosis. It is conceivable that what determines the
clinical failure of STS treatment is the presence of small
populations of highly undifferentiated cells that have
tumor-initiating potential and self-renewal capacity, and
that are largely unresponsive to chemotherapy [17,18]. In
this context, blocking developmental pathways involved in
the maintenance of the stem cell compartment, such as
the Notch pathway, may be an attractive strategy to
improve the clinical management of STS.

Indeed, recently we and other groups have shown pre-
clinical evidence that Notch signaling modulation has
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Figure 1 Mesenchymal tissues differentiation and pediatric sarcomagenesis. Schematic representation depicting how pediatric soft tissue
sarcomas (STS) may be formed from a mesenchymal stem cell (MSC) through mutation and/or chromosomal translocation hits (red arrows). In
normal developmental conditions, embryonic MSC undergo sequential steps of maturation towards a committed primary progenitor (CP 1) that
may express markers of more than one tissue type. Terminal cell differentiation through more committed progenitors, reported as CP 2 in the
figure, is obtained by sequential steps leading to the differentiated tissue formation. In the Figure are reported MSC-derived normal tissues such
as stromal, neural crest and skeletal muscle tissues and the corresponding potential pediatric STS: Synovial Sarcoma, Ewing Sarcoma and
Rhabdomyosarcoma. The stage of MSC maturation in which mutation/translocation occurs is indicative of tumor-tissue differentiation degree
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anti-tumor effects in the most common pediatric STS
such as ES and RMS.

Notch signaling pathway

The Notch signaling is a close range cell-to-cell commu-
nication system that allows the crosstalk between differ-
ent contiguous cellular compartments in the embryo and
in post-natal life. Notch signals regulate the determina-
tion/maintenance of cellular identity. In mammals, the
Notch signaling pathway consists of four trans-mem-
brane receptors, Notchl to Notch4, encoded by homolo-
gous but different genes (reviewed in [4,19,20]). Notch
receptors include an extracellular region, a trans-mem-
brane region, and an intracellular domain (ICD) [20].
The Notch receptors are activated upon binding to trans-
membrane ligands of the Delta-Serrate/Jagged families.
Humans and rodents express at least three Delta-like
(DLL) ligands, 1, 3 and 4 and two Serrate/Jagged family
ligands, JAG1 and 2. Notch ligands are expressed on the
surface of cells contiguous to receptor-expressing cells.
Ligand binding to a Notch receptor results in two sequen-
tial receptor cleavages operated by specific proteases, an
ADAM protease at the cell surface and y-secretase in the
transmembrane domain. Cleavage by y-secretase (GSI)
releases Notch ICD into the cytoplasm. The Notch ICD is
the ‘active’ fragment that migrates to the nucleus. In the
nucleus, Notch ICD replaces the co-repressor complex on
a DNA-binding transcription factor, CSL/RBP-Jk (CBF1/
RBPjx/Su(H)/Lag-1). The Notch-CSL complex triggers the
transcription of Notch target genes. These include, among
others, the basic helix-loop-helix (bPHLH) transcription
factors of the Hes and Hey (HESR) families working as
transcriptional repressors [21]. The Notch ICD once
released into the cytoplasm can be post-translationally
modified and/or can interact with several molecules that
either amplify or dampen Notch signaling [19]. These
include, for example, prolyl isomerase Pinl [22] and
Nemo-like kinase NLK [23]. In particular, the C-terminal
proline, glutamic acid, serine and threonine degradation
(PEST) domain is a target for ubiquitylation favoring ICD
proteolytic degradation (reviewed in [4,19,20]). The com-
plexity of the Notch system is further enhanced by non-
canonical signaling. This includes cis-inhibition by Notch
ligands expressed on the same cell as the receptors, Notch
activation by non-canonical ligands, ligand-independent
Notch activation and CSL-independent signaling [24].
Cytoplasmic Notch signaling mediated by the mTOR
complex has been demonstrated in some cells, such as T
regulatory cells [25]. The choice among these different
manners of activation and the expression of specific Notch
receptor paralogs and/or ligands during a specific cellular
program is context-, cell- and time-dependent during both
embryogenesis and post-natal life. Moreover, Notch para-
logs expressed in the cell can behave in opposite manners
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[19]. Further levels of regulation are obtained before cell
membrane localization of Notch receptor molecules
through the glycosylation of the Notch extracellular
domain in the Golgi complex by enzymes such as
POFUT-1 (O-fucosyltransferase) and Manic, Lunatic and
Radical Fringe (MFNG, LENG and RFNG, respectively,
O-fucosyl, $-1-3 N-acetylglucosaminyltransferases), which
affects its affinity and binding to specific ligands. For
instance, LENG-mediated modifications in most cells
reduce the affinity for Jagged family ligands but not Delta
family ligands. Although this complexity may appear
daunting, it offers multiple opportunities to modulate sig-
nal intensity at different levels or through different Notch
receptors, thus acting on different aspects of tumor pro-
gression. One of the most studied inhibitory approaches is
the use of GSI, first investigated in Alzheimer’s disease,
that prevent the cleavage of Notch receptors and subse-
quent Notch signaling activation. GSIs are being, or have
been, investigated in several anti-cancer clinical trials.

