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Abstract

Background: Human infections with avian influenza A(H7N9) virus are associated with severe illness and high
mortality. To better inform triage decisions of hospitalization and management, we developed a clinical prediction
rule for diagnosing patients with A(H7N9) and determined its predictive performance.

Methods: Clinical details on presentation of adult patients hospitalized with either A(H7N9)(n = 121) in China from
March to May 2013 or other causes of acute respiratory infections (n = 2,603) in Jingzhou City, China from January 2010
through September 2012 were analyzed. A clinical prediction rule was developed using a two-step coefficient-based
multivariable logistic regression scoring method and evaluated with internal validation by bootstrapping.

Results: In step 1, predictors for A(H7N9) included male sex, poultry exposure history, and fever, haemoptysis, or
shortness of breath on history and physical examination. In step 2, haziness or pneumonic consolidation on chest
radiographs and leukopenia were also associated with a higher probability of A(H7N9). The observed risk of A(H7N9)
was 0.3% for those assigned to the low-risk group and 2.5%, 4.3%, and 44.0% for tertiles 1 through 3, respectively, in
the high-risk group. This prediction rule achieved good model performance, with an optimism-corrected sensitivity of
0.93, a specificity of 0.80, and an area under the receiver-operating characteristic curve of 0.96.

Conclusions: A simple decision rule based on data readily obtainable in the setting of patients’ first clinical
presentations from the first wave of the A/H7N9 epidemic in China has been developed. This prediction rule has
achieved good model performance in predicting their risk of A(H7N9) infection and should be useful in guiding
important clinical and public health decisions in a timely and objective manner. Data to be gathered with its use
in the current evolving second wave of the A/H7N9 epidemic in China will help to inform its performance in the
field and contribute to its further refinement.
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Background
Human infections with novel avian-origin influenza A
(H7N9) virus were first identified in March 2013, [1,2]
mainly in the eastern provinces of China [3]. A total of
131 human infections, dominated by severe illness and
mortality, were confirmed in the spring wave in mainland
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China from March through May 2013 [4,5]. With the
adoption of suitable public health measures including
closure of live poultry markets, few cases were identified
over the summer months [6]. However, H7N9 has resurged
in this winter, 2013-2014 [7].
In the context of preparing and responding to further

waves of this evolving epidemic, the importance of early
detection, diagnosis, isolation and reporting of A(H7N9)
infections has been repeatedly emphasized [8]. Accurate
and objective risk prediction can help physicians to
guide clinical management and inform triage decisions
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for optimizing the utilization of valuable clinical and
public health resources that may easily be overwhelmed
during an epidemic. However, no simple and reliable deci-
sion tool has yet been available for predicting the risk of A
(H7N9) influenza in an objective and timely manner.
Our objective in this study was to develop a clinical

prediction rule that would accurately identify patients with
A(H7N9) influenza on their first presentation to a hospital
emergency setting and to evaluate the predictive perform-
ance of this rule.

Methods
We analyzed two databases that contained clinical and
basic laboratory data from two groups of patients present-
ing similarly with acute respiratory infections to hospitals
in China, including 121 laboratory-confirmed A(H7N9)
cases and 2,603 patients who suffered from acute respira-
tory infections other than A(H7N9) influenza. Outpatient
clinics or emergency departments in hospitals represent a
typical first step for patients with acute respiratory infec-
tions in China to present to the healthcare system, owing
to the coverage of national health insurance programs and
the lack of standalone primary healthcare clinics in either
the public or private sector as an alternative [9].
The A(H7N9) database consisted of patients who

presented clinically with symptoms of acute respiratory
infection to hospitals in different provinces of China
and were subsequently confirmed to have A(H7N9) virus
infection between March and May 2013. In China, all
laboratory-confirmed infections with A(H7N9) viruses are
reported to the Chinese Center for Disease Control
and Prevention (China CDC, Beijing, China) through a
national surveillance system [10]. Diagnostic confirmation
of A(H7N9)virus infection was done either by the isolation
of A(H7N9) virus or a positive real-time reverse-
transcription polymerase chain reaction (RT-PCR) assay
for A(H7N9) in a respiratory specimen [10]. Case defini-
tions, surveillance for identification of influenza A(H7N9)
cases, and laboratory test assays are described in previous
reports [10].
The second database consisted of patients who pre-

