
BioMed CentralBMC Medicine

ss
Open AcceResearch article
Methodological issues in detecting gene-gene interactions in breast 
cancer susceptibility: a population-based study in Ontario
Laurent Briollais*1,2, Yuanyuan Wang1, Isaac Rajendram1,3, Venus Onay1,3,4, 
Ellen Shi5, Julia Knight1,2 and Hilmi Ozcelik3,4,5

Address: 1Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, M5T 3L9, Canada, 2Public 
Health Sciences Department, University of Toronto, Toronto, M5T 3M7, Canada, 3Fred A Litwin Centre for Cancer Genetics, Samuel Lunenfeld 
Research Institute, Mount Sinai Hospital, Toronto, M5T 3L9, Canada, 4Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 
Toronto, M5G 1X5, Canada and 5Ontario Cancer Genetics Network, Cancer Care Ontario, Toronto, M5G 2L9, Canada

Email: Laurent Briollais* - laurent@mshri.on.ca; Yuanyuan Wang - yuanyuan.wang@pfizer.com; Isaac Rajendram - idr1978@hotmail.com; 
Venus Onay - onay@mshri.on.ca; Ellen Shi - juqingshi@hotmail.com; Julia Knight - knight@mshri.on.ca; Hilmi Ozcelik - ozcelik@mshri.on.ca

* Corresponding author    

Abstract
Background: There is growing evidence that gene-gene interactions are ubiquitous in determining
the susceptibility to common human diseases. The investigation of such gene-gene interactions
presents new statistical challenges for studies with relatively small sample sizes as the number of
potential interactions in the genome can be large. Breast cancer provides a useful paradigm to study
genetically complex diseases because commonly occurring single nucleotide polymorphisms (SNPs)
may additively or synergistically disturb the system-wide communication of the cellular processes
leading to cancer development.

Methods: In this study, we systematically studied SNP-SNP interactions among 19 SNPs from 18
key genes involved in major cancer pathways in a sample of 398 breast cancer cases and 372
controls from Ontario. We discuss the methodological issues associated with the detection of
SNP-SNP interactions in this dataset by applying and comparing three commonly used methods:
the logistic regression model, classification and regression trees (CART), and the multifactor
dimensionality reduction (MDR) method.

Results: Our analyses show evidence for several simple (two-way) and complex (multi-way) SNP-
SNP interactions associated with breast cancer. For example, all three methods identified XPD-
[Lys751Gln]*IL10-[G(-1082)A] as the most significant two-way interaction. CART and MDR
identified the same critical SNPs participating in complex interactions. Our results suggest that the
use of multiple statistical approaches (or an integrated approach) rather than a single methodology
could be the best strategy to elucidate complex gene interactions that have generally very different
patterns.

Conclusion: The strategy used here has the potential to identify complex biological relationships
among breast cancer genes and processes. This will lead to the discovery of novel biological
information, which will improve breast cancer risk management.
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Background
A grand challenge in statistical genetics is to develop pow-
erful methods that can identify genes that control biolog-
ical pathways leading to disease. Discovery of such genes
is critical in the detection and treatment of human dis-
eases, including cancer. The dramatic advances in human
genome research coupled with the recent progress in high-
throughput technology for molecular biology and genet-
ics now allow the study of the genetic basis of disease and
the response to treatment of complex diseases, such as
breast cancer, on a molecular level. A good example is the
recent efforts of the Human Genome Project towards
large-scale characterization of human single nucleotide
polymorphisms (SNPs). SNPs are an abundant form of
genomic variation, distinguished from rare variations by
the requirement that the least abundant allele have a fre-
quency of 1% or more. In view of the fact that genetic and
phenotypic variability exist among individuals, it has long
been hypothesized that an individual's SNP pattern has
significant impact on their susceptibility to disease, and
their response to therapies [1]. One of the main chal-
lenges in searching for disease alleles is to understand
how and when particular genetic variants or combina-
tions of variants are associated with disease. Indeed, most
complex human diseases result from the poorly under-
stood interaction of genetic and environmental factors.
The genetic determinants of such diseases result, in turn,
from the poorly understood interaction of dozens, if not
hundreds, of disease genes. Breast cancer provides a useful
paradigm for studying genetically complex diseases. The
existence of dominant predisposition genes conferring a
high breast cancer risk has been confirmed with the dis-
covery of BRCA1 [2] and BRCA2 [3,4] genes. Mutations in
these genes dramatically alter the function of encoded
proteins in breast cells, leading to tumor formation. These
functionally effective mutations are strongly associated
with dramatically increased breast cancer risk. However,
mutant alleles of such highly penetrant genes are rela-
tively rare (<5%) in unselected breast cancer cases. Besides
these alleles, many low penetrant variants, mostly due to
SNPs, also contribute to breast cancer risk [5-7]. In con-
trast to highly penetrant mutations, commonly occurring
SNPs are usually associated with less dramatic effects on
the function of encoded proteins and thus, individually,
they contribute incrementally to cumulative breast cancer
risk. Nonetheless, inheritance of combinations of func-
tional and cancer-linked commonly occurring SNPs may
additively or synergistically disturb the system-wide com-
munication of the biological processes, leading to cancer.
Therefore, individuals carrying several interacting suscep-
tibility alleles could have a high risk of developing breast
cancer.

In this present study, we assessed the importance of SNP-
SNP interactions on breast cancer risk by investigating 19

SNPs from genes involved in major cancer related path-
ways and biological systems in a sample of 398 breast can-
cer cases and 372 healthy population controls. We
compared and evaluated three methods to detect simple
and complex SNP-SNP interactions: the logistic regression
model (LRM), the classification and regression trees
(CART), and the multifactor dimensionality reduction
(MDR) approach. Model validation and permutation tests
are also proposed along with these methods to decrease
the rate of false positive results and to provide a distribu-
tion-free test statistic. By comparing results from these
three methods, we identified interesting genetic interac-
tion patterns and discuss the pros and cons of each
method in studying SNP-SNP interactions.