Contrary to what is observed in T-ALL that often is trig-
gered by a Notchl receptor mutation, in solid cancers, few
genetic alterations have been found so far in Notch signal-
ing components. In many solid tumors, Notch signaling
de-regulation may be a consequence of the primary onco-
genic mutation(s) rather than the main causative event.
However, in many such malignancies Notch signaling
seems to play a general role in the maintenance of tumor
phenotype and especially in the survival and self-replica-
tion of tumor-initiating cells. Additionally, non-cell auton-
omous roles of Notch signaling in tumor stroma, in
endothelial cells and in the immune system can also con-
tribute to tumor survival and recurrence (reviewed in
[26]). In some situations, individual Notch paralogs have
been found to have tumor-suppressive properties. The
best-documented example is the role of Notchl in squa-
mous epithelia [27]. In some cases, these effects as well as
non-cell autonomous result from disruption of epithelial
barrier functions in the absence of Notch, which in turn
promotes chronic dermal inflammation that predisposes
to tumorigenesis [28].

Notch signaling in synovial sarcoma

Synovial sarcoma (SS) develops in adolescents and young
adults and has an aggressive behavior with high meta-
static potential [29]. It accounts for 7% to 10% of all STS
[30]. SS was initially termed ‘synovial’ because it is found
in the soft tissue adjacent to joints of young adult
patients and resembles developing synovial tissue. How-
ever, SS is frequently observed in extra-synovial locations
such as kidney, lung and heart and recent findings sug-
gest its derivation from MSCs [30,31]. The majority of
SSs harbors the chromosomal translocation t(X;18) (p11;
ql1) between the Synovial Sarcoma translocation, chro-
mosome 18 gene (SS18, previously SY7T) on chromosome
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18q11 and either Synovial Sarcoma, x breakpoint 1, 2 or
4 (SSX1, SSX2, or SSX4, respectively) genes on chromo-
some Xpll. The SS18-SSX fusion onco-proteins contain
the transcriptional activation domain of SS18 fused to
the repressor domain of SSX but lack a DNA-binding
domain [32]. They form non-physiologic protein com-
plexes that are absent in normal cells. The identification
of their target genes is difficult because of the lack of
direct binding to DNA. Expression of SS18-SSX onco-
proteins is necessary and sufficient to cause malignant
transformation. Indeed, rat fibroblasts expressing exogen-
ous SS18-SSX showed a transformed behavior [32]. Con-
ditional overexpression of SS18-SSX2 in transgenic mice
results in SS formation but only when the transgene is
expressed in mesenchymal-derived myogenic progenitors
[29]. Finally, knockdown of SS18-SSX in SS cell lines
induced loss of differentiation abilities into mesenchy-
mal-derived tissue, strongly supporting the hypothesis of
a MSC origin for this tumor [30].

To date, a direct mechanistic link between SS biology
and Notch signaling has not been clearly demonstrated;
however, some findings suggest that Notch signaling could
be involved in SS (Table 1). In a pioneering study by
Francis and colleagues, gene expression analysis was carried
out in a large set of STS, among which were 31 SS primary
samples [33]. In an effort to identify diagnostic marker
genes that could discriminate among the different subtypes
of STS, a very highly heterogeneous group of tumors, 4,000
genes were found to be differentially expressed in SS.
These included the major developmental pathways such as
Hh, Wnt, tumor growth factor § (TGFpB), chromatin remo-
deling complexes and Notch. In particular, Notchl, JAGI
and the transducin-like enhancer (TLE) of split genes were
up-regulated in SS. TLE genes are known Notch targets,
and encode a family of four master transcriptional regula-
tors (TLE1 to 4), highly conserved among species. TLE
genes are expressed during embryogenesis and work in
concert with the Wnt/p catenin pathway, known to be pro-
oncogenic in SS [34,35]. In particular, the over-expression
of TLE1 appears to be a reliable marker to discriminate SS
from other types of STS, independently from the type of
SSX fusion and the degree of tumor differentiation [36-38],
although a study showed TLE1 to be expressed also in
other non-synovial STS [39]. TLE1, an evolutionarily con-
served Notch effector, mediates the anti-differentiation
functions of Notch signaling in neuronal cells. There, it
works as an important co-repressor by facilitating the bind-
ing of HES proteins (direct Notch transcriptional targets)
to promoters of target genes to allow gene repression [40].
Therefore, the over-expression of TLEI in SS may mediate
similar effects of Notch in SS and deserves further
investigation.

