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Abstract

There is compelling evidence to support an aetiological role for inflammation, oxidative and nitrosative stress
(O&NS), and mitochondrial dysfunction in the pathophysiology of major neuropsychiatric disorders, including
depression, schizophrenia, bipolar disorder, and Alzheimer’s disease (AD). These may represent new pathways for
therapy. Aspirin is a non-steroidal anti-inflammatory drug that is an irreversible inhibitor of both cyclooxygenase
(COX)-1 and COX-2, It stimulates endogenous production of anti-inflammatory regulatory ‘braking signals’, including
lipoxins, which dampen the inflammatory response and reduce levels of inflammatory biomarkers, including C-
reactive protein, tumor necrosis factor-a and interleukin (IL)–6, but not negative immunoregulatory cytokines, such
as IL-4 and IL-10. Aspirin can reduce oxidative stress and protect against oxidative damage. Early evidence suggests
there are beneficial effects of aspirin in preclinical and clinical studies in mood disorders and schizophrenia, and
epidemiological data suggests that high-dose aspirin is associated with a reduced risk of AD. Aspirin, one of the
oldest agents in medicine, is a potential new therapy for a range of neuropsychiatric disorders, and may provide
proof-of-principle support for the role of inflammation and O&NS in the pathophysiology of this diverse group of
disorders.
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Introduction
Historically, treatment options for common neuropsy-
chiatric disorders, including depression, schizophrenia,
and bipolar disorder, have focused on medications that
modify the activity of monoamine neurotransmitter sys-
tems. Monoamines may play a large role in the pathophy-
siology of these disorders, but the monoaminergic theory
of illness has failed to deliver novel agents beyond the
limited treatment options currently available. There is
now a clear body of recent evidence to support an etiolo-
gic role for other factors in the pathophysiology of
depression, schizophrenia, and bipolar disorder, including
oxidative and nitrosative stress (O&NS), mitochondrial
dysfunction, and activation of the immune-inflammatory
system.
The immune system is classically divided into the

innate and adaptive arms. The innate immune arm is the

first line of defense against pathogens, and provides a
rapid response with limited specificity. Key players in the
innate immune system are defense cells (such as neutro-
phils, monocytes, macrophages, natural killer cells, and
mast cells), and soluble factors, of which acute-phase
proteins, complement, and various inflammatory cyto-
kines (such as interferon (IFN)-a, tumor necrosis factor
(TNF)-a, interleukin (IL)-1b, IL-6, and IL-8) are exam-
ples. Monocytes are closely related to macrophages, and
collectively these cells are often referred to as the ‘mono-
nuclear phagocyte system (MPS)’. The main descendants
of these circulating monocytes are the macrophages,
which occur in virtually all organs, and are present as
microglia in the brain [1].
If the innate system fails to resolve the infection, the

adaptive system will be triggered by the cells of the innate
immune system. Dendritic cells pick up antigens at the
site of infection, travel through the lymphatics to the
lymph node, and present the collected antigen to cells of
the adaptive immune system. The adaptive immune

* Correspondence: mikebe@barwonhealth.org.au
1School of Medicine, Deakin University, 75 Pigdon’s Road, Waurn Ponds,
Geelong, Victoria, 3216, Australia
Full list of author information is available at the end of the article

Berk et al. BMC Medicine 2013, 11:74
http://www.biomedcentral.com/1741-7015/11/74

© 2013 Berk et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:mikebe@barwonhealth.org.au
http://creativecommons.org/licenses/by/2.0


system is antigen-specific, provides a memory, and is typi-
cally activated a few days later than the innate system.
Inflammation, particularly the M1 macrophage

response, is accompanied by increased levels of free radi-
cals and O&NS, creating a state in which levels of avail-
able antioxidants are reduced. Activation of the immune-
inflammatory and O&NS pathways and lowered levels of
antioxidants are key phenomena in clinical depression
(both unipolar and bipolar), autism, and schizophrenia
[2-4]. Indeed, there is now strong evidence of the involve-
ment of a progressive neuropathologic process in these
conditions, with stage-related structural and neurocogni-
tive changes well described for each. Incorporation of
these wider factors into traditional monoamine neuro-
transmitter-system models has facilitated a more com-
prehensive model of disease, capable of explaining the
observed process of neuroprogression. This understand-
ing has facilitated the identification of new therapeutic
targets and treatments that have the potential to inter-
rupt the identified neurotoxic cascades [5-8]. The neuro-
protective potential is one of the key promises of agents
that target the components of the cascade.
One of the most commonly used pharmaceuticals in

medicine, acetylsalicylic acid (aspirin), is an agent that
may be capable of interrupting this neurotoxic cascade.
Aspirin exerts its effects on the inflammatory cascades,
irreversibly inhibiting cyclooxygenase (COX)–1, and
modifying enzyme activity of COX-2, suppressing pro-
duction of prostaglandins and thromboxanes [9]. These
anti-inflammatory and anti-platelet mechanisms have
been found to have positive effects on the risk of athero-
sclerosis, heart disease [10], stroke, and potentially, some
cancers [11]. Given that similar disease mechanisms may
underwrite the pathophysiology of major neuropsychia-
tric disorders, it is possible that aspirin, by interrupting
neurotoxic cascades, could be a potential candidate for
secondary prevention. In this review, we assess the evi-
dence base supporting inflammatory and oxidative-stress
disturbance in major neuropsychiatric disorders, and pro-
pose how aspirin may alter such pathways. Other reviews
that have explored the use of somatic drugs for psychia-
tric diseases have placed a strong focus on COX-2 as the
most important and powerful anti-inflammatory [12], but
in this paper, we propose that COX-1 is in fact the key
component in neurodegeneration and neuroinflamma-
tion, and thus a potential target for therapeutic interven-
tion [12]. In addition, we identify some early indications
of the preventative effect of aspirin on neuropsychiatric
disorders.

Inflammation and redox dysregulation in mood
disorders
There is a large body of data showing that stress and
depression are associated with both increased immune

activation and impaired immune function [13]. To date,
immune function in individuals with major depressive
disorder (MDD) has been investigated by assessing levels
of pro-inflammatory and acute-phase proteins [14].
Studies have shown that levels of interleukin (IL)-6 and
C-reactive protein (CRP), and the immunologic comple-
ment component 4 (C4), but not C3, are significantly
raised in patients with depression compared with con-
trols [14]. Because increased levels of CRP predict the
subsequent risk for de novo depression, these findings
suggest that the documented immune findings are not
merely epiphenomena of depression, but actually contri-
bute to the genesis of the disorder [15]. A recent meta-
analysis of cytokine studies in MDD showed that the
cytokines IL-6 and TNF-a were increased [16]. There is
evidence that the pro-inflammatory cytokine IL-1b and
the pro-inflammatory chemokine CCL2 are increased in
bipolar disorder [17,18].
Additional evidence for a central role of cytokines in