sented similarly with acute respiratory infections to
hospitals in Jingzhou city, Hubei province of China from
4 January 2010 through 30 September 2012. Their clinical
details were captured by a surveillance program for severe
acute respiratory infection (SARI) conducted by China
CDC in four surveillance hospitals in Jingzhou during that
period [11]. All patients admitted to these four surveil-
lance hospitals were screened by either a nurse or phys-
ician. A patient was defined as having SARI if they had
on their clinical presentation an elevated temperature
(rectal or axillary temperature ≥37.3°C) and at least
one sign or symptom of acute respiratory illness, includ-
ing cough, sore throat, tachypnea, difficulty breathing,
abnormal breath sounds on auscultation, sputum produc-
tion, hemoptysis, chest pain or chest radiograph consistent
with pneumonia. Nasopharyngeal swabs were collected
from these patients and tested for seasonal influenza and
avian influenza H5N1 viruses by RT-PCR. As these sam-
ples were all collected before the first H7N9 human case
was identified, they were not tested for A(H7N9) virus.
For patients included in either of these databases, clin-

ical information on the medical history and physical
examination findings on their initial clinical presentation
was abstracted retrospectively from their original medical
records using a standard data abstraction sheet by trained
nursing and medical officers at each hospital. Patients
younger than 14 years of age from both databases were not
included in this study, as there are few patients <14 years
of age with confirmed A(H7N9) virus infection, and their
presenting symptoms, the approach of symptom ascer-
tainment, overall clinical course and disease severity, dis-
ease epidemiology, and even health care seeking pattern
and pathway were generally very different from that in
adults and elderly persons [3-5].
Additional information collected included age, sex,

history of any poultry exposure, including exposure to
live poultry markets within two weeks of symptom
onset, influenza vaccination history, smoking history,
pregnancy, history of underlying medical conditions,
height (m), weight (kg) and clinical symptoms.
The results of investigations performed on presentation

included chest radiography (signs of consolidation and
pneumonia), simple hematologic blood analysis including
hemoglobin level (Hgb) and leukocyte count (WBC), and
C-reactive protein (CRP). Because we did not have suf-
ficiently complete data (>60%) on some laboratory de-
terminations for the entire sample (including platelet
count, other serum biochemistry tests and clotting pro-
file), we excluded these determinations from the analysis
for all patients.

Ethics statement
The collection of data from confirmed A(H7N9) cases
was determined by the Chinese National Health and
Family Planning Commission as part of public health
investigations of emerging influenza outbreaks and was
exempted from institutional review board assessment.
Collection of data of SARI cases was approved by the
ethical review committee of the China CDC. Therefore,
informed consents from the cases were not required.

Statistical analysis
A two-step regression model was used to develop the
prediction rule, so as to simulate the decision making
process in the setting of a clinic or hospital emergency
room where a patient first presents [12,13]. In step 1,
basic variables obtainable from the medical history and



Liao et al. BMC Medicine 2014, 12:127 Page 3 of 9
http://www.biomedcentral.com/1741-7015/12/127
physical examination were employed to identify a subgroup
of patients who were more likely to have A(H7N9) and,
therefore, needed additional investigation and work-
up. Variables used in this stage included age group
(<60 years, ≥60 years), sex, poultry exposure history,
influenza vaccination history, smoking history, and history
of underlying chronic diseases, pregnancy, major presenting
symptoms and physical findings. In step 2, simple radio-
logic and laboratory variables were added to significant
predictors from step 1 (those having a P-value less than
0.05) to further refine the identification of subgroups
having higher risk for A(H7N9). We used a univariate
logistic regression model to identify significant (P ≤ 0.05)
predictors of a final diagnosis of A(H7N9) and then en-
tered them into a multivariable logistic regression model
with backward selection. We removed variables that had a
P-value greater than 0.05. Interaction terms were tested as
candidate variables, but none of these terms entered the
final models. We derived each prediction rule using all
available information on patients. We used multiple impu-
tations [14,15] (20 imputations) in the derivation process
to make the most of all available non-missing data while
preserving the uncertainty from the missing data in the
results [16,17] [see Additional file 1: Appendix].
A score-based prediction rule for a final diagnosis of A