Very recently, a functional role for TLE1 in SS pathogen-
esis has emerged from the observation that SSX18-SSX
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proteins behave as a scaffold to bridge TLE1 and the
DNA-binding protein activating transcription factor 2
(ATF2) [41]. The physiologic role of ATF2 as a master
transcriptional activator is reversed in the non-physiologic,
pro-oncogenic complex SS18-SSX/TLE1/ATF2. The latter
recruits histone deacetylases (HDACs), and retaines the
co-repressor ability of TLE1 to repress the transcription of
ATF2-induced genes, such as cell cycle regulator and apop-
totic genes, resulting in tumor cell survival. Conversely, dis-
ruption of the SS18-SSX/TLE1/ATF2 complex by silencing
of SS18-SSX led to cell cycle arrest and cell death. One of
the targets repressed by the oncogenic complex SSX/
TLE1/ATEF?2 is the Early Growth Response-1 (EGRI) gene, a
tumor suppressor gene that regulates cell growth and dif-
ferentiation. EGRI was previously demonstrated by the
same authors to be maintained at low levels in SS by the
interaction of SS18-SSX with Polycomb proteins from the
Polycomb Repressor Complex 2 (PRC2), such as Enhancer
of Zeste Homolog 2 (EZH2) and PRC1, such as BMI1 poly-
comb ring finger oncogene (BMI1) [42]. The knockdown
of TLE1 increased the transcription of EGRI and decreased
the levels of histone H3 trimethylation on Lysine 27
(H3K27me3), which is a mark of EZH2 activity [41]. Taken
together, these findings suggest that TLE1, a known effec-
tor of Notch signaling, plays a fundamental role in the
SS18-SSX epigenetic regulation of gene expression in SS.
Future investigations could elucidate whether TLE1 has
the same function in normal developing cells.

Interestingly, when EGR1 was re-expressed by a gain-of-
function approach in SS cells, it induced the transcription
of Phosphatase and tensin homolog deleted in chromosome
10 (PTEN) gene, which, in turn, favored the pro-apoptotic
effects of HDACs inhibitors [42]. PTEN has been reported
as mutated in one out of four samples from SS patients
[43]. A link between PTEN expression and Notch signal-
ing has been demonstrated in different tumor contexts.
PTEN has been shown to be down-regulated after Notch1
ICD over-expression in hypoxic mesothelioma cells, even
though no evidence for a direct CSL/RBP-Jx-dependent
effect was reported [44]. In pancreatic cancer cells, Notch
signaling seems to regulate the phosphorylation rather
than the transcription of PTEN [45]. Moreover, it has
been recently reported that in normal and cancerous
thymocytes loss of PTEN expression is partly due to
HESI1-dependent repression, suggesting a Notch-mediated
indirect regulation in this cellular context [46,47]. How-
ever, since Notchl and JAGI are up-regulated in SS [33],
the possibility that the down-regulation of PTEN observed
in these tumor may be, at least in part, related to Notchl
signaling de-regulation deserves further investigation.

Notch signaling in Ewing Sarcoma
The ES family tumors include sarcomas affecting bone and
soft tissues in children and adolescents. They presumably



Rota et al. BMC Medicine 2012, 10:141
http://www.biomedcentral.com/1741-7015/10/141

Table 1 Notch signaling in STS.
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Tumor Results Notch componentinvolved Role of Notch Reference
signaling
Synovial sarcoma Notch1, JAGT and TLEs over-expression Pro-tumor [33]
TLET over-expression Pro-tumor [36-39]
Prevents EGR1 expression TLE1 over-expression Pro-tumor [41]
Reduces apoptosis
Promotes cell growth
Favors epigenetic gene repression
Ewing's sarcoma Prevents differentiation Manic Fringe expression Onco- [51]
Increases cell proliferation Notch1 ICD over-expression suppressor
Decreases apoptosis Regulates
Supports tumor growth in vivo differentiation
In p53 wild-type tumor cells: Induces p53 JAG1 and HEY1 down-regulated by EWS- Onco- [52]
Blocks cell proliferation FLIT and Notch3 suppressor
Inhibits soft agar colony formation
Prevents cell proliferation Notch1 and Notch3 Onco- [54]
suppressor
Rhabdomyosarcoma Supports cell proliferation HEST over-expression in RMS primary Pro-tumor (68]
Inhibits apoptosis samples and in cell lines
Prevents differentiation
Increases cell migration Notch2 and HEY1 over-expressed in Pro-tumor [69]
Increases cell invasion patients with alveolar RMS and
embryonal RMS
Increases cell proliferation Notch1 ICD and HEY1 over-expressed in Pro-tumor [70]
Supports tumor growth in vivo primary embryonal RMS and cell lines
Prevents differentiation Notch3 ICD and HEST over-expressed in Pro-tumor [71]
Supports cell proliferation alveolar RMS and embryonal RMS cell
Supports tumor growth in vivo lines
Supports cell proliferation and anchorage- RBP-Jx over-expressed in embryonal Pro-tumor [76]