Materials and methods
Subject population
A case control study was conducted using biospecimens
and data from the Ontario Familial Breast Cancer Registry
(OFBCR), a participating site in the NIH-funded Breast
Cancer Family Registry [8]. Written informed consent was
obtained from all subjects, and the study protocol was
approved by the Mount Sinai Hospital Research Ethics
Board. Cases of invasive breast cancer, pathologically con-
firmed and diagnosed between 1996 and 1998 in the
province of Ontario, were identified from the population-
based Ontario Cancer Registry. All female cases under the
age of 55 years were identified as well as all males under
the age of 80 years. A random sample (35%) of female
cases aged 55 to 69 was also selected. Physician permis-
sion to contact patients was granted for 91% of the cases
(7,668 of 8,453). Patients were then mailed a cancer fam-
ily history questionnaire and 65% (4,957) of them com-
pleted it. All respondents who met a defined set of genetic
risk criteria (that is, Ashkenazi Jewish; diagnosed before
age 36 years; previous ovarian or breast diagnosis; one or
more first- or two or more second-degree relatives with
breast or ovarian cancer; one or more second- or third-
degree relatives with either breast cancer diagnosed before
age 36 years, ovarian cancer diagnosed before age 61
years, multiple breast or breast and ovarian primaries, or
male breast cancer; three or more first-degree relatives
with any combination of breast, ovarian, colon, prostate,
or pancreatic cancer or sarcoma, with at least one diagno-
sis before age 51 years) were included in the study [9] and
a random sample of 25% of those not meeting these crite-
ria were selected to continue to participate in the OFBCR
(n = 2,580). This participation included providing a blood
sample, which was provided by 62% of all eligible partic-
ipants (n = 1,601). For the current study, we restricted the
sample to women who identified themselves as Caucasian
and were less than 55 years old. The study was restricted
to the younger women because they are more likely to
have genetic causes. Women in this age group might also
be more homogeneous regarding their breast cancer risk
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factors. As we had randomly sampled 25% of those who
did not meet genetic risk criteria, we also randomly sam-
pled 25% of those who did meet genetic risk criteria in
order to create a more representative sample of cases.
Therefore, the selected cases should better represent all
cases without enrichment for genetic risk criteria such as
family history. A total of 21.6% of cases in the present
study had a first-degree family history of breast cancer,
which is consistent with the 17–22% frequency reported
in cases in a number of large case-control studies [10-12].
Of the 459 breast cancer cases with an available blood
sample, 398 were successfully genotyped and included in
this study after excluding cases with insufficient DNA and
those who were not Caucasians.

Controls were identified by calling randomly selected res-
idential telephone numbers from across the province of
Ontario and were frequency-matched to all female
OFBCR cases by five-year age group. The number of tele-
phone numbers was 14,653, but 1,101 (8%) were invalid
and no contact could be made for 841 (6%). Of the
12,711 households contacted, 7,829 (62%) did not have
an eligible individual. No information on eligibility was
provided for 2,194 (17%) households. Of the 2,688 eligi-
ble individuals identified on the telephone, 1,726 (64%)
completed the mailed risk factor questionnaire and 75%
of these individuals agreed to be contacted about provid-
ing a blood sample. Information regarding past history of
cancer and family history of cancer was collected on the
controls. The 676 women under age 55 who had agreed to
be approached about blood sampling were asked to pro-
vide a blood sample and 419 (62%) did so. Individuals
who were not Caucasian were excluded from the analysis,
as were those with insufficient DNA or those subsequently
found to be ineligible because of age. The remaining 372
population controls were successfully genotyped for this
study.

SNP selection strategy
To estimate the breast cancer risk conferred by individual
SNPs, as well SNP-SNP interactions, we studied 19 SNPs
from 18 key cancer genes involved in several biological
pathways. Candidate SNPs were initially selected using
the best available evidence from published studies at the
beginning of the project in 2000 and were subsequently
classified into three categories (high, medium and low
rank). Thus, they include SNPs with a wide range of func-
tional evidence. High-ranking SNPs were supported by
studies that demonstrated the effect of the SNP on the reg-
ulation of expression or protein function. The medium-
rank category is likely to include functionally relevant
SNPs, as the substitutions are predicted to significantly
affect function, although this was not confirmed experi-
mentally at the time of their selection. This category also
includes SNPs that are associated with breast cancer risk

factors. The low ranking category, on the other hand, con-
tained SNPs with no functional information. Among the
SNPs studied, XPD-[Lys751Gln], MTHFR-[Ala222Val],
COMT-[Met108/158Val], GSTP1-[Ile105Val] and
CCND1-[Pro241Pro] have been shown to alter the func-
tion or post-translational modification of their encoded
protein [13-25]. MMP1-[1G(-1607)2G] and IL10-[G(-
1082)A] have been shown to alter the transcription and
expression of these genes [26-30]. IL13-[Arg130Gln] has
been suggested to have functional consequences, while
GSTM3-[4595 (3 bp ins/del)] was predicted to create a
YY1 transcription factor binding site [31,32]. TNFA-[G(-
308)A] forms a haplotype with some nearby SNPs and
some studies observed increased haplotype-dependent
transcriptional activity change while some others did not
[33-36]. CYP17-[C518T] and IL13-[Arg130Gln] were
found to be associated with other cancer-related variables,
such as serum estrogen and IgE levels, respectively [37-
39]. BARD1-[Pro24Ser] changes a structurally important
non-polar proline residue to a positively charged serine.
There were no functional speculations for ESR1-
[Ser10Ser], ESR1-[Pro325Pro], PTEN-[(IVS4+109)ins/
delACTAA], IL1A-[Ala114Ser], G-CSF-[Leu185Leu] and
GADD45-[C(IVS3+168)T. Thus, the 19 SNPs studied rep-
resent SNPs with a wide range of functional knowledge
and evidence. The estimate of the minor allele frequency
for the 19 SNPs studied varies between 15% and 48% in
the general population. The SNPs studied were also
selected to represent more commonly occurring variants,
in order to gain statistical power to detect SNP-SNP inter-
actions.