(H7N9) was then developed for each step from the final
logistic regression equations using a regression coefficient-
based scoring method [13]. A simple integer-based point
score was assigned for each predictor variable, which was
calculated by dividing the corresponding β-coefficients by
the absolute value of the smallest coefficient in the final
model and rounding up to the nearest integer. The overall
risk score for each patient was calculated by adding the
scores for each component together [18]. Aiming to be
used as a screening tool to capture as many of the A/H7N9
cases as possible, a cutoff was specified with a priori sensi-
tivity of 0.99 in step 1 and 0.95 for the overall model (steps
1 and 2).
Total risk scores above the cutoff threshold were then

categorized in tertiles as a risk prediction rule for ease of
clinical implementation. Performance of the risk predic-
tion rule in predicting A(H7N9) infection was examined
by sensitivity, specificity, likelihood ratios for both positive
and negative test results, and area under the receiver-
operating characteristic (ROC) curve [19]. Calibration was
evaluated by using the Hosmer–Lemeshow chi-square
statistic (P > 0.05 for all models) [20]. Regression models
were tested for possible overfitting by using linear shrink-
age estimators [13,21].
The prediction rule was internally validated with

samples of the same size resampled with replacement
from the original derivation data set using the bootstrap
method [22]. The model was refitted as the original model
derivation process on these bootstrap samples for 1,000
iterations [13,21] to determine the degree of performance
deterioration to be expected when applied on an inde-
pendent sample of patients [21]. We also estimated the
optimism-corrected estimates to correct for the absolute
magnitude of bias for each performance index [23]. We
performed all analyses with R software, version 3.0.1.

Results
As of the end of May 2013, 131 confirmed A(H7N9)
cases were officially reported in mainland China. Among
these patients, 121 patients of 14 years of age or older
presenting with acute respiratory infection to an emer-
gency department and requiring hospitalization for med-
ical reasons were included in this study [5]. Two cases
younger than 14 and eight cases having mild disease and
confirmed by routine testing through sentinel influenza-
like illness surveillance were excluded from the present
study [9].
During the surveillance period from 4 January 2010

through 30 September 2012, 90,890 patients had been
hospitalized in the four surveillance hospitals in Jingzhou
city. Among these, 25,406 (28%) patients met the SARI
case definition within 24 hours of hospital admission.
Ninety percent (22,777) were <14 years of age and ex-
cluded from the present study. Among the 2,603 in-
cluded patients, 2,310 (89%) had a nasopharyngeal
swab specimen collected, and 430 (19%) tested positive
for influenza viruses by rRT-PCR, including 258 (60%)
with influenza A(H3N2), 36 (8%) with A(H1N1) pdm09
and 136 (32%) with influenza B.
Table 1 shows the demographic and clinical character-

istics of these two groups of patients on presentation to
the emergency hospital. On univariate analysis, factors
that were associated with an increased risk of A(H7N9)
infection included older age (≥60 years), male sex, history
of poultry exposure, smoking history, history of underlying
medical conditions, fever, cough, haemoptysis, shortness of
breath and diarrhea (Table 1). In step 1 of the clinical pre-
diction rule, male sex and history of poultry exposure were
independently associated with a final diagnosis of A(H7N9)
on multivariable analysis. The presence of three respiratory
symptoms, namely fever, haemoptysis and shortness of
breath, were also independently associated with a final
diagnosis of A(H7N9) (Table 2). Other factors became in-
significant (age group, underlying medical illnesses, cough
and diarrhea) and were not retained. Fifty-eight percent of
the cohort with a total score less than the threshold of 43
was assigned to the low-risk group and did not proceed to
step 2 [see Additional file 2: Figure S1].
In step 2, two additional laboratory findings includ-

ing pneumonia/consolidation on chest radiograph and
leukopenia (WBC <4,000/μl) were each independently
associated with an increased risk of A(H7N9). On the
other hand, finding of leukocytosis (WBC >11,000/μl),



Table 1 Demographic and clinical characteristics of patients

Characteristic H7N9 Non-H7N9 P-value

(number = 121) (number = 2,603)

Demographic

Age

14 to 59 years 50 (41.3) 1,293 (49.7) 0.077

≥60 years 71 (58.7) 1,310 (50.3)

Data missing, % 0 (0) 0 (0)

Sex

Female 35 (28.9) 1,045 (40.1) 0.013

Male 86 (71.1) 1,558 (59.9)

Data missing, % 0 (0) 0 (0)

History of poultry exposure

Yes 85 (70.2) 53 (2) <0.001

No 36 (29.8) 1,583 (60.8)

Data missing, % 0 (0) 967 (37.1)