independence in vitro and tumor growth in vivo

RMS primary tissues and cell lines

derive from a MSC precursor and some of them express
neuroectodermal markers such as neuron-specific enolase
[48]. More than 80% of ES express EWS-FLI1 chimeric
onco-proteins generated by the fusion of the ES breakpoint
region (EWS) gene on chromosome 22q12 with genes of
the E transformed specific transcription factor (ETS) family,
mostly the Friend leukemia virus integration 1 (FLI1) gene
on chromosome 11q24. These proteins act as transcription
factors with different transcriptional abilities and gene tar-
gets compared to wild-type single products. EWS-FLI1
proteins, exogenously expressed in murine fibroblasts or
present in ES cell lines, stimulate the transcription of
MENG, the enzyme that regulates the glycosylation of
Notch receptors and, therefore, their affinity for ligands
[49,50]. Based on these results, the involvement of Notch
signaling in ES pathogenesis was recently investigated
(Table 1) [51]. Ten EWS-FLI1-expressing primary ES sam-
ples and two cell lines evaluated in this work showed the
expression of at least one of the Notch receptors and sev-
eral ligands, while all expressed the Notch target gene
HES] and the glycosylation enzyme MFNG. HES1 expres-
sion in ES cell lines was inhibited via expression of a
dominant-negative Notchl or the use of a GSI, while it
was increased after expression of active Notchl ICD.
However, the two ES cell lines used in this work behave in

a different manner after Notch inhibition, only one of
them showing reduction of cell proliferation and cell
apoptotic rate. Inhibition of Notch signaling did not result
in reduced tumor growth in vivo but rather in neuroecto-
dermal differentiation of tumor xenografts. Therefore, the
authors suggested that Notch signaling activation is
responsible for the loss of differentiation in ES but it does
not play a direct pro-tumorigenic role [51].

More recently, Ban et al., investigating the role of
EWS-FLI1 in p53 induction and cell cycle arrest in ES
cells, discovered a link between the fusion onco-protein
and Notch signaling [52]. Indeed, upon EWS-FLI1 silen-
cing, wild-type p53 ES cells showed p53 activation and
triggering of the molecular cascade involving the cyclin-
dependent kinase (CDK) inhibitor p21<'P* leading to cell
growth arrest followed by apoptosis. The gene expression
profiling of EWS-FLI1-depleted cells, analyzed in order
to investigate the molecular pathways involved in p53
induction, showed the induction of both the Notch ligand
JAG1 and the Notch target gene HEY1. HEY1 silencing
counteracted the induction of p53 in response to EWS-FLI1
depletion, while forced expression of HEY1 was sufficient to
induce p53 nuclear accumulation also in EWS-FLI1-expres-
sing cells resulting in cell cycle arrest. This observation
strongly suggests that EWS-FLI1 down-regulation triggers a
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HEY1-dependent p53 induction, blocking cell proliferation.
Apoptotic pathways activation appeared to be mediated by
other mechanisms. Subsequent studies demonstrated that
HEY1 transcription is due to activation of the Notch3
receptor, the most highly expressed Notch receptor in both
ES primary tumors and cell lines, by JAG1 (Jaggedl).
Jaggedl over-expression was observed after EWS-FLI1
knockdown. Notch3 signaling was inhibited through either
JAGL silencing, GSI or over-expression of Notch negative
regulator NUMB. Interestingly, even the role of NUMB in
the degradation of Notch3 seems to be cell/context-depen-
dent underscoring the complexity of Notch signaling in
normal and pathological contexts [53]. All these approaches
resulted in reduction of both p53 and p21<"* up-regulation.
Conversely, forced expression of either JAG1 or DLL1 was
capable of inducing p53 expression and nuclear accumula-
tion, and HEY1 silencing reversed this effect indicating that
the induction of p53 is HEY1-dependent in this context.
Finally, Ban and colleagues identify a potential EWS-FLI1
binding site on the JAGI promoter that could repress the
expression of JAGI, as suggested by luciferase experiments.
Therefore, in ESs that retain wild-type p53, Notch signaling
seems to act as a tumor suppressor rather than as an onco-
gene, as reported for the majority of adult epithelial tumors.
This would explain the failure of tumor growth inhibition
observed in the previous report [51]. Importantly, differently
from ES cells depleted of EWS-FLI1, HEY1 was not modu-
lated after Notch inhibition in ES cells expressing EWS-
FLI1, suggesting that Notch signaling is inactive in the
presence of the fusion onco-protein. In a subsequent manu-
script, the same group studied the activation status of
Notch signaling in ES primary tumors by immunohisto-
chemistry in order to identify the cause of the high tran-
scriptional expression of Notch target gene HESI found in
ES tumors [54]. They noticed that, although the mRNA of
at least one Notch receptor was expressed and that of HESI
was up-regulated, Notch signaling appeared to be inactive
in a set of 22 of 24 ES samples. Indeed, the Notch cleaved
products, that is, Notch ICDs, and HES1 protein, were not
present in the nucleus, as demonstrated by the absence of
nuclear staining. Consistent with this observation, the high
mRNA expression of HES1 found in all the samples was
not correlated with Notch receptor mRNA expression.
HES1 expression was independent of both EWS-FLI1
expression and Notch signaling inhibition achieved with dif-
ferent means, nor was it induced by expression of Notchl
or Notch3 ICD, suggesting that it is regulated by other
pathways in ES cells. Moreover, while Notch1 ICD and
Notch3 ICD over-expression was sufficient to prevent the
proliferation of ES cells, blockade of HES1 did not have any
effect.