depression derives from studies comprising healthy
volunteers. For participants given infusions of endotoxin
to induce the release of pro-inflammatory cytokines,
there was a significant relationship between induced
cytokine levels and emergence of mood-disorder symp-
toms [19]. Similarly, giving psychiatrically healthy indivi-
duals treatment with exogenous cytokines (IL-2, IFN-a
and TNF-a) induced the classic behavioral and cognitive
phenotype of a mood disorder, including depressed
mood state, mania, increased stress reactions, cognitive
impairment, and reduced motivation [20]. Recently, anti-
depressant treatment was shown to reduce levels of the
inflammatory markers levels CRP and IL-6 in patients
with MDD [21,22], while persistently raised levels of
inflammatory markers were associated with lack of treat-
ment response [23]. Indeed, such findings suggest an
immunomodulatory role for antidepressant medication,
and provide support for the use of immune interventions
that directly address this aspect of the pathophysiology of
depression.
There are equally extensive data on the relationship

between oxidative stress (OS) and depression. Compared
with healthy controls, individuals experiencing major
depressive episodes (MDEs) have significantly increased
levels of markers of oxidative damage, including lipid-per-
oxidation products [24-27], the oxidized DNA marker 8-
hydroxy-2’-deoxyguanosine [28], and depleted omega-3
fatty acids (indicative of oxidative damage to erythrocyte
membranes) [29]. Altered antioxidant levels are also seen
in MDEs, including lower levels of serum vitamins C
and E [30,31] and albumin [32], and altered levels of
the antioxidative enzymes superoxide dismutase (SOD)
[24-26,33], glutathione reductase (GR) and glutathione
peroxidase (GSH-Px) [24]. A higher OS index, determined
by the ratio of total plasma peroxide to total plasma
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antioxidant potential, is seen in drug-free patients with
MDD [34]. Lastly, positive correlations have been found
between depressive severity scores and OS index values
[34], and between the severity of depression and the extent
of changes in oxidative indices [24,26,28,31].
Normalization of oxidative parameters with the resolu-

tion of depression has been reported in two studies, in
which it was found that baseline measures of antioxidant
enzymes and lipid peroxidation were increased and vita-
min C levels decreased in patients with MDE compared
with controls [24,25]. Antidepressant treatment improved
depressive symptoms, and was also associated with signif-
icant amelioration of oxidative parameters, corroborating
findings from other studies [33]. Further supporting this,
preclinical studies have shown that established antide-
pressant agents display antioxidant properties [35-38].
The evidence of a pathophysiological role of OS in MDD
provides preliminary support for the use of antioxidant
mechanisms as an additional therapeutic pathway.

Inflammation and redox dysregulation in
schizophrenia
In schizophrenia, as in depression, there is long-standing
evidence to suggest a major role for OS and, to a lesser
extent, inflammation; reduced levels of antioxidants, such
as glutathione, have been reported as early as 1934 [39].
Since these early findings, there has been a plethora of
studies indicating altered levels of antioxidants, including
the major antioxidants SOD, GSH-Px, and catalase, in
addition to glutathione [40]. Lipid peroxidation is evi-
denced by the increased levels of malondialdehyde
(MDA) and thiobarbituric acid that are seen in patients
with schizophrenia. In addition, protein carbonylation
and DNA damage is increased, leading to activation of
apoptotic pathways, further disrupting normal brain
function. Moreover, genetic polymorphisms have been
identified that further implicate oxidative factors in the
pathophysiology of schizophrenia. Polymorphisms in the
glutamate-cysteine ligase gene, whose protein product is
responsible for glutathione synthesis, occurs in bipolar
disorder [41] and schizophrenia [42], but not in depres-
sion [43]. In a similar manner to its relationship with
depression, positive correlations exist between levels of
OS and symptom severity [40].
Although there is a substantial body of literature regard-

ing maternal and prenatal inflammation and their role in
schizophrenia, it has only been comparatively recently that
the roles of inflammation in schizophrenia have been
intensively investigated. Infectious agents including Toxo-
plasma gondii, Chlamydia, bornavirus cytomegalovirus,
and influenza seem to increase the risk for schizophrenia,
but it is possible that the immune response itself rather
than the infection mediates this effect [44]. Raised mater-
nal levels of the pro-inflammatory cytokine IL-8 during

pregnancy are associated with an increased risk for schizo-
phrenia in the offspring, independent of the cause of
inflammation [45]. The glutamatergic and dopaminergic
systems, known to be dysregulated in schizophrenia, have
a modulating effect on the immune system and on trypto-
phan-kynurenine metabolism, both of which are involved
in the pathophysiology of schizophrenia [46]. Markers of
inflammatory processes have been found in post-mortem
studies of brains from patients with schizophrenia [47].
Pro-inflammatory changes have been described in schizo-

phrenia; a recent meta-analyses of cytokine studies in schi-
zophrenia showed that cytokines such as IL-12, TNF-a,
IFN-g and soluble CD25 are raised in and are trait markers
of schizophrenia [48], whereas IL-1b, IL-6 and TGF-b are
state markers of acute schizophrenia [48]. Serum levels of
the monocyte/macrophage cytokines, chemokines and
adipokines CCL2, CCL4, TNF-a, IL-1b, IL-6, leptin, adipo-
nectin, pentraxin-related protein (PTX3), plasminogen
activator inhibitor (PAI)-1, osteoprotegerin (OPG) and
intercellular adhesion molecule (ICAM)-1 were measured
in individuals with chronic schizophrenia and compared
with levels in healthy controls (n = 138). Levels of all mea-
sured immune compounds except PAI-1 and OPG were
increased in the patients with schizophrenia. Multivariate
analysis showed that these increases were linked to gender
(ICAM-1, leptin, TNF-a and adiponectin), a higher body
mass index (leptin, adiponectin), presence of hyperglycemia
or diabetes (CCL4 and OPG), reduced high-density lipo-
protein cholesterol or increased triglyceride (adiponectin
and PTX3) levels, or presence of metabolic syndrome
(CCL2, leptin, and adiponectin). IL-1b and IL-6 were the
only immune compounds found to be increased in the
serum of patients not affected by any of these aforemen-
tioned factors. Although many of the immune compounds
were found to be linked to (components of) metabolic syn-
drome, the most dominant linkage was found with schizo-
phrenia itself, confirming earlier reports of increased
monocyte/macrophage activation being a key component
for understanding the pathogenesis of schizophrenia, con-
sistent with the meta-analysis showing that IL-1b and IL-6
are trait markers of schizophrenia. Interestingly, previous
work has shown that serum IL-6 levels seem to correlate
with a poorer prognosis [49]. Positron emission tomogra-
phy (PET) imaging studies using the ligand PK11195, a
marker of microglial activation, have also suggested an
inflammatory process in schizophrenia [50].