Influenza vaccination history

Yes 0 (0) 32 (1.2) 0.999

No 36 (29.8) 1,603 (61.6)

Data missing, % 85 (70.2) 968 (37.2)

Smoking history

Yes 26 (21.5) 365 (14) 0.004

No 78 (64.5) 2,238 (86)

Data missing, % 17 (14) 0 (0)

History of underlying medical conditions

Yes 42 (34.7) 846 (32.5) 0.110

No 62 (51.2) 1,751 (67.3)

Data missing, % 17 (14) 6 (0.2)

Presence of symptoms on presentation

Fever 95 (78.5) 1,462 (56.2) <0.001

Data missing, % 17 (14) 0 (0)

Cough 95 (78.5) 2,013 (77.3) <0.001

Data missing, % 17 (14) 3 (0.1)

Hemoptysis 25 (20.7) 96 (3.7) <0.001

Data missing, % 17 (14) 11 (0.4)

Shortness of breath 62 (51.2) 391 (15) <0.001

Data missing, % 17 (14) 9 (0.3)

Sore throat 7 (5.8) 418 (16.1) 0.088

Data missing, % 40 (33.1) 10 (0.4)

Rhinorrhea 2 (1.7) 131 (5) 0.435

Data missing, % 40 (33.1) 9 (0.3)

Vomiting 4 (3.3) 67 (2.6) 0.351

Data missing, % 17 (14) 9 (0.3)

Diarrhea 10 (8.3) 34 (1.3) <0.001

Data missing, % 17 (14) 9 (0.3)
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Table 1 Demographic and clinical characteristics of patients (Continued)

Investigations

Chest radiography

Normal 95 (78.5) 1,908 (73.3) <0.001

Pneumonia/consolidation 7 (5.8) 690 (26.5)

Data missing, % 19 (15.7) 5 (0.2)

Hemoglobin level

Low 20 (16.5) 903 (34.7) 0.029

Normal 77 (63.6) 1,463 (56.2)

High 6 (5) 77 (3)

Data missing, % 18 (14.9) 160 (6.1)

Leukocyte count

Low 48 (39.7) 201 (7.7) 0.232

Normal 51 (42.1) 1,567 (60.2)

High 5 (4.1) 728 (28)

Data missing, % 17 (14) 107 (4.1)

C-reactive protein

Normal 8 (6.6) 192 (7.4) 0.095

High 83 (68.6) 1,025 (39.4)

Data missing, % 30 (24.8) 1,386 (53.2)
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or an abnormally low (Hgb < 12 g/dl) or high hemoglobin
level (Hgb ≥16 g/dl) were each independently associated
with a decreased risk of A(H7N9). All of the previous five
factors entered in step 1 had remained statistically signifi-
cant after adding these two factors. No statistical evidence
of overfitting, as demonstrated by linear shrinkage estima-
tion (shrinkage factor, 0.981 (95% confidence interval (CI),
0.976 to 0.984) for step 1 and 0.967 (95% CI, 0.960 to
Table 2 Multivariable predicators of a diagnosis of A
(H7N9) infection and associated risk scoring system for
step 1

Characteristic β regression coefficient
(95% CI)

Risk score
assigned

Sex

Female Reference 0

Male 0.821 (0.217, 1.425) 10

History of poultry exposure

Yes 4.259 (3.606, 4.913) 52

No Reference 0

Presence of symptoms on presentation

Hemoptysis 1.537 (0.701, 2.372) 19

Shortness of breath 1.961 (1.383, 2.539) 24

Fever 2.624 (1.747, 3.501) 32

Hosmer-Lemeshow statistic, 2.11 (P = 0.98). Cutoff threshold for total point
score (with a prespecified sensitivity of 0.95): ≥43 indicates high-risk groups;
<43 indicates low-risk group. CI, confidence interval.
0.972) for step 2), was seen in either multivariable regres-
sion model. For the ease of use in a setting of a clinical
consultation, the magnitude of association of each of these
factors with A(H7N9)virus infection was quantified by a
point scoring system as shown in Table 3. A total score of
68 or greater would indicate the presence of a high risk
for A(H7N9) infection, with a prespecified sensitivity of
95% overall. Forty-five percent of patients considered in
step 2 were further assigned to the low-risk category
[see Additional file 2: Figure S1].
The magnitude of the scores had good diagnostic utility.