Molecular genotyping
All SNPs were analyzed by TaqMan 5' nuclease assay [40]
using the 7900 HT Sequence Detection System (ABI, Fos-
ter City, CA, U.S.A.). Oligonucleotide primers and the
dual labeled allele specific probes were designed using
Primer Express version 2.0 (PE Biosystems, Foster City,
CA, U.S.A.). Positions of primers and probes and their
appropriate accession numbers are given in Additional
data file 1. A panel of DNA samples was sequenced for
each SNP region initially, in order to identify control gen-
otypes to be used in each experiment. PCRs were per-
formed in 96-well plates (AXYGEN, Union City, CA,
U.S.A.), with each plate containing four control samples
for each possible genotype. Genomic DNA (10 ng) was
amplified in a total volume of 10 µl in the presence of 100
µM of each of the dNTPs, 3 pmoles of each of the appro-
priate primers, 2 pmoles of each of the corresponding
dual labeled probes, and 0.025 units of Platinum Taq
DNA Polymerase (Invitrogen, Carlsbad, CA, U.S.A.). PCR
cycling conditions consisted of 40 cycles of 94°C for 15 s,
55–60°C for 15 s and 72°C for 15 s. The samples were
analyzed by ABI PRISM 7900 HT Sequence Detection Sys-
tem (version 2.0). The optimal MgCl2 concentrations and
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annealing temperatures for each SNP are given in Addi-
tional data file 2. The results were validated by re-genotyp-
ing a randomly selected 10% portion of the total study
population [41].

Statistical analysis
To detect complex interactions, we applied and compared
three statistical methods, LRM, CART and MDR. Our main
analyses are presented without adjustment for other con-
founding variables. However, we also conducted several
analyses adjusted for age, family history and body mass
index (BMI) and our results were quite similar to those
presented here. Our dataset included five individuals with
missing genotypes, so their missing values were randomly
imputed from the empirical distribution of the genotypes
in the sample. We also carried out several analyses with-
out these individuals and our results remained
unchanged. In all of our analyses, the SNP variables were
considered as nominal categorical variables with three cat-
egories.

Logistic regression model
LRM is a parametric approach that relates one or more
explanatory variables, Xs (for example, SNPs and their
interactions), to a dependent or outcome variable, Y (for
example, breast cancer status). LRM is a particular case in
the family of generalized linear models [42]. The simple
LRM for an individual i assumes that Yi takes values 0 or 1
and has a Bernoulli distribution with parameter Pi, that is,
the probability of being a case rather than a control: Pr(Yi
= 1) = Pi, and Pr(Yi = 0) = 1 - Pi. It is expressed as:

where i = 1,..,n, and p is the number of explanatory varia-
bles. The βs are the regression coefficients that are to be
estimated: βj for the SNP main effects (xj) and βjk for the
SNP-SNP interaction (xjxk). Because the genetic risk model
is unknown for most of the SNPs we studied, we adopted
a codominant model, that is, both rare homozygous and
heterozygous variant effects are estimated using two
dummy variables for the SNP main effects and four prod-
uct terms for the two-way interaction effects. Interaction
effects were tested using a likelihood ratio test (LRT) sta-
tistic with four degrees of freedom for the χ2 values. We
used a stepwise logistic-regression procedure based on
forward selection to select the most significant SNP-SNP
interactions [43]. Forward stepwise selection procedures
are efficient in assessing interaction effects compared to
backward elimination when testing multiple interactions.
First, it is more computationally efficient and second,
compared to backward elimination where a relatively

large number of predictor variables may increase the risk
of complete separation of the two outcome groups, it has
fewer numerical problems when estimating the model
parameters [44]. We tested only two-way interactions with
LRM since the investigation of higher-order interactions
could have led to numerical difficulties for estimating the
model parameters. Instead of using a stepwise selection
procedure, one could perform an exhaustive search and
select the most significant interactions based on a permu-
tation test or using the false discovery rate (FDR) principle
[41]. This was not done in this study because this strategy
is not directly applicable to CART analyses.

Classification and regression trees
Decision trees date back to the early 1960s with the work
of Morgan and Sonquist [45]. Breiman and colleagues
[46] published the first comprehensive description of
recursive partitioning methodology. As a powerful data
analysis method, trees are used in many fields, such as epi-
demiology and medical diagnosis, and provide an alterna-
tive to more standard model-based regression techniques
for multivariate analyses. The tree introduced here is the S
implementation [47]. Because our outcome (case or con-
trol status) is binary, we used classification trees. Through
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Application of CART to the XPD*IL10 interactionFigure 1
Application of CART to the XPD*IL10 interaction. CART 
sequentially partitions the data into two homogeneous sub-
sets: first using XPD-[Lys751Gln], {AA} versus {AC, CC}; and 
then the {AA} subset is split according to IL10-[G(-1082)A], 
{AA, AG} versus {GG}. The splitting variables leading to such 
groups are inherent main or interaction effects. For example, 
a low-risk subgroup is defined by the two SNPs: XPD-
[Lys751Gln] and IL10-[G(-1082)A] and the tree suggests an 
interaction between these two SNPs. Multi-way interactions 
can be detected in a similar way. The terminal nodes can be 
classified as low- or high-risk subgroups (indicated by differ-
ent color density) and their association with the outcome 
can be estimated (that is, the corresponding odds ratio is 
0.63 with a P-value of 0.002). Therefore, investigating the 
tree terminal nodes provides a natural way to identify inter-
actions and characterize high- or low-risk subgroups.

   Cases        Controls

XPD {AA}      115           146 
IL10 {AA,AG} 

Other genotype      283         226 
combinations
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binary recursive partitioning, a tree successively splits the
data along the coordinate axes of the predictors such that,
at each division, the resulting two subsets of data are as
homogeneous as possible with respect to the response of
interest [46]. At each step in the construction algorithm,
an optimal split is identified. This local optimality does
not guarantee that the overall optimal tree will be found.
Deviance is a natural splitting criterion based on likeli-
hood values. In our analyses, we used the S defaults: a
node must include at least 10 observations and the mini-
mum node deviance before the tree growing stops should
be 1% of the root node. The subsets that are not further
split are the terminal nodes. The SNP variables were con-
sidered as nominal categorical variables with three catego-
ries. Figure 1 depicts the first few nodes of a tree built on
our data and illustrates how a tree is used for prediction.

Multifactor dimensionality reduction
MDR [48-51] is a non-parametric data mining approach
that uses constructive induction or attribute construction
to reduce two or more SNPs, for example, to a new single
variable that is then evaluated using a classifier such as
naive Bayes or logistic regression. The rationale behind
this method is to identify the multi-locus genotypes that
best predict the outcome of interest. It applies data reduc-
tion techniques to address problems associated with test-
ing for interactions in high-dimensional space and with
generally modest sample sizes. The algorithm works as
follows.