Inflammation and redox dysregulation in
Alzheimer’s disease
Alzheimer’s disease (AD) is the most common cause of
dementia in the elderly population, with over 33 million
people affected worldwide [51]. AD is characterized by
two major neuropathologic changes: deposition of intra-
cellular neurofibrillary tangles composed of tau protein,
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and extracellular b-amyloid plaques [52]. The disease is
also characterized by activation of astrocytes and microglia,
which leads to production of a range of pro-inflammatory
substances, including cytokines, chemokines, thrombox-
anes, and reactive oxygen species (ROS) [53], which over
time may lead to cellular damage. It is suggested that
deposition of b-amyloid plaques and tau protein (as neuro-
fibrillary tangles) induces a chronic inflammatory state that
is derived primarily from efforts to clear this debris [52].
During this chronic inflammatory state, substances released
by astrocytes and microglia, such as ROS, nitric oxide
(NO), and proteolytic enzymes, can not only cause direct
toxic effects to the surrounding neuronal architecture, but
also enhance further production of beta-amyloid, poten-
tially contributing to disease progression. This process
seems to involve both an upregulation in b-amyloid-42
production, and decreased production of soluble amyloid
precursor protein, which potentially exerts neuroprotective
effects [54]
Similar to psychiatric disorders, the interaction between

inflammatory and OS responses appears to be important
in AD. A reciprocal relationship seems to exist between
beta-amyloid and OS, with both augmenting production
of the other [55,56]. In addition, patient’s with AD appear
to exhibit lower levels of antioxidant substances and
enzymes early in the disease course [57], which, when
coupled with the declining function of antioxidant
defenses in key brain regions with advancing age [58], may
predispose those with AD to OS mediated damage.

The association between psychiatric disease,
dementia, and auto-immunity
To further support a role for therapeutic agents targeting
inflammation in psychiatry, there is a large body of evi-
dence linking autoimmune disease to psychiatric disor-
ders. For example, clinical depression is associated with
diverse autoimmune disorders, including diabetes type 1
and 2, inflammatory bowel disease, psoriasis, rheumatoid
arthritis, atherosclerosis, lupus erythematosus, and multi-
ple sclerosis (MS) [59]. Patients with clinical depression
have a high degree of auto-immunity directed against a
number of different selfepitopes, including serotonin and
phospholipids (for example, cardiolipin and antinuclear
factor) [60]. Recently, a new type of autoimmune
response has been described, which is an autoimmune
response secondary to O&NS damage [61-63]. Thus, it is
possible that increased O&NS levels may damage endo-
genous molecules, such as fatty acids and proteins,
thereby changing their structure. As a consequence, the
O&NS-modified self determinants may be rendered
immunogenic, and an autoimmune response is then
directed against the modified epitopes (neo-epitopes)
[61]. For example, clinical depression is accompanied by
IgG-mediated immune responses directed against

oxidized low-density lipoprotein. Moreover, there is an
association between this kind of autoimmune response
and progression (or staging) of depression. Consequently,
some of these autoimmune responses are significantly
higher in depressed individuals with chronic depression
(duration of >2 years) compared with patients who are
depressed but do not have chronic depression [60].
These findings suggest that O&NS damage, the conse-
quent formation of neo-epitopes, an enhancement of the
natural autoimmune response, and even a transition to
pathological damaging auto-immunity increase the risk
of neuroprogression and of chronic depression.
For schizophrenia, there is a parallel evidence base for

an association with auto-immunity. In a large Danish
national study, individuals with schizophrenia had a 45%
higher chance of developing an organ-specific autoim-
mune disease, including thyroid autoimmune disease
[64]. Moreover, these autoimmune diseases were also
more prevalent in the parents of these individuals with
schizophrenia. These findings not only imply a genetic
component, with family members having a higher chance
of developing such autoimmune disease, but indicate a
putative shared immune pathogenesis of psychiatric dis-
order and organ-specific auto-immunity. Although
organ-specific autoimmune diseases have been reported
to have a higher prevalence in patients with schizophre-
nia, there are also numerous reports of a negative co-
occurrence of schizophrenia and rheumatoid arthritis,
which is a systemic autoimmune disorder, and the under-
lying immune mechanism is as yet unknown [65].
A number of autoantibodies are significantly higher in
patients with schizophrenia compared with controls,
especially those related to autoimmune responses direc-
ted against neuronal targets [66-68].
Evidence from the literature on bipolar disorder also

supports the role of a genetic component; patients with
bipolar disorder and their relatives have been shown to
be more prone to develop thyroid auto-immunity, and
this association is not attributable to the use of lithium
or to the severity of psychiatric symptoms [69-71]. More-
over, in addition to a higher prevalence of thyroid auto-
antibodies, patients with bipolar disorder have a higher
prevalence of organ-specific autoantibodies, including
autoantibodies to hydrogen/potassium ATP and glutamic
acid decarboxylase-65 [72]. The aforementioned Danish
national study [64] confirmed these findings by showing
an association of bipolar disorder with a family history of
pernicious anemia, and with presence of Guillain-Barré
syndrome, inflammatory bowel disease, and autoimmune
hepatitis in individual patients.
Collectively, these findings imply shared immune

pathogenic factors for mood disorders, schizophrenia,
and organ-specific autoimmune diseases. One of these
shared factors is thought to be an intrinsically high

Berk et al. BMC Medicine 2013, 11:74
http://www.biomedcentral.com/1741-7015/11/74

Page 4 of 17



activation set-point for the MPS. It is thought that the
high activation set-point of these cells of the MPS can
be down-regulated by aspirin.

Activated circulating monocytes in psychiatric
disorders
There is emerging evidence that the MPS is activated in
patients with psychiatric disease. Early reports show that
the number of circulating monocytes is aberrant in
patients with schizophrenia. Rothermundt et al., reported
a slight increase in the mean absolute and relative mono-
cyte counts [73], and others have supported these obser-
vations, showing the presence of monocytosis and a
higher number of CD14+ cells in non-medicated patients
with schizophrenia and in children with psychosis
[74,75]. In contrast to schizophrenia, higher numbers of
CD14+ monocytes could not be found in bipolar disorder
[17,76], yet gene-expression studies identified activation
of the circulating cells. Two gene-expression profiling
studies [17,18] have been carried out on purified mono-
cytes taken from patients with psychiatric illness (56 with
bipolar disorder and 27 with schizophrenia) and matched
healthy controls. In sum, aberrant expression of 34 genes
was detected, which mutually correlated and formed an
immune-activation monocyte gene-expression signature,
consisting of pro-inflammatory cytokines and com-
pounds (for example, IL-1b, IL-6 and COX2), inflamma-
tory regulator molecules (for example, NAB-2), various
chemokines (for example, chemokine (C-C motif) ligand
(CCL)2), adhesion/motility factors (for example, cell divi-
sion control protein 42 homolog; CDC42), and inflam-
matory transcription factors (for example, early growth
response protein (EGR)3). The overexpression of mono-
cyte activation genes was particularly evident in active
cases, that is, in patients with mania, active melancholic
depression, or active psychosis [17,18].