When stratified by tertiles with the two cut-points of 70
and 90, a gradation with increasing level of risk for A
(H7N9) infection was demonstrated. The corresponding
risk of A(H7N9) infection was 0.3% (95% CI, 0.0% to
0.6%) for those assigned to the low-risk group (in steps 1
or 2), 2.5% (95% CI, 0.5% to 4.5%) for tertile 1 (risk score,
68 to 70), 4.3% (95% CI, 2.2% to 6.4%) for tertile 2 (risk
score, 71 to 90) and 44.0% (95% CI, 37.4% to 50.8%) for
tertile 3 (risk score >90) in the high-risk group. A similar
gradation of risk was also observed in the validation ana-
lysis (Figure 1).
This clinical prediction rule achieved good discrimina-

tive ability. It gave a sensitivity of 0.93 and a specificity of
0.80 (optimism-corrected estimates) in the derivation
process, which were broadly maintained, respectively, at
0.96 and 0.75 in the bootstrap internal validation process
(Table 4). On the other hand, the optimism-corrected area



Table 3 Multivariable predicators of a diagnosis of A(H7N9)
infection and associated risk scoring system for step 2

Characteristic β regression coefficient
(95% CI)

Risk score
assigned

Sex

Female Reference 0

Male 0.839 (0.189, 1.489) 11

History of poultry exposure

Yes 4.028 (3.320, 4.736) 54

No Reference 0

Presence of symptoms on presentation

Hemoptysis 1.107 (0.109, 2.105) 15

Shortness of breath 2.240 (1.564, 2.917) 30

Fever 2.769 (1.790, 3.748) 37

Chest radiography

Normal Reference 0

Pneumonia/consolidation 1.711 (0.643, 2.778) 23

Leukocyte count

Low 1.638 (0.909, 2.366) 22

Normal Reference 0

High −1.581 (-2.677, -0.485) −21

Hemoglobin level

Low −0.884 (-1.626, -0.143) −12

Normal Reference 0

High −0.075 (-1.739, 1.590) −1

Hosmer-Lemeshow statistic, 3.57 (P = 0.89). Cutoff threshold for total point
score (with a prespecified sensitivity of 0.95): ≥68 indicates high-risk groups;
<68 indicates low-risk group. CI, confidence interval.
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Figure 1 Risk of influenza A(H7N9) infection stratified by risk
categories. Note: Tertile 1 represents a risk score of 68 to 70, tertile
2 represents a risk score of 71 to 90, tertile 3 represents a risk score
of >90.
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under the ROC curve was 0.96 from both the derivation
and the internal validation processes (Figure 2). Likelihood
ratios for a positive result with an assignment to the high-
risk group after step 2 were moderately strong at 4.62 and
3.85 for the derivation and internal validation processes,
respectively. Likelihood ratios for a negative result with
assignment to the low-risk group after step 1 or step 2
were 0.090 and 0.056 for the derivation and internal
validation processes, respectively.

Discussion
Our study presents a decision rule for objectively pre-
dicting A(H7N9) infection in adult patients presenting
with severe respiratory illness. Factors of particular
importance in the prediction rule, including poultry ex-
posure history, fever, shortness of breath and leukopenia,
agreed generally with findings reported from previous epi-
demiological and clinical studies [4]. We had chosen the
model with the best performance in terms of both the
high sensitivity and area under the ROC curve, which
were also maintained in the validation samples, to identify
patients having a high risk for the infection at their initial
clinical presentation so as to optimize resources during an
epidemic.
As generally recognized by previous reports, most

laboratory-confirmed cases of A(H7N9) have had a high
risk of disease progression and fatality [3,5]. Early initi-
ation of antiviral treatment and provision of a suitable
level of intensive care have been identified as important
factors in determining the final outcome of patients hos-
pitalized with A(H7N9) virus infection [24]. Our decision
tool allows an initial risk assessment to be performed by
frontline physicians in a setting where simple laboratory
and radiographic examination may not be readily avail-
able, based only on simple information obtainable from
the history and physical examination. In a setting with
greater resources, the risk estimation of those deemed
to have a non-trivial risk at step 1 could be further refined
by the availability of simple radiographic and laboratory
testing results. The scoring system also helps to categorize
those being predicted as high-risk into different risk strata
to facilitate further clinical decision-making (including the
need for further work up, admission decision and ward
allocation, initial treatment regimen, level of care and
monitoring, and so on) before a definitive diagnosis based
on RT-PCR can be available, often at a much later time.
Despite the current belief that A(H7N9) virus may not be
readily transmitted from person to person, [3,10] the exist-
ence of limited person-to-person transmission in a close
contact setting [25] also carries an implication for this risk
stratification tool to better inform isolation decision and
practice.
Depending on resource availability and surge capacity,

patients assigned to different risk groups may need to be



Table 4 Performance indices for the clinical prediction rule

Index Estimate (95% CI)