First, select all subsets of k explanatory variables (that is,
SNPs) among m available and for each subset k, enumer-
ate all possible genotype combinations. These genotype
combinations represent the interacting SNPs. For each
combination, compute the case-control ratio and parti-
tion the multi-locus genotypes into two subgroups
labeled as high or low risk (for example, ratio ≥1 or ratio
<1). This step reduces a k-dimensional model to one
dimension only.

Second, a ten-fold cross-validation (CV) procedure is used
to assess the ability of the multi-locus genotype combina-
tions to predict the disease outcome. The sample is
divided into a training set (for example, 9/10 of cases and
controls) and an independent test set (for example, 1/10
of cases and controls). In each subset of the data, the train-
ing set classification error is computed for each genotype
combination. This step is repeated in the ten random sub-
sets. The interaction with the lowest classification error
(averaged over the ten random subsets) is selected as the
'best interaction'. The whole CV procedure is itself
repeated ten times to protect against chance division and
all resulting statistics are averages over these ten runs.

Third, all interactions selected through steps 1 and 2 are
also evaluated for their CV consistency (number of times
the same genotype combination is identified across the
ten repetitions of the CV procedure) and testing accuracy
(that is, 1 - prediction error).

Fourth, steps 1 through 3 are repeated for different values
of k (2, 3, 4, 5 and 6 in our study). The interaction that
maximizes the CV consistency and testing accuracy is
selected as the final best candidate interaction across all k-
multilocus models. In our study, instead of selecting just
one best interaction for each k, as proposed originally for
this method, we selected the five best interactions based
on the same criteria.

Modeling and interpreting SNP-SNP interactions
With LRM, interactions are taken into account by estimat-
ing specific parameters for certain genotype combina-
tions. Assuming a codominant effect for each SNP, the
LRM is a saturated model with nine parameters coding for
the cell-specific odds-ratios ((exp(βj), equation 1). LRM
estimates the cell-specific odds-ratio corresponding to
each genotype combination. A saturated model tends to
fit the observed data but could lead to overfitting and a
lack of power. CART suggests interactions by the succes-
sive splits occurring in the tree (Figure 1). The terminal
nodes correspond to either low- or high-risk subgroups
and their association with the outcome can be tested.
Investigating the tree terminal nodes provides a natural
way to identify interaction and characterize the high- or
low-risk subgroups. Moreover, CART automatically selects
the genetic model that best fits the data. A fundamental
difference between CART and LRM is that CART can reveal
the structure in the data by creating a split in the propor-
tion of the data only where it is pertinent (for example,
among individuals who have the XPD {AA} genotype in
Figure 1). LRM does not have this feature and can test only
an overall effect. MDR, like CART, partitions the data into
high- and low-risk subgroups based on the SNP profiles.
However, while CART uses recursive partitioning to reveal
the interactions, MDR exhaustively searches across all
multi-locus genotypes and identifies the one that best pre-
dicts the disease outcome. A particular aspect of MDR is
that each selected interaction could correspond to differ-
ent genotype combinations when repeating the CV proce-
dure. For example, Figure 2a–d displays the four
partitions corresponding to the XPD-[Lys751Gln] – IL10-
[G(-1082)A] two-locus genotypes when repeating the 10-
fold CV procedure ten times.

Strategy to identify critical SNP-SNP interactions 
associated with breast cancer
All three methods were applied to our data to detect two-
way interactions; CART and MDR were also used to inves-
tigate higher-order interactions. Because MDR uses a spe-
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cific strategy to select the important interactions, we tried
to develop a similar approach for LRM and CART, which
can be summarized by two major steps: first, selection of
the most promising SNP-SNP interactions using a CV
approach; and second, evaluation of the selected interac-
tions in the whole sample using a distribution-free per-
mutation test.

Step 1
With LRM and CART, we used a two-fold CV approach to
select the SNP-SNP interactions, instead of the ten-fold
CV of MDR. Our rationale is that a test statistic is used to
select the best interactions with LRM and CART, and split-
ting the original sample into two ensures enough power
to perform this test. The idea is to randomly divide the
original dataset into training and test sets, each with the
same proportion of cases and controls. A variable selec-
tion of the important SNP-SNP interactions is carried out
in the training set and their significance is evaluated inde-
pendently in the test set. With LRM, we used forward step-
wise selection with the training set and then tested each
selected interaction using a LRT statistic in the test set.
With CART, we built a tree on the training set, and pruned
it to a smaller tree using the deviance criteria in order to
keep a maximum of ten terminal nodes. We then applied
the pruned tree on the test set and calculated a chi-square
statistic for each terminal node. To protect against chance
divisions of the data, the CV is repeated ten times and the
test statistic for each selected interaction in the test set is
averaged over the ten random test sets. The five best two-
way interactions (terminal nodes with the larger test sta-
tistic) are then selected. With CART and MDR, we also
selected the top five k-way interactions with k = 3,4,5,6.

Step 2
We then evaluated each target (that is, selected interac-
tion) in the whole sample using a permutation test statis-
tic. With LRM, we compared a model with and without
the selected interaction using the original dataset (main
effects are also in the model) and obtained the chi-square
statistic from the LRT (each test had four degrees of free-
dom). With CART, we collected the chi-square statistic for
each terminal node and computed the odds-ratio associ-
ated with the corresponding subgroup on the original
dataset (see Figure 1 for an example). With MDR, we col-
lected the testing accuracy for each target, averaged across
the 100 random subsets (that is 10-fold CV repeated 10
times). To find the null distribution of the test statistics,
we randomly permuted the response variable 1,000 times.
The P-value associated with each target is then computed
by comparing the observed test statistic to its empirical
null distribution. The null hypothesis was rejected when
the upper-tail Monte-Carlo P-value derived from the per-
mutation test is less than 5%.

Software
We used the Splus package 'tree' (Insightful Corporation,
Seattle, WA) and some related Splus functions for the
CART analyses and the R package 'glm' [52] for the LRM
analyses. MDR analyses were carryout with the program
MDR v.1.4.1 for Unix [48-51].