A recently discovered link between ES pathogenesis and
epigenetic pathways could have implications for Notch
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signaling inactivation in this tumor [55]. Lysine-specific
demethylase 1 (LSD1 or KMD1A) was shown to be over-
expressed in 59 ES and 7 rhabdomyosarcoma (RMS)
primary samples compared to normal MSCs, as already
reported for primary samples of RMS and SS [56].
Pharmacologic inhibition of LSD1 induced p53 expression
and prevented proliferation in several ES cell lines,
re-establishing the H3K4 methylation, as reported for SS
cell lines [55]. In addition to having a primary role in
epithelial-mesenchymal transition (EMT), LSD1 stimulates
cell proliferation and survival by binding histone deacety-
lase complexes and specifically demethylating both Lysine
4 and Lysine 9 on histone H3 (H3K4 and H3K9). LSD1
works by forming co-repressor complexes with HDACs,
such as sirtuin 1 (SIRT1), and inhibits the transcription of
Notch target genes such as HESI in human normal cells,
and HES1 and HEY1 in murine normal cells [57]. This
finding has been previously reported in murine embryos,
where LSD1 represses the expression of HEY1 during
brain development [58] and Enhancer of Split (a corre-
sponding HEY1 gene) during Drosophila development
[59]. The working model involves binding of LSD1/SIRT-
1 complexes to CSL/RBP-Jx during repression of HES1
and release of LSD1/SIRT1 complexes from CSL by Notch
ICD. Therefore, the inhibition of LSD1 in ES could
remove the brake for the transcription of Notch target
gene HEY1 even in the presence of EWS-FLII, as sug-
gested by the expression of p53, thus mimicking and/or
augmenting the effects of EWS-FLI1 silencing.