Activated microglia in psychiatric disorders
Although histomorphologic signs of an abnormal
inflammatory activation of microglia have been found in
post-mortem studies on patients with major psychiatric
disorders, these studies are limited and controversial.
A post-mortem study on the brains of patients with

schizophrenia who had committed suicide during an epi-
sode of acute psychosis found an increased density of
microglia in the tissue [77]. Three other studies reported
increased microglial activation in patients with schizo-
phrenia [78-80], whereas another three did not find an
activation state of microglia [81-83]. A drawback of some
of these post-mortem studies is that they were performed
on old to very old individuals, and might not reflect the
pathophysiology of acute exacerbations of psychiatric
illness.

To date, only two histological studies have analyzed
patients with affective disorders. A qualitative study of
human leukocyte antigen (HLA)-DR showed increased
expression of this surface marker on the microglia of the
hippocampus and prefrontal cortex of patients with
depression [78].
More recently, increases in the expression of quinolinic

acid (QUIN) have been identified in ramified microglia in
sub-regions of the anterior cingulate cortex of patients
with severe depression [84]. The production of microglial
QUIN from tryptophan was increased in the subgenual
anterior cingulate cortex and anterior midcingulate cor-
tex, but not in the pregenual anterior cingulate cortex of
patients with major depression. A similar trend was seen
for bipolar disorder. QUIN is a breakdown product of
the tryptophan pathway, which is further broken down to
NAD+, and is primarily produced by activated microglial
cells. A key enzyme for the production of QUIN in the
microglia is indoleamine 2,3-dioxygenase (IDO), which
IDO is activated by pro-inflammatory cytokines including
IFN-g, IL-1, IL-6, and TNF-a.
In addition to post-mortem studies, techniques using

PET have been used to study microglia activation in
patients in real time. A PET tracer. [11C]-PK11195, binds
to the mitochondrial translocator protein, whose expres-
sion is increased in activated microglia [85]. This techni-
que has already been used successfully in several patient
and animal studies of neuropsychiatric disorders [86],
which show that immune-activation (’inflammatory’)
lesions occur in brain regions that are related to the speci-
fic disease process. For example, in schizophrenia, micro-
glial activation is found in the hippocampal area, where
functions such as immediate memory and sensory-emo-
tional integration are impaired. Interestingly, these focal
changes are found only in patients with acute psychosis, in
whom cognitive impairment is most prominent [87], and
not in patients who have recovered from psychosis [50],
who show a global brain inflammatory effect.
Using PET, microglia activation has also been found in

brain disorders such as AD, HIV-associated dementia,
Parkinson’s disease (PD), multisystem atrophy, MS, herpes
encephalitis, traumatic brain injury, and stroke [88,89]. In
addition, microglial activation is also found in peripheral
disorders such as hepatitis, thiamine deficiency, and hepa-
tic encephalopathy [90-92], and even after sleep loss [93].
An abnormal inflammatory activation of microglia can

be detrimental for neurogenesis and synaptogenesis
through lack of provision of neuronal growth factors or
through production of neurotoxic factors and cytokines
[94]. Mouse mutants in which microglia are in an acti-
vated state during prenatal development (CD200KO
and DAP12KO mice) have altered levels of glutamate
receptors, resulting in impaired long-term potentiation
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and hippocampal transmission [95-97]. In favor of a direct
detrimental action of inflammatory cytokines on neuronal
development, in vitro work has shown that cytokines such
as IL-6, IL-18, and TNF-a can affect neuronal prolifera-
tion, survival, and aspects of differentiation such as neurite
outgrowth and gene-expression patterns [98,99].

Working mechanisms of psychotropic medications
For unipolar and bipolar depression, it is understood that
the working mechanisms of classic antidepressants and
new putative antidepressants are at least partly explained
by their effects on various immune-related pathways,
including: 1) reducing inflammatory responses character-
ized by increased levels of TNF-a, IL-1 and IL-6; 2)
attenuating cell-mediated immune activation and T-helper
(Th)1 and Th17 responses while increasing responses of
regulatory T cells; 3) reducing O&NS processes and
increasing the total antioxidative capacity; 4) protecting
against damage to mitochondria and mitochondrial DNA;
and 5) attenuating neuroprogressive processes [100]. The
same immunoinflammatory, O&NS and neuroprogressive
pathways play a role in schizophrenia [101]. Therefore, it
has been suggested that targeting the aforementioned
pathways in conjunction with dopamine receptor 2 and
5-hydroxytryptamine receptor 2 may be a treatment
approach for schizophrenia [101].

Working mechanisms of aspirin
Aspirin is a non-steroidal anti-inflammatory drug
(NSAID), and an irreversible inhibitor of both COX-1
and COX-2. It is more potent in its inhibition of COX-1
than COX-2, and targeting COX-2 alone may be a less
viable therapeutic approach in neuropsychiatric disorders
such as depression [102]. COX-2 inhibitors may theoreti-
cally cause neuroinflammatory reactions, and potentially
might augment the Th1 predominance, increase O&NS
levels and O&NS-induced damage, decrease antioxidant
defenses, and even aggravate neuroprogression [102]. In
addition, COX-2 inhibition may interfere with the resolu-
tion of inflammation [103]. Thus, COX-2 inhibition
decreases the production of prostaglandin E2 (PGE2),
which drives the negative immunoregulatory effects on
ongoing inflammatory responses. In autoimmune arthri-
tis, for example, PGE2 is part of a negative-feedback
mechanism that attenuates the chronic inflammatory
response [103]. Therefore, in order to understand the
clinical efficacy of aspirin in neuropsychiatric disorders
such as depression and schizophrenia, it is more impor-
tant to consider how its inhibition of COX-1 affects the
five aforementioned pathways. This is supported by data
suggesting lower response rates to antidepressants in
people receiving NSAIDs [104], but is at odds with some
recent studies suggesting a benefit for celecoxib, a COX-
2 inhibitor, in several disorders including autism and

depression [105,106]. In the following sections, we will
discuss the effects of aspirin on these pathways.

Aspirin and the suppression of activated cells of
the mononuclear phagocyte system
It is relevant to consider the inflammatory reaction as a
biphasic process, with an initial phase of induction and a
second phase of resolution. During the initial phase of
inflammation, eicosanoids including prostaglandins and
leukotrienes play an important role as local mediators in
the development of an inflammatory condition, evoking
potent chemotactic responses from leukocytes, the activa-
tion of which is coupled to the production of pro-inflam-
matory cytokines at sites of inflammation [107]. The
second stage of resolution is coupled to the biosynthesis of
a new genus of lipid mediators that actively limit inflam-
mation and promote resolution. This new genus of pro-
resolving mediators includes lipoxins (LXs) and their
aspirin-triggered carbon-15 epimers, as well as the recently
discovered resolvins and protectins, which are derived
from omega-3 fatty acids. An excellent review [108] on
these new mediators has been published recently, and we
give a summary below of the main principles described in
this review.
LXs and aspirin-triggered LXs (ATLs) are considered to