Results
Individual SNP effects
Among the 19 SNPs studied, XPD-[Lys751Gln] was the
only one showing a significant main effect in our sample
based on the crude P-value from LRM. However, after cor-
rection for multiple testing using the FDR principle [53],
the effect was not significant. Our results remained
unchanged when the models were also adjusted for age,

Example of partitions of two-locus genotypes with the three methodsFigure 2
Example of partitions of two-locus genotypes with 
the three methods. (a-d) The four partitions identified by 
MDR for the XPD-CYP17 two-locus genotypes. (e) The best 
partition found by MDR for the COMT-CCDN1 two-locus 
genotypes. (f) The best partition found by CART for the 
CYP17-BARD1 two-locus genotypes. Shaded cells are classi-
fied as high-risk and non-shaded cells as low-risk. This corre-
sponds to a ratio of cases versus controls higher or lower 
than 1, respectively. The four partitions of the two-locus 
genotypes found by MDR showed two cells with different 
assignments. In (f), CART can partition the two-locus geno-
types in more than two groups, but for the purpose of com-
parison with MDR, we used the same high-risk/low-risk 
grouping.

2a.
XPD-[Lys751Gln]

AA AC CC

AA

AG

IL
10

-[
G
(-
10
82
)A

]

GG

2b.
XPD-[Lys751Gln]

AA AC CC

AA

AG

IL
10

-[
G
(-
10
82
)A

]

GG

2c.
XPD-[Lys751Gln]

AA AC CC

AA

AG

IL
10

-[
G
(-
10
82
)A

]

GG

2d.
XPD-[Lys751Gln]

AA AC CC

AA

AG

IL
10

-[
G
(-
10
82
)A

]

GG

2e.
COMT-[Met108/158Val]

AA AC CC

AA

AG

C
C
N
D
1-

[P
ro
24
1P

ro
]

GG

2f.
CYP17-[C(518)T]

TT CT CC

CC

CT

B
A
R
D
1-
[P
ro
24

Se
r]

TT
Page 6 of 15
(page number not for citation purposes)



BMC Medicine 2007, 5:22 http://www.biomedcentral.com/1741-7015/5/22
BMI and family history. A more comprehensive descrip-
tion of the analysis of the SNP main effects and the base-
line characteristics of breast cancer cases and controls can
be found in [41].

Evaluation of two-way SNP-SNP interactions
All three methods declared XPD-[Lys751Gln]*IL10-[G(-
1082)A] as the most significant two-way interaction
(Table 1). MDR and LRM further identified COMT-
[Met108/158Val]*CCND1-[Pro241Pro] as the second
most significant interaction, while CART selected BARD1-
[Pro24Ser]*CYP17-[C(518)T]. However, there were also
some discrepancies across the three methods, which we
detail below.

Three two-way interactions found by MDR, COMT-
[Met108/158Val]*CCND1-[Pro241Pro], BARD1-
[Pro24Ser]*XPD-[Lys751Gln] and IL13-
[Arg130Gln]*CYP17-[C(518)T], were not detected by
CART. The patterns of these interactions are all complex.
For example, the interaction COMT-[Met108/
158Val]*CCND1-[Pro241Pro] seems to involve a codom-
inant effect for COMT-[Met108/158Val] and an interfer-
ence effect for CCND1-[Pro241Pro] [54] (Figure 2b). To
model this interaction, CART would have to split the data
first according to COMT-[Met108/158Val] into {AA} and
{AG, GG} and then the subset {AG, GG} into {AG} and
{GG}. The three nodes should then be split into two sub-
sets according to CCND1-[Pro241Pro] genotypes. This
type of structure is not easily captured by CART [55].
Another explanation is that interactions not involving
XPD-[Lys751Gln] and CYP17-[C(518)T], the two most
significant main effects, are difficult to detect by CART.
Because of the binary splits, CART is more likely to detect
interactions in the presence of a strong main effect.

One two-way interaction found by CART, BARD1-
[Pro24Ser]*CYP17-[C(518)T], was not detected by MDR.
The two-way contingency table corresponding to this

interaction exhibits many cells with a case-control ratio
close to 1.0. This means that many individuals can be clas-
sified as either high or low risk, so the testing accuracy is
low (that is, prediction error is high). On the other hand,
CART can easily identify this interaction, first assuming a
dominant effect for CYP17-[C(518)T] (that is, {TT} and
{CT, CC}), and then a recessive effect for BARD1-
[Pro24Ser] (that is, {CC, CT} and {TT}) (Figure 2c). The
binary splits provided by CART coincide with simple
genetic models for each SNP (dominant or recessive).

Three two-way interactions found by either MDR or CART
are not detected by LRM. Unlike CART and MDR, LRM
does not partition the data but uses a global test of inter-
action based on all individuals. This test will be powerful
if the global chi-square has support throughout the nine
two-locus genotype combinations. See the interaction
between TNFA-[G(-308)A] and p27-[Val109Gly], for
example (Table 1). LRM is less sensitive to detecting local
effects. CART finds the partition that maximizes the chi-
square for a two-group comparison. MDR finds genotype
combinations that maximize the testing accuracy (1 - pre-
diction error) of the disease outcome. These two methods
have power to find interactions if there is good discrimi-
nation between the low- and high-risk subgroups; they
can both detect local effects too.

Evaluation of higher-order interactions
The interactions detected by CART and MDR are listed in
Tables 2 and 3, respectively. A total of seven interactions
were detected by CART, including five high-order interac-
tions (three-way or higher). These interactions involve 11
SNPs out of the 19 SNPs available. XPD-[Lys751Gln], the
only significant main effect, appears in four out of the
seven interactions. With CART, many risk subgroups are
nested within each other. Therefore, there is some redun-
dancy in the patterns of CART interactions. Interestingly,
most interactions can be described as simple combina-
tions of dominant and recessive genetic models for the

Table 1: Two-way interactions detected by the three methods with a P-value less than 5%

Rank LRM CART MDR

Interaction P-value Interaction P-value Interaction P-value

1 XPD-[Lys751Gln]
IL10-[G(-1082)A]

0.013 XPD-[Lys751Gln]
IL10-[G(-1082)A]

0.006* XPD-[Lys751Gln]
IL10-[G(-1082)A]