Derivation indices
(n = 2,724)

Internal validation by
bootstrapping (n = 2,724)

Optimism-corrected
indices (n = 2,724)

Sensitivity 0.940 (0.895, 0.984) 0.958 (0.890, 0.994) 0.929 (0.881, 0.954)

Specificity 0.799 (0.783, 0.815) 0.751 (0.614, 0.885) 0.799 (0.783, 0.815)

Likelihood ratio

Positive test result 4.670 (4.124, 5.309) 3.853 (2.570, 7.747) 4.624 (3.986, 4.887)

Negative test result 0.076 (0.019, 0.134) 0.056 (0.009, 0.125) 0.090 (0.056, 0.147)

Area under ROC curve 0.966 (0.951, 0.981) 0.961 (0.952, 0.966) 0.960 (0.944, 0.976)

Obtained from internal validation by using a bootstrap analysis in which the cohort was resampled 1,000 times with replacement.Likelihood ratio for a positive
test result refers to the likelihood of assignment to the high-risk group after step 2. Likelihood ratio for a negative test result refers to the likelihood of assignment
to the low-risk group after steps 1 or 2. CI, confidence interval; ROC, receiver-operating characteristic.
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handled differently. Generally, however, patients assigned
to the low-risk group in either steps 1 or 2 should have
little risk implication to justify their admission at that
particular juncture either for monitoring or hospitalized
care unless having other indications for admission. This
strategy can help to reduce the demands on inpatient
beds and testing capacity. On the other hand, persons
having a total risk score exceeding the threshold (≥68)
in step 2 should be considered for admission for further
assessment and possible initiation of treatment. The
provision of different levels of monitoring and treatment
to such patients could be guided by the magnitude of the
total risk score, which is predictive of the eventual risk
of confirmed A(H7N9) infection. Allocation of isolation
facilities including individual negative-pressure isolation
rooms may also be informed by the individual risk score
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Figure 2 Receiver-operating characteristic (ROC) curve of the risk
prediction rules with different pre-specified level of sensitivity.
in case there is any enhancement in human-to-human
transmissibility.
Our study included all cases of clinically confirmed A

(H7N9) infection that presented with a picture of acute
respiratory infection in a hospital setting in the first
epidemic in China from March through May. Our control
consisted of a suitable sample of patients who clinically
presented in a comparable setting within the same geo-
graphical area and were captured by a large-scale surveil-
lance network, in a period immediately prior to the A
(H7N9) epidemic. Although controls had not been directly
tested for A(H7N9) virus, their recruitment in a period
during which human A(H7N9) infection was absent or at
least very unlikely [26] should have helped to avoid their
potential contamination by unascertained A(H7N9) cases.
However, our study does suffer from a number of poten-

tial limitations. First, as the H7N9 positive cases and the
control patients were not gathered from exactly the same
setting, subtle biases may still be introduced by potential
variability in the degree of exposure ascertainment or data
documentation in the two different settings. Although this
problem should have been partly addressed by excluding
any variables that were not measured or were generally
missing from either group, some measured variables may
have been more thoroughly ascertained for A(H7N9)
cases, especially in an epidemic setting. Second, a small
proportion of all confirmed A(H7N9) cases were either
asymptomatic or only mildly symptomatic and had not
been hospitalized [9]. Because of the very different clinical
picture, our prediction rule may not be applicable for
assessing the risk of A(H7N9) infection in this group of
patients. Third, as our study had already included almost
all confirmed cases of A(H7N9) reported during the initial
epidemic in China, the decision rule could only be in-
ternally validated by bootstrapping but lacked a suitable
sample for external validation. As a result, the actual
performance and utility of this prediction rule in future
epidemics remains to be determined. Ideally, our rule
can be further validated in the current evolving second
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wave of epidemic in Chinawithin a setting where all
cases presenting with acute respiratory infection (ARI)
can be captured and ascertained with a definitive testing
for A/H7N9 irrespective of their initial risk stratification
status. This can inform the assessment of its performance
in the field and contribute to its further refinement. Fi-
nally, as the prediction rule was derived mainly based
on data of the A/H7N9 virus with little or no human-
to-human transmission potential, its performance may
become very different should the virus acquire the abil-
ity to do so. Other factors that may affect performance
of the model in future waves of the evolving epidemic
may include variation in disease severity, changing risk
perception and health care seeking behavior. While the
prediction of absolute risk for having A(H7N9) infection
could be affected by variation in local factors, robust-
ness of the model for separating higher from lower risk
should probably be preserved. When being applied in
the field, frontline physicians should remain alert concern-
ing the potential limitations associated with practice
guidelines and our decision rule should only supplement,
but never supersede, the physician’s judgment in equivocal
or borderline cases.