act as ‘braking signals’ in inflammation, dampening the
inflammatory response. Aspirin triggers the generation of
epimeric forms of LXs. Cells that express COX-2 (includ-
ing activated monocytes, macrophages, and microglia)
produce ATLs in response to the actions of aspirin, which
triggers the endogenous formation of carbon-15 epimeric
LXs. In particular, in a cytokine-primed milieu, acetylation
of COX-2 by aspirin switches the catalytic activity of the
enzyme to an R-lipoxygenase with the formation of 15R-
hydroxyeicosatetraenoic acid, which is rapidly converted
by 5-lipoxygenase to 15-epimeric-LXA4 or 15-epimeric-
LXB4.
Administration of low doses of aspirin to healthy sub-

jects significantly increases plasma levels of ATLs, with
concomitant inhibition of thromboxane biosynthesis, sug-
gesting that ATLs may account for some of the beneficial
effects of aspirin that are not strictly related to its anti-
thrombotic actions.
The role for ATLs as anti-inflammatory molecules is

well defined, with their bioactions involving the inhibition
of neutrophil and eosinophil recruitment and activation.
In addition, LXs and ATLs have been proposed to directly
stimulate expression of genes (such as NAB1) involved in
endogenous anti-inflammation and resolution, and to reg-
ulate NF-�B activation.
The actions of LXs and ATL are not limited to coun-

ter-regulating the evolution of inflammation, as they also
promote resolution at different levels. LXs stimulate
monocyte chemotaxis and adherence, without causing
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degranulation or release of ROS, suggesting that the
actions of LXs are related to the recruitment of mono-
cytes to sites of injury. These monocyte activities may be
host-protective. in view of the important role of these
cells in wound healing and resolution at inflammatory
sites. Indeed, LXs and ATLs stimulate the in vitro clear-
ance of apoptotic cells by human monocyte-derived
macrophages in a non-phlogistic manner. In addition to
promoting resolution by non-phlogistic phagocytosis of
apoptotic cells, LX can act to reprogram cytokine-primed
macrophages from a classic pro-inflammatory phenotype
to an alternatively activated phenotype.
A range of doses of aspirin (100 to 300 mg/day) reduced

the plasma levels of inflammatory biomarkers such as
CRP, IL-6 and TNF-a in patients with cardiovascular
metabolic syndrome [109]. Aspirin was shown to reduce
the levels of inflammatory cytokines, such as TNF-a and
IL-8, but not those of negative immunoregulatory cyto-
kines, such as IL-4 and IL-10 [110]. In the same study,
there did not seem to be any effect of aspirin on IL-1b,
and the suppressant effects of aspirin on IL-6 did not
reach significance. Aspirin also reduced the production of
TNF-a in rats with streptozotocin-induced type 2 diabetes
[111]. Pretreatment with aspirin in various cell types,
including keloid fibroblasts and HeLa cells, significantly
reduced IL-1 and TNF-a-induced stimulation of nuclear
factor (NF-)-�B [112,113]. In patients with chronic stable
angina, treatment with aspirin for 6 weeks reduced serum
levels of CRP and IL-6 [114]. Another study examined the
effects of 2 weeks of treatment with oral aspirin (325 mg/
day) on the ex vivo stimulated production of IL-1b, IL-6,
and TNF-a by peripheral blood mononuclear cells from
normal controls [115]. The authors found that oral aspirin
may increase the production of cytokine-induced, but not
lipopolysaccharide (LPS)-induced TNF-a and IL-1b pro-
duction, suggesting that short-term treatment with aspirin
might augment cytokine-induced cytokine production in
normal controls. Taken together, these results provide
some evidence that administration of aspirin to patients
with inflammatory conditions may suppress the produc-
tion of TNF-a, IL-1b and maybe IL-6, and of acute-phase
proteins such as CRP. Aspirin also seemed to reduce Th17
responses in mouse models of LPS-induced lung inflam-
mation [116].
There is also evidence that mRNA expression of COX-

2 is increased in individuals with recurrent depression
[117]. Likewise, a significant association was found
between recurrent depression and a single-nucleotide
polymorphism of the COX gene G-765C [118]. Neverthe-
less, as discussed above, these findings question the use
of selective COX-2 inhibitors in clinical depression [102].
COX-2 has many effects, both negative and positive, on
the central nervous system, meaning that the outcome of
COX-2 inhibition in neuroinflammation is very difficult

to predict [119]. For example, COX-2 has neuroprotective
and anti-inflammatory effects, and may play a role in the
integrity of the blood-brain barrier, synaptic transmission,
and long-term potentiation [102,119-121]. These new data
augment the view that COX-2 may not be the best target
to inhibit neuroinflammation, and therefore targeting
COX-1 could be a much better strategy to block neuroin-
flammation [119,120]. There are now data indicating that
expression of COX-1 is enhanced in neuroinflammatory
disorders, including models of PD, and that COX-1 inhibi-
tion improves survival [122]. Taken together, these new
data show that COX-1, rather than COX-2, is a key com-
ponent in neurodegeneration and neuroinflammation
[123]. Thus, the working spectrum of aspirin (targeting
preferentially COX-1 rather than COX-2) compared with
that of selective COX-2 inhibitors may be the reason why
aspirin is an asset in the treatment of neuropsychiatric
conditions associated with neuroinflammation and
neuroprogression.
It is thus tempting to speculate that aspirin is capable

of deactivating and reprogramming the activated mono-
cytes, macrophages, and T cells and the neuroinflamma-
tory responses in neuropsychiatric disorders.

Aspirin and the suppression of O&NS pathways
There is a vast literature on the anti-inflammatory effects
of asprin. Since the discovery by Vane in 1971 of the
inhibitory effect of on the COX system, multiple studies
have focused on the effect of aspirin on systemic periph-
eral O&NS processes [124]. For example, aspirin blocks
the IL-1b-induced production of NO and inducible NO
synthase (iNOS) [125]. In cultured smooth-muscle cells,
administration of aspirin significantly reduced the
expression of iNOS [126], while in rat cardiac fibroblasts,
aspirin suppressed iNOS induction [127]. By contrast,
other authors found that aspirin and sodium salicylate
actually increased iNOS and NO production in smooth-
muscle cells [128]. The potential role for aspirin in mod-
ulating levels of O&NS pathways in the brain has
received less attention. However, a number of animal stu-
dies support the contention that aspirin can act to reduce
OS and prevent against oxidative damage. For example,
administration of aspirin prior to acute stress exposure
prevented increases in iNOS expression, TNF-a, and
markers of lipid peroxidation (such as MDA) and OS
[129]. Tables 1 and 2 provide a summary of the key evi-
dence from observational and randomized controlled
trials over the past 40 years, investigating the relationship
between aspirin and mental disorders.

Role of aspirin in mood disorders; clinical data
There is some evidence suggesting beneficial effects for
aspirin in mood disorders, through a shortened onset of
action of antidepressants [130]. However, there are negative
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Table 1 Summary of key observational studies investigating the association between aspirin use and mental illness.