0.009*

2 COMT-[Met108/158Val]
CCND1-[Pro241Pro]

0.020 CYP17-[C(518)T]
BARD1-[Pro24Ser]

0.013 COMT-[Met108/158Val]
CCND1-[Pro241Pro]

0.019

3 TNFA-[G(-308)A]
p27-[Val109Gly]

0.046 BARD1-[Pro24Ser]
XPD-[Lys751Gln]

0.037

4 IL13-[Arg130Gln]
CYP17-[C(518)T]

0.037

*Significant after Bonferroni correction for the number of tests performed in the second stage analysis.
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effect of each individual SNP. There are also a few interac-
tions involving interference effects (that is, neither domi-
nant nor recessive). The patterns of interactions detected
by CART have, in general, an easy interpretation. MDR
interactions involve 14 SNPs, including the 11 SNPs sug-
gested by CART. Therefore, the interactions found by
MDR are slightly more diverse than those detected by
CART. However, both methods seem to agree on the
strongest SNP effects contributing to breast cancer risk.
XPD-[Lys751Gln], the only significant main effect,
appears in 12 interactions in the MDR approach. The two
most significant two-way interactions, XPD-
[Lys751Gln]*IL10-[G(-1082)A] and COMT-[Met108/
158Val]*CCND1-[Pro241Pro], are found nine and seven
times, respectively. Similar to CART, there is also some
redundancy in the patterns of MDR results. The testing
accuracies calculated by MDR ranges from 60.2% to
52.4%, which is a modest improvement over the rate of
50% expected under random prediction. The risk sub-
groups suggested by MDR are, in general, very complex
but their interpretation can be facilitated by the use of an
entropy-based interaction dendrogram [51].

Discussion
In this study, we compared three methods, LRM and two
partitioning methods, CART and MDR, for the detection
of SNP-SNP interactions in a sample of 398 breast cancer
cases and 372 population controls from Ontario. In addi-
tion to these three methods, we have applied a novel strat-
egy to identify the strongest SNP-SNP interactions and
assess their significance using cross-validation, re-sam-
pling and permutation testing. Each approach models
interactions differently; thus, they can be considered as a
complementary set of methodologies to study SNP-SNP
interactions in various disease models.

Specificity of each method to identify SNP-SNP 
interactions
LRM can detect only low-order interactions as the model
complexity increases with the order of interactions. This
limitation of LRM is referred to as the curse of dimension-
ality [56]. A fully saturated model with numerous terms
may be prone to unstable and biased estimates due to
sparse data and multicolinearity. Furthermore, large sam-
ple theory underlying the test statistic may not hold. For
certain SNP-SNP interactions, we found that the permuta-
tion distribution of the LRT did not closely match a chi-
square distribution (results not shown), which justifies
the use of a distribution-free test statistic. Alternative
regression approaches, such as the logic model [57] mul-
tivariate adaptive regression splines (MARS) [58] or mul-
tivariate additive regression trees (MART) [59] may prove
to be more efficient in this context. CART and MDR do not
require or assume any specific parametric form for the
relation between independent and dependent variables.

Therefore, they might uncover SNP-SNP interactions that
are missed by LRM. They can also deal with sparse and
high-dimension data and can account for non-linear SNP-
SNP interactions. An important feature of CART is the
influence of the first split on the tree structure. In our anal-
yses the only significant main effect, XPD-[Lys751Gln],
appears in four out of the seven significant interactions. If
there is no strong SNP main effect, the first variable
selected to split the tree could change a lot due to small
variation in the data. The resulting tree is interpreted as
not being very stable. This problem is a concern in our
data since all the main effects and low-order interactions
are weak. Our strategy to generate multiple trees might
reduce the influence of the SNP main effects in the result-
ing trees. Indeed, if an important pattern of interaction
exists in the data, it is more likely to be detected by the use
of multiple trees [59]. Methods such as patterning and
recursive partitioning [60], random forests [61] or boost-
ing [59] could reduce the influence of main effects on the
results and will be further investigated. Two problems,
however, are to assess the statistical significance of the
resulting trees and to interpret the results. Sensitivity anal-
yses may also help to assess the influence of each particu-
lar SNP on the pattern of SNP-SNP interactions. In order
to evaluate the behavior of trees in the absence of SNPs
with relatively stronger effects, we repeated the analysis
without XPD-[Lys751Gln] and CYP17-[C(518)T]. Inter-
estingly, the COMT-[Met108/158Val]*CCND1-
[Pro241Pro] interaction, which was identified by MDR
and LRM but not CART, was now also detected by CART
analysis. MDR does not rely on binary splits as it performs
a systematic search through all possible genotype combi-
nations of the SNP variables, and thus could reveal more
interactions than CART. The patterns of interactions sug-
gested by MDR were indeed more diverse than those
found by CART. However, the determination of statistical
significance and interpretation of the results remain chal-
lenging with MDR. The interpretation can be facilitated by
the use of entropy-based interaction dendrograms [51].
These methods allow MDR models to be decomposed
into additive, independent, and synergistic effects, which
greatly improves interpretation. The use of testing accu-
racy to select the best interactions can also be misleading
in studies where the SNP predictive values are generally
low. Limiting the SNP combinations to more plausible
genetic models and selecting the important SNP-SNP
interactions using a chi-square test statistic for contin-
gency table instead of testing accuracy might provide use-
ful improvements over the current MDR method. The
pros and cons of each method are summarized in Table 4.

Application to genome-wide association studies
Genome-wide association studies using SNP arrays will
remain particularly computationally intensive with the
partitioning methods presented in this paper. Recently,
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Marchini et al. [62] suggested that such studies are compu-
tationally feasible, even when they include hundreds of
thousands of loci. They also showed that even with a con-
servative correction for multiple testing, this strategy can
be more powerful than traditional single-locus analyses.
Their simulations, however, assumed some substantial
marginal effects and relatively strong interaction effects
that overcome the cost of the adjustment for multiple test-
ing. It is not clear if the effects considered by the authors
in their models are realistic or not. In our paper, we
emphasize a two-stage approach to select the important
interactions. This strategy has been previously advocated
for large-scale association studies [63-66], in which the
first stage is used to retain the most promising loci for fur-
ther analyses, and can be adapted for methods such as
CART and MDR. For example, Lunetta et al. [67] proposed
to use random forests as a first-stage screening procedure
to identify a small number of risk-associated SNPs, possi-
bly interacting, from a large number of unassociated
SNPs. A measure of importance for the low-order interac-
tions could be developed for this purpose [68]. The inter-
actions selected could then be validated in the second
stage using the same approach or a CART analysis such as
proposed in this paper. Some recent papers also discussed
further extensions of MDR for genome-wide analysis of
epistasis [69-72]. They also recommend an initial stage
where the most promising interactions would be selected
instead of performing an exhaustive search. They suggest
two approaches: a 'filter' or a 'wrapper' strategy. The first
approach, called Relief, provides an efficient filtering
method accounting for the dependencies between varia-

bles (that is, SNP-SNP interactions) using a nearest neigh-
bor algorithm. The second approach does not 'filter' (that
is, discard some variables) but performs a stochastic
search using a genetic programming algorithm to select
variables that can interact in the absence of main effects.
These are all very promising approaches. Finally, a possi-
ble selection of the important interactions could be based
on prior information. Recently, Franke et al. [73] devel-
oped a Bayesian approach to reconstruct a functional
human gene network that integrates information on genes
and the functional relationships between them, based on
data from multiple sources (the Kyoto Encyclopedia of
Genes and Genomes, the Biomolecular Interaction Net-
work Database, and so on). This method can help 'priori-
tize', in a first-stage analysis, candidate genes and gene-
gene interactions associated with a specific disease, which
could then be validated in an independent sample using
the partitioning methods studied in our paper.