Notch signaling in Rhabdomyosarcoma

RMS is the most common pediatric STS accounting
almost for 7% to 8% of all childhood malignancies [60].
It includes two major histopathological pediatric sub-
types, embryonal and alveolar, presenting different
genetic abnormalities. Embryonal RMS occurs in about
70% of cases and has a good prognosis if it is non-meta-
static at diagnosis. In contrast, alveolar RMS is often
associated with a worse prognosis. In about 75% of
cases, the alveolar form is characterized by specific chro-
mosomal translocations such as t(2;13) or t(1;13) that
produce paired box 3-forkhead box O1 (PAX3-FOXO1)
or PAX7-FOXOL1 fusion onco-proteins. Their expression
is correlated with poor prognosis, with an approximately
25% five-year overall survival rate for both PAX-FOXO1
positive alveolar and metastatic patients [61-64]. RMS is
thought to derive from skeletal muscle progenitors that,
although they retain expression of skeletal muscle mar-
kers such as MyoD and Myogenin, have lost the ability
to differentiate and proliferate indefinitely. Therefore,
strategies aimed at re-establishing differentiation pro-
grams are thought to have anti-cancer potential. Notch
signaling is one of the major regulators of embryonic
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and post-natal skeletal muscle differentiation [65-67]
and, therefore, could be implicated in RMS develop-
ment. Consistent with this hypothesis, Sang et al.
demonstrated that the Notch target gene HESI was
over-expressed in RMS primary tumors and cell lines
compared to normal muscle, and its inhibition through
a dominant-negative HES1 form promoted skeletal
muscle-like differentiation of RMS cells (Table 1) [68].
Inhibition of Notch signaling with GSIs phenocopied
this pro-myogenic effect and lowered HES1 expression,
suggesting that HES1 de-regulation in RMS is Notch-
dependent. In view of this important result, three reports
published by our group and others in the last two years
have confirmed a role of Notch signaling in RMS pathogen-
esis, unveiling several Notch-regulated mechanisms
[69-71]. In 37 primary RMS samples, whether alveolar or
embryonal, transcript levels of Notch2 and HEY1 were
found significantly up-regulated, while Notch3 was slightly
increased as compared to both adult and fetal muscle [69].
No significant over-expression was observed for either
Notchl or Notch4 mRNAs whereas a modest up-regulation
of HES1 was found only in embryonal RMS samples. How-
ever, immunohistochemical nuclear staining for HES1
showed that it was over-expressed in the majority of tumor
samples. HES1 levels correlated with tumor migration and
invasive features of RMS cell lines in vitro, being modest in
embryonal subtype cells with low invasive activity, high in
highly invasive PAX7-FOXOL1 alveolar cells and very high
in PAX3-FOXOL1 alveolar cells with the highest invasive-
ness. Treatment with GSIs or with a dominant-negative
form of MAMLYI, a canonical Notch nuclear co-activator,
prevented cell invasion with no effects on cell proliferation.
More recently, HEY1 mRNA levels were shown to be sig-
nificantly higher in the embryonal compared with the
alveolar subtype in four RMS cell lines and a previously
published cohort of primary RMS [62,70]. Consistent with
a role of Notchl-target gene HEY1 in muscle progenitors
[72,73], Notch1 protein levels were shown to be signifi-
cantly up-regulated in embryonal RMS. A role of Notchl
and HEY1 over-expression in embryonal RMS is supported
by the inhibition of cell proliferation in tumor cell lines
depleted of either Notchl or HEY1. Moreover, sustained
silencing of HEY1 increased the expression of the myogenic
differentiation factor Myogenin in embryonal RMS cells
cultured in a medium that promotes cell proliferation
(growth medium; GM), and even more in medium that
promotes myotube fusion (differentiation medium; DM).
However, no overt phenotypic signs of muscle-like differen-
tiation and myotube fusion were detected after HEY1
knockdown, suggesting a role for the Notch1-HEY1 axis in
the regulation of proliferative rather than differentiative
pathways in embryonal RMS cells. Similar in vitro effects
were observed after pharmacologic treatment with a GSI
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and were reversed by forced expression of an exogenous
Notchl ICD. Notchl knockdown in RMS cell lines reduces
or abolishes tumorigenicity in xenografts. This effect is con-
firmed with a GSI that decreased Notchl ICD in tumor
samples. Our investigations on Notch pathway in RMS
biology, published some months later, expand the scenario,
implicating Notch3 as a major cause of the inability of RMS
cells to differentiate, irrespective of their subtype. In a set of
three embryonal and two alveolar cell lines over-expressing
transcripts of Notchl, Notch3 and HES1 compared to nor-
mal human skeletal myoblasts, the cleaved forms of these
receptors, Notchl ICD and Notch3 ICD were detected in
the nucleus. Interestingly, tumor cells had similar Notch2
mRNA and protein levels to normal myoblasts, but the lat-
ter showed higher Notch2 ICD levels. Notch2 ICD was
detected in nuclear extracts of all the cell lines studied, sug-
gesting that this signal may be active in these RMS cell
lines. Consistent with data from Sang et al., HES1 was up-
regulated at the mRNA and protein levels in all the cell
lines examined. Notch3 silencing in both one embryonal
and one alveolar RMS cell line resulted in the formation of
myotube-like structures expressing markers of terminal
skeletal muscle differentiation such as myosin heavy chain
and troponin. This finding is consistent with a role of
Notch3 activation/expression in the myoblast-to-myofibro-
blast trans-differentiation induced by TGFp treatment [74].
In agreement with these observations, Notch3 knockdown
noticeably led to a decrease in HES1 expression associated
with the activation of myogenic pathways necessary for
terminal differentiation such as p38 and AKT. Moreover,
JAG1 depletion strongly reduced both Notch3 ICD and
HESI levels, suggesting that Notch3 activation results, at
least in part, from binding to Jagged-family ligands rather
than from activating mutations. High throughput sequen-
cing analysis on 75 ES and 89 RMS samples did not
demonstrate any Notchl mutations [75]. Notchl silencing
had a lesser effect on the differentiation of the embryonal
cell line, slightly increasing the expression of myogenin,
and no effect in the alveolar cell line. These results are
in keeping with data from Linardic and colleagues, estab-
lishing that Notchl signaling controls neither cell differen-
tiation nor HES1 expression in embryonal RMS [70].
Strikingly, Notch2 knockdown reduced myogenin expres-
sion and promoted HES1 expression, indicating that
Notch2 could play an opposite role in RMS cells compared
to Notch3, as already suggested for skeletal muscle tissue
commitment [74]. The triggering of differentiation upon
Notch3 knockdown was associated with cell cycle arrest,
p21"P! induction and a decrease in the levels of kinases
regulating cell proliferation such as ERK-1 and -2. All these
effects were mimicked in wild-type cells or reinforced in
Notch3-depleted cells by HES1 silencing, whereas HES1
over-expression partly reversed the effects of Notch3
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knockdown. Consistent with the observations of Sang et al.
[68], these results strongly indicate that the in vitro anti-
differentiative and pro-tumorigenic role of Notch3 in RMS
is, at least in part, due to the induction of HES1 expression.
Finally, Notch3 depletion, even only in a fraction of cells,
inhibited the growth of alveolar RMS tumors xenografted
in immune-compromised mice. Very recently, Nagao and
colleagues showed that the CSL/RBP-Jk is necessary for the
growth of embryonal RMS cells in vitro and in vivo and
that its function is Notch activation-dependent [76]. All
these results support a major role for the Notch signaling
pathway in the maintenance of the malignant phenotype in
RMS.