Author, year;
study

Hypotheses Study design Agent and dosage Sample Psychiatric measure Presentation
of results

Key finding

Sturmer, 1996;
EBSHP

ASA use
affected decline
of cognitive
function

Cohort study ASA: <1, 1 to 2 and, >2
tablets/day ASA effect
hypothesized to be more
dependent on frequency
than on dose, mean daily
dose was not used

3,631 NII >65 years old; 2,773
at 3-year follow-up, and 2,023
at 6-year follow-up

SPMSQ, EBMT OR No significant effect seen. Modest
benefit of ASA, especially with
intermittent use, on decline of
cognitive function

Henderson,
1997

ASA prevented
dementia or
cognitive
impairment

Community
survey. Two-
wave: cross-
sectional at 2
wave;
longitudinal
from 1to 2
wave

ASA yes/no (unknown
dose)

1,045 participants 70 years old
at baseline; 588 people with
cognitive assessment at both
waves

CIE = MMSE, SLMT, NART Mean and SD Cross-sectional: no significant
difference in cognitive tests.
Longitudinal: no differences in
cognitive decline or incidence of
dementia

Stewart, 1997;
BLSA

Reduced risk of
AD in ASA users

Longitudinal ASA yes/no; NSAIDs yes/
no; acetaminophen yes/
no

1,686 participants in baseline
study

BIMCT, MMES, Immediate and
Delayed Cued Recall, BNT, CVF,
TMT A and B, Clock Drawing and
other constructions, CESDS,
PFAQ, NART

RR Non-significant AD risk ratio for
ASA users. Duration of ASA use
and the risk of AD were not
significantly associated

Peacock, 1999;
ARIC study

Association of
regular use of
NSAIDs or ASA
with cognitive
function

Cross-sectional
cohort study

NSAIDs yes/no; ASA yes/
no

13,153 participants, 48 to 67
years old

Delayed word recall test, WAIS-R
digit symbol subtest, WFT

Mean Weak negative association (<0.1)
between current ASA and word
fluency & recall. No association of
lifetime ASA and cognitive index
scores. ASA treatment for 8 years
weakly associated with better
word fluency

Landi, 2003 Relationship
between NSAIDs
and AD

Cross-sectional ASA yes/no; NSAIDs yes/
no

2,708 participants admitted to
home care programs

CPS Mean and SD NSAID users had a nearly 50%
lower risk of cognitive
impairment. For subjects using
ASA, the risk estimated was
similar; 67% decreased risk of
cognitive impairment associated
with non-ASA NSAID use

Nilsson, 2003;
OCTO-Twin

ASA protective
for AD

Cross-sectional
and
longitudinal

Low-dose ASA (75 mg/
day + 3500 mg/week)
250, 500 mg

702 participants >80 years old,
91 with dementia at baseline;
88 developed dementia
during observational period;
315 people at follow-up

DSM-III-R criteria for dementia,
NINCDS/ARDRA criteria for AD,
NINDS/AIREN criteria for vascular
dementia, MMSE

b At 9-year follow-up, significant
association between ASA and
lower frequency of AD and all
dementia; significantly more likely
that intact cognitive function was
maintained in those taking ASA.
Use of low-dose ASA alone did
not affect the risk ratio

Cornelius,
2004;
Kungsholmen
Project

Association
between ASA
and NSAIDs with
AD and overall
dementia, and
influence of
apoE ε4

Longitudinal
cohort study

ASA 75 to 500 mg/day
yes/no; NSAIDs yes/no.
Differences in dosages
not considered

1,301 subjects >75 years old
dementia-free at baseline; 987
at 1*follow-up (314 died); 650
at 2*follow-up (281 died)

DSM III-R criteria for dementia,
Hachinski scale for differential
diagnoses AD versus VaD versus
Mixed dementia, MMSE,
neurological and psychiatric
examinations, neuropsychological
assessment

Incidence 6-year increased AD risk in the
ASA/apoE ε4 negative group
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Table 1 Summary of key observational studies investigating the association between aspirin use and mental illness. (Continued)

Jonker, 2004;
LASA

Protective effect
of ASA on
cognitive
decline in older
people

Community-
based study; ?
case-control

NSAIDs yes/no; ASA <100
mg yes/no

612 participants, 62 to 85
years old

MMSE, AVLT, coding task OR 3-year follow-up of decline in
episodic memory (immediate
recall) for ASA users was reduced
by more than three times. Effect
of ASA was significant only in
>75-year-olds

Shepherd,
2004; SOP
Study

ASA protective
against AD

ASA yes/no 151 NII, >75 years old,
dementia-free

MMSE, Logical Memory and
Similarities subtest from WAIS-R,
BNT, visuo-perceptual abilities
from the JLOT, COWAT

Mean and SD ASA use was a significant positive
predictor of performance on the
Logical Memory test

Arvanitakis,
2008; ROS

Relation
between
NSAIDs/AD,
change in
cognition, and
AD pathology

Longitudinal ASA yes/no; non-ASA
NSAIDs yes/no

1,019 Catholic clergy, mean
age 75 years old, dementia-
free

As reported previously [12] HR At 1 year-no apparent relation of
ASA to incident AD, change in
cognition, or AD pathology

Szekely, 2008;
CHCS

Association
between
NSAIDs, ASA,
and
acetaminophen
with dementia
and AD

Prospective ASA yes/no; NSAIDs yes/
no; acetaminophen yes/
no. No dosage reported

3229 participants >65 years
old, dementia-free 1228 ASA
users

NINCDS/ARDRA criteria for AD,
ADDTC criteria for VaD, Mixed
dementia diagnosis, 3MSE, MRI

OR At 10 years, risk of AD, VaD, and
all-cause dementia was not
associated with use of ASA

Almeida, 2010 ASA decreased
prevalence of
depression and
cognitive
impairment

Retrospective Not reported 5,556 men 69 to 87 years old GDS, MMSE OR ASA not associated with lower OR
of depression or cognitive
impairment in >75-year-old men.
Discontinuation of ASA between
the two assessments related to
greater OR of depression than
non-users

Pasco, 2010;
GOS

ASA reduced
the risk for
depression; ASA
+ statin reduced
risk of de novo
depression

Case-control
study,
retrospective
cohort analysis

ASA yes/no 386 women >50 - years old.
1* MDD >50 years old versus
no MDD. No prior MDD,
followed up from baseline or
time of exposure to ASA, until
1* MDD or 10-year follow-up

SCID I RV-NP OR and HR OR for MDD in the ASA group
was 0.18, P = 0.1 The prevalence
of exposure to statins + ASA was
lower for women with MDD; OR
for MDD was 0.15 (95% CI 0.03 to
0.65, P = 0.01). Exposure to statins
+ ASA was associated with a
reduced risk for MDD

Waldstein,
2010; BLSA

Relation
between ASA
and NSAIDs and
age-related
change in
cognitive
functions

Cross-sectional
and
longitudinal

ASA yes/no; NSAIDs yes/
no

2300 dementia-free Digits Forward and Backward
portions of WAIS-R, CVLT, BVRT,
TMT, Letter & Category Fluency,
BNT, MMSE, BIMCT

SE Cross-sectional: use of ASA related
to better average performance
across testing sessions on
measures of verbal and visual
learning, and memory and global
mental status. Longitudinal: ASA
related to greater prospective
decline on BIMCT and the BVRT.
Significant effects of ASA use
were noted for the BVRT, the
CVLT learning slope and short free
recall, and the MMSE, and
indicated better average levels of
function for ASA users