Number and pattern of two-way SNP-SNP interactions
The number of significant two-way interactions was eval-
uated with all three methods. We found more significant
two-way interactions with MDR (n = 4) compared to
either CART (n = 2) or LRM (n = 3). For LRM, the limited
number of interactions detected could be the result of the
codominant effect assumed for each SNP, yielding a satu-
rated model with numerous parameters to estimate.
Assuming a dominant or recessive effect for each SNP
could lead to a more parsimonious LRM and a more pow-
erful test of interaction but with the price of a possible lack
of fit. CART also detected only two interactions, and this

Table 2: Interactions and risk subgroups identified by CART with a P-value less than 5%

Rank Interaction P-value

1 XPD-[Lys751Gln]
IL10-[G(-1082)A]

0.006

2 CYP17-[C(518)T]
BARD1-[Pro24Ser]

0.013

3 XPD-[Lys751Gln]
IL10-[G(-1082)A]
IL1A-[Ala114Ser]
ESR1-[Ser10Ser]

0.016

4 CYP17-[C(518)T]
IL13-[Arg130Gln]
IL1A-[Ala114Ser]
MTHFR-[Ala222Val]
PTEN-[(IVS4+109)ins/del5

0.019

5 XPD-[Lys751Gln]
BARD1-[Pro24Ser]
MTHFR-[Ala222Val]

0.020

6 CYP17-[C(518)T]
BARD1-[Pro24Ser]
MTHFR-[Ala222Val]

0.043

7 XPD-[Lys751Gln]
GADD45-[C(IVS3+168)T]
GSTP1-[Ile105Val]

0.050
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Table 3: Interactions selected by MDR with permutation P-value less than 5%

Rank Interactions Testing accuracy* Permutation P-value

1 IL1A-[Ala114Ser]
XPD-[Lys751Gln]
IL10-[G(-1082)A]

58.2% <0.001

2 ESR1-[Ser10Ser]
CYP17-[C(518)T]
IL10-[G(-1082)A]
COMT-[Met108/158Val]
PTEN- [(IVS4+109)ins/del5]
CCND1-[Pro241Pro]

60.2% <0.001

3 CYP17-[C(518)T]
BARD1-[Pro24Ser]
COMT-[Met108/158Val]
MMP1-[1G(-1607)2G]
CCND1-[Pro241Pro]

58.4% 0.001

4 IL13-[Arg130Gln]
XPD-[Lys751Gln]
IL10-[G(-1082)A]

57.5% 0.002

5 CYP17-[C(518)T]
XPD-[Lys751Gln]
GSTP1-[Ile105Val]
GADD45-[C(IVS3+168)T]

56.7% 0.006

6 XPD-[Lys751Gln]
IL10-[G(-1082)A]
GSTP1-[Ile105Val]
COMT-[Met108/158Val]
MMP1-[1G(-1607)2G]
CCND1-[Pro241Pro]

57.5% 0.006

7 ESR1-[Ser10Ser]
XPD-[Lys751Gln]
IL10-[G(-1082)A]
MMP1-[1G(-1607)2G]
PTEN-[(IVS4+109)ins/del5

57.2% 0.007

8 CYP17-[C(518)T]
XPD-[Lys751Gln]
IL10-[G(-1082)A]
MTHFR-[Ala222Val]
COMT-[Met108/158Val]
CCND1-[Pro241Pro]

58.2% 0.007

9 XPD-[Lys751Gln]
IL10-[G(-1082)A]

55.9% 0.009

10 CYP17-[C(518)T]
XPD-[Lys751Gln]
IL10-[G(-1082)A]
MTHFR-[Ala222Val]
COMT-[Met108/158Val]

56.3% 0.016

11 BARD1-[Pro24Ser]
XPD-[Lys751Gln]
IL10-[G(-1082)A]

55.6% 0.017

12 ESR1-[Ser10Ser]
XPD-[Lys751Gln]
MMP1-[1G(-1607)2G]
PTEN-[(IVS4+109)ins/del5

55.9% 0.017

13 COMT-[Met108/158Val]
CCND1-[Pro241Pro]

55.2% 0.019

14 CYP17-[C(518)T]
IL10-[G(-1082)A]
COMT-[Met108/158Val]
PTEN-[(IVS4+109)ins/del5]
CCND1-[Pro241Pro]

55.7% 0.020

15 IL10-[G(-1082)A]
MTHFR-[Ala222Val]
GSTP1-[Ile105Val]
COMT-[Met108/158Val]

55.7% 0.023

16 IL13-[Arg130Gln]
CYP17-[C(518)T]

54.5% 0.037

17 BARD1-[Pro24Ser]
XPD-[Lys751Gln]

54.7% 0.037

18 CYP17-[C(518)T]
XPD-[Lys751Gln]
IL10-[G(-1082)A]
COMT-[Met108/158Val]
PTEN- [(IVS4+109)ins/del5]
CCND1-[Pro241Pro]

55.9% 0.046

*1 - prediction error.
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could be due to a more stringent variable selection proce-
dure than in LRM. However, the number of significant
interactions should be interpreted with caution as each
method might control the overall type-I error rate differ-
ently.