Notch signaling inhibition in cancer treatment: from
preclinical studies to clinical evidence
Notch inhibition may represent a powerful approach to
restrain tumorigenesis of STSs in which Notch signaling
is over-active, such as RMS [69-71], and potentially, SS.
Different classes of inhibitors have been tested in precli-
nical studies aimed at evaluating the feasibility of Notch
inhibition as an anti-cancer strategy. These include GSIs
[77], specific anti-Notch antibodies [78,79], Notch ligand
decoys [80], and inhibitors of the Notch transcription
complex [81]. Due to the role of Notch signaling in pre-
venting differentiation and maintaining stem cell popula-
tions, these inhibitors are expected to induce differentiation
and prevent proliferation and metastasis. Among preclinical
Notch inhibitors, GSIs and some ligand mAbs have been
tested in clinical trials for the treatment of human cancers.
GSIs, originally developed to block the cleavage of -
amyloid precursor protein in Alzheimer’s disease, inhibit
the final cleavage that produces the ICD of Notch recep-
tors. However, they also inhibit the cleavage of many
other y-secretase-targeted proteins [82]. Thus, GSIs are
not technically specific Notch inhibitors but their in vivo
toxicity appears to result exclusively from Notch inhibi-
tion. Indeed, secretory diarrhea secondary to goblet cell
metaplasia of the small intestine is due to inhibition of
Notchl and Notch2 cleavage in intestinal epithelial stem
cells, and is mimicked by double knockout of Notchl
and Notch?2 in these cells [83,84]. GSIs, at least theoreti-
cally, are not specific for individual Notch receptors.
However, currently available investigational GSIs belong
to several different chemical series, and the specificity of
different classes of GSIs has not been studied in detail.
Most biochemical studies on GSIs have traditionally
focused on Notchl. The widespread assumption that all
GSIs are pharmacologically equivalent and inhibit all
Notch paralogs may be unwarranted. Harrison et al. [85]
reported that Notch4 is resistant to two commercially
available GSIs. Whether clinical GSIs also inhibit differ-
ent Notch paralogs with different potencies remains to
be determined. Initial results from clinical studies on
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patients with Alzheimer’s disease reported target-
mediated side effects of GSIs, such as secretory diarrhea,
nausea and fatigue [86]. Nevertheless, a re-evaluation of
case reports showed some therapeutic benefits and rela-
tively low toxicity. For oncologic indications, intermittent
administration of GSIs has been shown to decrease toxi-
city significantly. MK-0752 is an oral GSI. Its safety and
efficacy as an anticancer drug have been tested in clinical
trials with both adult and pediatric patients (Table 2)
[87,88]. In a phase I study in children with recurrent cen-
tral nervous system (CNS) malignancies, MK-0752 was
well tolerated at the dose and schedule recommended for
phase II study progression [87]. Two of nine patients
experienced prolonged disease stabilization. Importantly,
only in the two responders did MK-0752 decrease the
levels of Notchl ICD in post-treatment peripheral blood
mononuclear cells [87]. This finding underscores a fun-
damental issue in the development-targeted agents,
including Notch inhibitors. Robust biological markers
demonstrating target inhibition should be included in all
clinical trials of such agents for the results to be interpre-
table. Ideally, target inhibition in tumor tissue should be
documented. In a phase I clinical trial conducted in adult
patients with solid tumors, MK-0752 demonstrated good
tolerability and evidence of Notch pathway inhibition
using a once-per-week dosing schedule. Preliminary evi-
dence of efficacy was observed mainly in patients with
gliomas. Conversely, there was little evidence of efficacy
of MK-0752 as a single agent in patients with extra-cra-
nial cancers, this indicating the need for rational,
mechanism-based combinations [88]. The importance of
combination approaches is illustrated by a recently closed
pilot pre-surgical clinical trial of MK-0752 in estrogen
receptor (ER+) breast cancer ([89] and manuscript in
preparation). In this study, which was based on extensive
preclinical data documenting cross-talk of Notch with ER
[90,91], MKO0752 GSI was administered after two weeks
of endocrine therapy with tamoxifen or letrozole, conco-
mitantly with continued endocrine therapy. Under these
conditions, no diarrhea was observed and Ki67 reduction
compared to endocrine therapy alone was seen in 17 of
20 patients. Induction of apoptosis (as detected by upre-
gulation of the pro-apoptotic mediator NOXA), was seen
in 15 of 20 patients. Notch pathway inhibition by GSIs in
tumor tissue was documented using multiple QRT-PCR
assays on tumor biopsies taken at diagnosis, after endo-
crine therapy alone and after the addition of GSI. A che-
mically different GSI, RO4929097, has shown antitumor
activity in animal models with a concomitant differen-
tiated histologic profile, typical of Notch inhibition.
Because of its promising preclinical activity and tolerabil-
ity RO4929097 has been studied in phase I clinical trials
[92]. Tolcher et al. have reported that in a phase I study
RO4929097 was well tolerated in adult patients with
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Table 2 Completed clinical trials with y-secretase inhibitors in pediatric/young adult oncologic patients (clinicaltrials.