Berk
et

al.BM
C
M
edicine

2013,11:74
http://w

w
w
.biom

edcentral.com
/1741-7015/11/74

Page
9
of

17



Table 1 Summary of key observational studies investigating the association between aspirin use and mental illness. (Continued)

Clinical population

Ketterer, 1996;
Coronary
angiography

Regular ASA
prophylactic
therapy for IHD
associated with
emotional
distress

ASA 80 to 325 mg 174 men CMS, Framingham Type A Scale,
KSSFC

ASA associated with less
depression and anxiety or worry
on the KSSFC

Stanford,
1999; HF or
previouS OHT
or CB

Usual schedule of drug
therapy maintained

135 participants Profile of Mood States Mean and
SEM

More positive mood in ASA
groups due to less fatigue.
Tension and TMD in ASA patients
just failed to reach criterion for
statistical significance

Broe; 2000;
SOP Study
dementia

Case-control 80% on ASA 175 mg; no
high dose

163 NII >75 years old with
different dementias categories,
and 373 control subjects

NINCDS-ADRDA criteria for AD Inverse association between ASA
and AD, but not other dementia,
not dosage-related

Mendlewicz,
2006;
treatment-
resistant DP

Accelerating
effect of ASA in
combination
with fluoxetine

Open-label,
uncontrolled

Treated openly during 4
weeks with ASA 160 mg/
day in addition to their
current antidepressant
treatment

21 participants underwent >4
weeks SSRI

HDRS Mean and SD SSRI + ASA showed a global
response rate of 52%. Remission
was achieved in 43% of the total
sample and 82% of the responder
sample. In the responder group, a
significant improvement was seen
within week 1, which was
sustained until day 28

Stolk, 2010;
bipolar
disorder

NSAIDs and
glucocorticoids
ameliorate
bipolar
symptoms

ASA 30 or 80 mg/day or
ASA >80 mg/kg or non-
selective NSAIDs or COX-
2i or GCs + lithium

5145 participants receiving
lithium

Incidence density of medication
events (change in medication or
increase of >30% of the current
dose)

Incidence
density ratio

Subjects receiving ASA 30 or 80
mg/day were 17% less likely to
have a medication event; with
>80 mg/kg ASA, non-selective
NSAIDs, COX-2i, and GCs were not
significant, but non- selective
NSAIDs and GCs significantly
increased medication events

3MSE, Modified Mini-Mental State Examination; AD, Alzheimer’s disease; ADDTC, Alzheimer Disease Diagnostic and Treatment Centers; apoE, apolipoprotein E; ASA, acetylsalicylic acid (aspirin); AVLT, Auditory-Verbal
Learning Test; BIMCT, Blessed Information-Memory-Concentration Test; BNT, Boston Naming Test; BVRT, Benton Visual Retention Test; CESDS, Center for Epidemiologic Studies Depression Scale; CIE, Canberra Interview
for the Elderly; CMS, Cook-Medley Scale; COWAT, Controlled Oral Word Association Test; COX-2i, cyclooxygenase-2 inhibitor; CVF, Competing Values Framework; CVLT, California Verbal Learning Test; DSM-III-R,
Diagnostic and Statistical Manual of Mental Disorders, 3rd revision; EBMT, East Boston Memory Test; F-U, follow-up; GC, Glucocorticoids; GDS, Geriatric Depression Scale; HDRS, Hamilton Depression Rating Scale; HR,
hazard ratio; IHD, ischemic heart disease; JLOT, Judgment of Line Orientation; KSSFC, Ketterer Stress Symptom Frequency Checklist; MDD, Major Depressive Disorder; MMSE, Mini-Mental State Examination; MRI,
magnetic resonance imaging; NART, National Adult Reading Test; NII, Non-institutionalized individuals; NINCDS-ADRDA, National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer’s Disease
and Related Disorders Association; NINDS/AIREN, National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherché et l’Enseignement en Neurosciences; NSAID non-steroidal anti-
inflammatory drug; OR, odds ratio; PFAQ, Pfeffer Activities Questionnaire; PMS, Profile of Mood States; SCID I RV-NP, Structured Clinical Interview for DSM-IV Axis I Disorders, Research Version, Non-patient; SD,
standard deviation; SE, standard error; SEM, standard error of the mean; SLMT, Symbol Letter Modalities Test; SPMSQ, Short Portable Mental Status Questionnaire; SSRI, selective serotonin reuptake inhibitor; TMD,
Total Mood Disturbance Score; TMT, Trail Making Test; VaD, vascular dementia; vs, versus; WAIS-R, (Wechsler Adult Intelligence Scale - Revised; WFT, Word Fluency Test.
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Table 2 Summary of key randomized controlled trials evaluating the effects of aspirin use on mental illness and symptoms.

Author, year;
study

Study design Agent/dosage Sample Psych measure Presentation
of results

Key finding

Non-clinical population

Dinnerstein,
1970

DB-RCT ASA 600 mg + placebo
‘energizer’/’tranquilizer’ versus
lactose 600 mg + placebo
‘energizer’/’tranquilizer’

80 healthy male college students CMS ASA had no direct and fixed effect on
mood, but acts to modulate the
effect of placebo or other contextual
variables

Lieberman,
1987

DB-RCT 2* to 6*sessions: caffeine 64 mg,
or ASA 800 mg, or caffeine 64
mg + ASA 800 mg, or caffeine
128 mg + ASA 800 mg, or
placebo in Latin-square design

20 healthy men 18 to 35 years
old, caffeine intake <400 mg/day,
non-smokers

6 sessions PMS, visual analog
mood scales, NVMS, SSS, and
performance tests

Mean and
SEM

Caffeine alone and caffeine +ASA
improved vigilance, self-reported
efficiency and mood compared with
ASA alone and placebo

Kang, 2007;
Women’s
Health Study

Cohort study
within a DB-RCT

ASA 100 mg or placebo on
alternate days

6,377 women >65 years old TICS-M, immediate and delayed
recalls of the EBMT and delayed
recall of the TICS-M, 10-word list
and category fluency (naming as
many animals as possible in 1
minute)

Mean and SD ASA users did not differ in overall
performance in any of the cognitive
assessments, from the 1* assessment
(after 5.6 years) to the 3* (after a
mean 9.6 years), or in their average
cognitive decline during 3 to 6 years
of follow-up. ASA users performed
better in category fluency, particularly
in the final assessment

Kudielka, 2007 DB-RCT ASA 100 mg, or propranolol 80
mg, or ASA 100 mg +
propranolol 80 mg, or placebo

73 healthy subjects TSST. Cortisol from six saliva
samples taken before and after
the stress exposure

Mean and SD 5 days: groups did not differ in their
cortisol responses

Clinical population

Clarke, 2003;
VITAL trial
collaborative
group;
dementia or
MCI

DB-RC; 4-week
placebo-
controlled run-in
period before
randomization +
12-week
treatment