The pattern of interactions also varied according to the
method used. Recently, Li and Reich [54] provided a com-
plete enumeration and classification of two-locus disease
models. Referring to this work, we tried to categorize the
two-locus interactions suggested by each method. By its
formulation, the LRM is more likely to detect interactions
that act multiplicatively or additively on the disease risk
[44]. These two-locus epistatic models are defined as 'log-
ical AND models' and joint models [54]. With the 'logical
AND models', for example, the dummy variable defining
interaction will take the value 1 only if an individual car-
ries one variant allele in each SNP and 0 otherwise. In
CART, the binary splits tend to favor conditional recessive
or conditional dominant epistatic models. Additive or
multiplicative interaction effects might be more difficult
to be captured by CART [55]. The interactions found by
MDR suggest very complex two-locus epistatic models but
most of them do not seem to have clear biological inter-
pretation.

Patterns of complex SNP-SNP interactions
The study of complex interactions was more exploratory
in our study, although it revealed some interesting pat-
terns worth mentioning. First, there was a high level of
consistency in the patterns identified by both CART and
MDR. The same important SNPs are contributing to the
complex interactions and this is found with those two
methods. We have determined that the SNPs more fre-
quently detected by MDR and CART were more likely to
be functional [41]. This suggests that our results do not
occur only by chance but could reveal real biological links
between genes within the same genetic pathways and
between genes across different genetic pathways. The
interactions detected by MDR seem more diverse and less
influenced by the SNP main effects, but it is not clear
whether the interactions detected are real or just false pos-
itives. Overall, our results suggest that the use of multiple
statistical approaches (or an integrated approach) rather
than a single methodology could be the best strategy to
elucidate complex gene interactions that have generally
very different patterns.

Chance for false positive results
Our discovery of critical breast cancer associated SNP-SNP
interactions involves two main steps: first, a data reduc-
tion technique that selects the most promising interac-
tions based on cross-validation and second, an
association testing method on a much smaller set of SNP-
SNP interactions using permutation testing in the whole

sample. In association testing of genetic variants, two-
stage approaches are becoming popular, either as a cost-
effective approach [63,64] or as a replication method
[65,66]. In our study, it is more the latter aspect that was
emphasized. Our first-stage analysis selected only the
interactions that were replicated in an independent test set
in order to have better consistency of the results. Indeed,
the main purpose of our paper is to compare the specifi-
city of each method to model SNP-SNP interactions and
to identify the patterns of the selected interactions. No
correction for multiple testing was applied so that the
comparison of the methods could be performed with suf-
ficient power. However, an important question remains as
to whether the interactions identified by our study are
really true or false positives. To get an answer to this ques-
tion, an adjustment for multiple testing was performed in
a single-stage analysis using only LRM and the FDR prin-
ciple [53]. Using this multiple testing correction, four two-
way interactions (including the two first interactions
detected here by LRM) had FDR values lower than 5%
[41]. Therefore, our new selection procedure might be
slightly more conservative than a classical FDR adjust-
ment, but further studies are needed to confirm this result.
An alternative approach to correct for multiple testing
could be to use permutation testing and assess the distri-
bution of a maximum test statistic or minimum P-value
after repeating the entire two-stage procedure n times (for
example with n = 1,000) [74,75]. This method, which was
applied to our data, also appears conservative compared
to FDR adjustment but has the advantage of being very
general. We are currently investigating this approach more
specifically. Another adjustment could be to do a Bonfer-
roni correction for the K tests performed at the second
stage in the whole sample (K = 5 in our study for two-way
interactions), to account for the number of interactions
selected in the first stage analysis [65,66]. With this
approach, only two two-way interactions would be con-
sidered significant (one with CART and one with MDR;
Table 1).

Finally, to interpret our positive results, we should
remember that our SNPs were selected on a priori evidence
of being functionally important in the disease process
[41]. Using a Bayesian approach, Wacholder et al. [76]
showed how the probability of no true association
between a genetic variant and a disease given a statistically
significant result (that is, the false positive report proba-
bility (FPRP)) depends on the prior probability that the
association is real and the statistical power of the test.
Although the determination of a prior probability is quite
challenging, selecting SNPs based on their functions
clearly reduces the FPRP. Validation of our results in an
independent dataset will strengthen the results we
obtained and provide further insight into the role of inter-
acting genes in breast cancer etiology.
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Biological interpretation of the results
Our study uses humans as a model organism and suggests
the existence of interactions between the genes involved
in various biological pathways related to breast cancer
risk. A comprehensive study [77] has been published very
recently demonstrating systematic epistatic interactions
using yeast as a model organism. This study emphasized
the co-dependency of genes from various functional cate-
gories to establish a phenotypic difference. Specifically,
the authors showed that epistatic interactions could be
organized into a network formed by functional modules
and that interactions between functional modules are
more likely to occur than within modules. In our study,
the module could be thought of as a biological pathway,
and the interactions between the SNPs would imply cross-
talk between these pathways. Our results also suggest
common interactions between SNPs within the same
pathway and across different pathways, but further studies
are needed to confirm this observation. As underlined by
Moore and Williams [78], making biological interpreta-
tions from statistical models of epistasis is difficult to do
for any method since we are trying to make inferences
about biological processes at the cellular level in an indi-
vidual from statistical summaries of variation in a popu-
lation.

Conclusion
There is growing evidence that gene interaction is not only
possible but is probably ubiquitous in determining sus-
ceptibility to common human diseases [79,80]. The statis-
tical approaches presented in this paper have the potential
to assist in the identification of complex biological links
among cancer processes involved in the development of
breast cancer and could suggest new directions for the
application and development of new statistical methods.
This study not only provides insight into the analysis of
the multi-genic nature of breast cancer, but also provides

important information regarding how cell function relates
to breast cancer development. We expect that these and
other interactions involved in breast cancer etiology will
one day be identified. This information will be used in
clinics to identify individuals at increased risk of breast
cancer and to develop preventive strategies.
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Table 4: Main characteristics of each approach used to model SNP-SNP interactions

Approach Type of two-locus 
model detected

Pattern of complex 
interactions

Potential advantages Potential limitations Possible 
improvements

LRM Logical AND models 
– multiplicative 
models

Can not be 
investigated

Easy to fit Curse of 
dimensionality

Logic regression
MARS*

CART Conditional recessive 
or dominant models

Driven by SNP main 
effects and binary 
splits

Deals with sparse data
Useful for risk 
characterization and 
prediction

Influence of main 
effects
Redundancy

Random forest
Boosting

MDR All types Diverse Deals with sparse data
Useful for risk 
characterization and 
prediction

Over-fitting
Difficult to find best 
models
Inefficient with large 
number of SNPs

Limit plausible genetic 
models
Use test statistic

*Multivariate adaptive regression splines
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