gov).
Compound ClinicalTrials Gov Clinical Cancer type Patients’age
Identifier studies
MK0752 NCT00106145 Phase | study Breast and advanced solid tumors 18 Years and older
MK0752 NCT00100152 Phase | study T-ALL 12 Months and
older®
RO4929097 NCT01192763 Phase | study Pancreatic cancer 18 Years and older
RO4929097 NCT01208441 Phase | study Breast cancer 18 Years and older
RO4929097 NCT01269411 Phase | study  Brain and Central Nervous System Tumors 18 Years and older
RO4929097 NCT01216787 Phase I study Melanoma (Skin) 18 Years and older
RO4929097 NCT01217411 Phase | study Breast Cancer 18 Years and older
RO4929097 NCT01151449 Phase I study Breast Cancer 18 Years and older
RO4929097 with or without NCT01270438 Phase I study Metastatic Colorectal Cancer 18 Years and older
Bevacizumab
R0O4929097 NCT01236586 Phase I/1I Brain and Central Nervous System Tumors, 1 Year to 21 Years®
study T-ALL
RO4929097 NCT01088763 Phase /11 Leukemia 1 Year to 21 Years®
study

“Enrollment of children. T-ALL, T-cell acute lymphoblastic leukemia/lymphoma.

refractory metastatic or advanced solid tumors and
some evidence of antitumor activity was observed [93].
However, Strosberg et al. in a phase II study showed
that patients with refractory metastatic colorectal cancer
treated with RO4929097 did not have radiographic
responses, suggesting that RO4929097 at the study dose
and schedule has minimal single agent activity in this
malignancy [94]. It should be noted that RO4929097 has
auto-inducing properties (it induces its own liver meta-
bolism) and this may represent a pharmacokinetic liabi-
lity. Nevertheless, to expect single agent activity in early
clinical trials with developmental pathway inhibitors may
be unrealistic. Unlike cytotoxic agents, drugs targeting
developmental pathways are not relatively non-specific
poisons and do not often kill target cells at pharmacolo-
gically attainable doses. What many of these agents do is
to reset cell fate programs increasing sensitivity to differ-
entiation stimuli, growth arrest stimuli or cytotoxic sti-
muli. Additionally, it is likely that the main target of
these agents is not bulk tumor cells but tumor-initiating
cells. Therefore, the main therapeutic effect of these
agents may lie in prevention of recurrence rather than
rapid tumor shrinkage. This was demonstrated in a
recent study in Her2/Neu positive xenografts, in which
two chemically distinct GSIs (MRK003 and LY411,575)
were studied alone and in combination with Herceptin
(trastuzumab )[95]. In this study, neither GSI had any
effect on tumor volume as single agents or in combina-
tion with Herceptin. Herceptin alone had dramatic
effects, leading to apparently complete tumor regression.
However, when tumor recurrence was studied, MRK003
in combination with Herceptin completely abolished
tumor regression, while LY411575 nearly abolished
it. Animals treated with Herceptin alone showed

approximately 50% tumor recurrence after complete
regression, which is similar to patients treated with
Herceptin-containing regimens. Thus, it is likely that
the effects of GSIs and potentially other Notch inhibi-
tors may be clinically very significant in terms of long-
term survival, but will have to be evaluated with appro-
priate surrogate endpoints and in mechanism-based,
rationally designed combinations. In fact, trials designed
to combine GSIs with other agents, including tyrosine
kinase inhibitors, mammalian target of rapamycin inhi-
bitors, aromatase inhibitors, and conventional che-
motherapeutic compounds are currently recruiting
patients [96]. Consistent with this view, in a recently
closed US National Cancer Institute sponsored phase I/
II study at the Memorial Sloan-Kettering Cancer Center,
(New York, NY, USA) (NCT01154452), RO4929097 has
been administered in combination with a hedgehog
inhibitor, GDC-0449, for the treatment of adult patients
with advanced and/or metastatic sarcomas, including
SS. The objectives of this study were to determine the
maximum-tolerated dose of RO4929097 combined with
GDC-0449 (Phase Ib) and to assess the progression-free
survival of patients treated with RO4929097 alone or
with the hedgehog antagonist (Phase II). Studies like
this may hold the key to future development of Notch-
modulating agents in pediatric sarcomas, and for that
matter in other tumors.

Conclusions

Taken together, the results we have summarized suggest
that Notch inhibition may be a promising approach in the
treatment of several types of human pediatric cancers, but
more work needs to be done to assure a successful clinical
translation. The role of individual Notch paralogs in
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specific tumor subtypes will dictate whether a relatively
non-specific approach such as a GSI or more specific
agents, such as Notch receptor or ligand monoclonal anti-
bodies, should be preferred [44]. Not surprisingly, several
academic and pharmaceutical groups are developing speci-
fic Notch receptor and Notch ligand antibodies [77]. In
tumors in which Notch signaling plays a tumor-suppressive
role, such as ES [51,52,54], agents that can selectively acti-
vate Notch receptors or induce downstream molecules
such as HEY1 may be promising therapeutic approaches.

Overall, preclinical studies suggest that an anti-cancer
approach aimed at promoting differentiation in STS is fea-
sible and deserves further investigation. Given the promi-
nent role of Notch signaling in numerous aspects of
tumor development and maintenance, the Notch pathway
is a potentially attractive therapeutic target for several
types of STS.
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