Conclusions
Our prediction rule currently represents an important
evidence-based decision tool for the triage of suspected
cases of A(H7N9) infection when they first present clinic-
ally in an emergency department or primary care settings.
This decision tool will be most useful in an evolving epi-
demic when the health system’s surge capacity could be
overwhelmed by the number of patients seeking care.
With the current re-emergence of the A(H7N9) epidemic
as the second wave in China, it would be a very timely and
practical tool for helping both physicians working on the
frontline to make important clinical decisions and public
health professionals and health administrators to optimize
the proper allocation of limited resources.

Additional files

Additional file 1: Appendix. Details on the multiple imputation and
validation processes involved in building the risk prediction model [14-17,23].

Additional file 2: Figure S1. Flowchart of influenza A(H7N9) infection
stratified by risk categories.

Abbreviations
China CDC: Chinese Center for Disease Control and Prevention; CI: confidence
interval; CRP: C-reactive protein; Hgb: hemoglobin; ROC: receiver-operating
characteristic; RT-PCR: real-time reverse-transcription polymerase chain reaction;
SARI: severe acute respiratory infection; WBC: leukocyte count.

Competing interests
DKMI reports receipt of research funding form Hoffmann-La Roche Inc. BJC
reports receipt of research funding from MedImmune Inc. and Sanofi Pasteur,
and consults for Crucell NV. GML has received speaker honoraria from HSBC
and CLSA. The authors report no other competing interests.
Authors’ contributions
HY and DKMI designed and supervised the study. QL, HJ, FL, JZ, ZP, YH, LF,
BC, ZG and HY collected the data. QL, DKMI, TKT, HY, BJC, PW, EHYL and
GML analyzed and interpreted the data. DKMI drafted the manuscript. All
authors critically revised and approved the final manuscript.

Acknowledgements
We thank staff members of the Bureau of Disease Control and Prevention
and Health Emergency Response Office of the National Health and Family
Planning Commission and provincial and local departments of health for
providing assistance with administration and data collection; staff
members at county-, prefecture-, and provincial-level CDCs in the
provinces where human A(H7N9) cases occurred for providing assistance
with field investigation, administration and data collection. The views
expressed are those of the authors and do not necessarily represent the
policy of the China CDC.

Funding
This work was supported by the US National Institutes of Health
(Comprehensive International Program for Research on AIDS grant U19
AI51915); the China-U.S. Collaborative Program on Emerging and
Re-emerging Infectious Diseases, the Harvard Center for Communicable
Disease Dynamics from the National Institute of General Medical Sciences
(grant no. U54 GM088558) and the Area of Excellence Scheme of the
Hong Kong University Grants Committee (grant no. AoE/M-12/06). The
funding bodies had no role in study design, data collection and analysis,
preparation of the manuscript, or the decision to publish.

Author details
1Division of Infectious Disease, Key Laboratory of Surveillance and
Early-warning on Infectious Disease, Chinese Center for Disease Control and
Prevention, 155# Changbai Road, Beijing 102206, P.R. China. 2Division of
Community Medicine and Public Health Practice, School of Public Health, Li
Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
Special Administrative Region, China. 3Division of Epidemiology and
Biostatistics, School of Public Health, Li Ka Shing Faculty of Medicine, The
University of Hong Kong, Hong Kong Special Administrative Region, China.
4Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital
Medical University, Beijing, China. 5China-US Collaborative Program on
Emerging and Re-emerging Infection Disease, US Centers for Disease Control
and Prevention, Beijing, China.