ASA 81 mg, or placebo AND
folic acid 2 mg + vitamin B12 1
mg, or placebo AND vitamin E
500 mg + vitamin C 200 mg, or
placebo in 2 × 2 × 2 factorial
design

149 NII, 12 to 26 patients MMSE
score or <27 patients TICS-M
score, naïve to study medications.
Follow-up: 137 for biochemical
outcomes, 128 for cognitive
outcomes

TICS-M, MMSE, ADAS Median
percentage
reduction

12 weeks of ASA was effective in
reducing biochemical factors
(thromboxane) associated with
cognitive impairment in people at risk
of dementia. No effect of treatment
on cognitive function

AD2000, 2008;
Alzheimer’s
disease

OL-RCT ASA 75 mg yes/no 310 NII MMSE, behavioral symptoms Mean and SD At 3 -year follow-up: no differences in
scores, significantly higher risk of
bleeding
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Table 2 Summary of key randomized controlled trials evaluating the effects of aspirin use on mental illness and symptoms. (Continued)

Price, 2008;
asymptomatic
atherosclerosis

DB-RCT ASA 100 mg or placebo 3350 participants 50-75 years old Summary cognitive score = tests
of memory, executive function,
non-verbal reasoning, mental
flexibility, and information
processing

Mean and SD At 5-year follow-up: no differences

Gałecki, 2009;
first depressive
episode

OL-RCT fluoxetine 20 mg, or fluoxetine
20 mg + ASA 150 mg

77 participants HDRS No differences in HDRS between
fluoxetine group and fluoxetine +
ASA group

Laan, 2010;
schizophrenic
spectrum
disorders

DB-RCT ASA 1000 mg/day or placebo
adjuvant to antipsychotic +
pantoprazole 40 mg/day

70 adults
PANSS ≥60, 2 items ≥4, illness
duration <10 years. 2-week
placebo run-in period, and only
those who achieved over 80%
compliance were randomized

PANSS Mean and SD Adjuvant ASA reduced overall
psychopathology and positive
symptoms at 3 months. No significant
results in other subscales. ASA had
greater effect on overall
psychopathology in individuals with
more altered immune function. ASA
significantly reduced overall
psychopathology in individuals with
the lowest Th1:Th2 ratios

ADAS, Alzheimer’s Disease Assessment Scale; ASA, acetylsalicylic acid (aspirin); DB, double-blind; EBMT, East Boston Memory Test; HDRS, Hamilton Depression Rating Scale; MCI, mild cognitive impairment; MMSE,
Mini-Mental State Examination; NII, Non-institutionalized individuals; NVMS, Nestle Visual Analog Mood Scale; OL, open-label; PANSS, Positive and Negative Syndrome Scale; PMS, Profile of Mood States RCT,
randomized controlled trial; SD, standard deviation; SEM, standard error of the mean; SSS, Stanford Sleepiness Scale; Th, T-helper; TICS-M, Telephone Interview for Cognitive Status - Modified; TSST, Trier Social Stress
Test.
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epidemiological data from a study of 5,556 older men,
which showed no association between current aspirin use
and depression, although the men who discontinued aspirin
had a greater odds ratio for depression compared with
those who had never used aspirin [131]. In a treatment-
intervention study of 70 patients with depression, adminis-
tration of aspirin together with fluoxetine conferred a
greater reduction of OS parameters compared with fluoxe-
tine monotherapy [132]. Another randomized controlled
clinical trial is currently underway to investigate the poten-
tial benefits of aspirin as an adjunctive treatment in bipolar
depression [133].

Role of aspirin in schizophrenia: clinical data
A recent study showed that aspirin reduces the core symp-
toms of schizophrenia [134]. Although the study had a
relatively small number of participants (n = 70), it did
show a benefit of aspirin 1,000 mg compared with placebo
over 3 months of treatment. Using the Positive and Nega-
tive Symptoms Scale (PANSS), improvements were seen
on the total PANSS and the positive subscale. Given the
overlapping biomarker data in mood and psychotic disor-
ders, this is an intriguing lead.

Role of aspirin in Alzheimer’s disease: clinical
data
A number of studies have investigated the potential role
for aspirin in the treatment and prevention of AD,
although at this stage, its therapeutic potential has not
been proven. Epidemiological investigations showed that
individuals who used high-dose aspirin exhibited lower
rates of AD and improved maintenance of cognition than
those who did not use the drug [135]. However, a recent
systematic review and meta-analysis of controlled inter-
vention studies failed to show an improvement in indices
of cognitive decline, but did find increased bleeding rates
in patients taking aspirin [136]. However, given the
short-term nature of many controlled studies, it is diffi-
cult for such studies to identify the risks and benefits of
aspirin for primary prevention of AD in the longer term.
Some authors have suggested that, in combination with
docosahexaenoic acid, administration of low-dose aspirin
may ‘provide multiple levels of protection against the
course of Alzheimer’s’ [137].

Conclusion
The evidence presented in this review provides a window
into a potentially new line of therapeutic targets for treat-
ing psychiatric and neurodegenerative disorders. Inflam-
mation and OS seem to be active pathways not only in
the disorders highlighted in this paper, but in other
diverse medical comorbidites. Increased inflammation
and OS seem to be underlying factors for each of the see-
mingly diverse conditions discussed in the review, and

therefore, decreasing inflammation or inflammatory
responses may have the potential to reduce risk and/or
have therapeutic value in any or some of these disorders.
Only trials will clarify this uncertainty. We are pro-
foundly limited by phenomenologically based classifica-
tions in psychiatry, as nowhere else in medicine does
phenomenology linearly reflect the underlying pathology,
nor should we expect it to do so in psychiatry and related
neurosciences. It is therefore unclear whether each disor-
der has unique patterns of inflammatory dysregulation
that determine clinical symptoms, or whether these path-
ways are non-specific features, like pyrexia, of diverse
underlying primary pathologies. This remains to be clari-
fied. In this regard, biomarkers hold the promise of pre-
dicting therapeutic response, as there are tantalizing
indications from a recent clinical trial of the TNF antago-
nist infliximab that treatment with anti-inflammatory
agents may be beneficial only in patients with raised
levels of baseline inflammatory markers [138]. Similarly,
a recent cross-sectional study of 3687 men aged 69-87
years showed that older men with high homocysteine
levels had a greater risk of depression, while those men
who had raised homocysteine levels and were users of
aspirin had a lower risk of depression [139].
There has been extensive characterization through

basic science of the mechanisms by which aspirin might
specifically reduce inflammation and OS and how this
might subsequently lead to benefit in the clinical setting.
Indeed, although there is a paucity of clinical trials inves-
tigating aspirin, the data provided thus far are promising.
Randomized controlled trials of aspirin that include the
analysis of biomarkers may not only provide further sup-
port for the use of aspirin, but may also serve to further
characterize the underlying pathophysiology of these dis-
orders. Further research is required to fully elucidate
whether aspirin has clinical potential as an adjunctive
treatment in psychiatry and neurology.
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