Received: 20 February 2014 Accepted: 10 July 2014
Published: 5 August 2014

References
1. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X,

Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X,
Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, et al: Human
infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med
2013, 368:1888–1897.

2. Wu Y, Gao GF: Compiling of comprehensive data of human infections
with novel influenza A (H7N9) virus. Front Med 2013, 7:275–276.

3. Cowling BJ, Jin L, Lau EH, Liao Q, Wu P, Jiang H, Tsang TK, Zheng
J, Fang VJ, Chang Z, Ni MY, Zhang Q, Ip DK, Yu J, Li Y, Wang L,
Tu W, Meng L, Wu JT, Luo H, Li Q, Shu Y, Li Z, Feng Z, Yang W,
Wang Y, Leung GM, Yu H: Comparative epidemiology of human
infections with avian influenza A H7N9 and H5N1 viruses in
China: a population-based study of laboratory-confirmed cases.
Lancet 2013, 382:129–137.

4. Gao HN, Lu HZ, Cao B, Du B, Shang H, Gan JH, Lu SH, Yang YD, Fang Q,
Shen YZ, Xi XM, Gu Q, Zhou XM, Qu HP, Yan Z, Li FM, Zhao W, Gao ZC,
Wang GF, Ruan LX, Wang WH, Ye J, Cao HF, Li XW, Zhang WH, Fang XC, He
J, Liang WF, Xie J, Zeng M, et al: Clinical findings in 111 cases of influenza
A (H7N9) virus infection. N Engl J Med 2013, 368:2277–2285.

5. Yu H, Cowling BJ, Feng L, Lau EH, Liao Q, Tsang TK, Peng Z, Wu P, Liu F,
Fang VJ, Zhang H, Li M, Zeng L, Xu Z, Li Z, Luo H, Li Q, Feng Z, Cao B,
Yang W, Wu JT, Wang Y, Leung GM: Human infection with avian
influenza A H7N9 virus: an assessment of clinical severity. Lancet
2013, 382:138–145.

http://www.biomedcentral.com/content/supplementary/12916_2014_127_MOESM1_ESM.docx
http://www.biomedcentral.com/content/supplementary/12916_2014_127_MOESM2_ESM.pdf


Liao et al. BMC Medicine 2014, 12:127 Page 9 of 9
http://www.biomedcentral.com/1741-7015/12/127
6. Yu H, Wu JT, Cowling BJ, Liao Q, Fang VJ, Zhou S, Wu P, Zhou H, Lau EH,
Guo D, Ni MY, Peng Z, Feng L, Jiang H, Luo H, Li Q, Feng Z, Wang Y, Yang W,
Leung GM: Effect of closure of live poultry markets on poultry-to-person
transmission of avian influenza A H7N9 virus: an ecological study. Lancet
2014, 383:541–548.

7. Chen E, Chen Y, Fu L, Chen Z, Gong Z, Mao H, Wang D, Ni MY, Wu P, Yu Z, He
T, Li Z, Gao J, Liu S, Shu Y, Cowling BJ, Xia S, Yu H: Human infection with
avian influenza A(H7N9) virus re-emerges in China in winter 2013. Euro
Surveill 2013, 18:20616.

8. Gabbard JD, Dlugolenski D, Van Riel D, Marshall N, Galloway SE, Howerth
EW, Campbell PJ, Jones C, Johnson S, Byrd-Leotis L, Steinhauer DA, Kuiken
T, Tompkins SM, Tripp R, Lowen AC, Steel J: Novel H7N9 influenza virus
shows low infectious dose, high growth and efficient contact transmission
in the guinea pig model. J Virol 2014, 88:1502–1512.

9. Ip DK, Liao Q, Wu P, Gao Z, Cao B, Feng L, Xu X, Jiang H, Li M, Bao J, Zheng
J, Zhang Q, Chang Z, Li Y, Yu J, Liu F, Ni MY, Wu JT, Cowling BJ, Yang W, Leung
GM, Yu H: Detection of mild to moderate influenza A/H7N9 infection by
China’s national sentinel surveillance system for influenza-like illness: case
series. BMJ 2013, 346:f3693.

10. Li Q, Zhou L, Zhou M, Li F, Wu H, Xiang N, Chen E, Tang F, Wang D, Meng
L, Hong Z, Tu W, Cao Y, Li L, Ding F, Liu B, Wang M, Xie R, Gao R, Li X, Bai T,
Zou S, He J, Hu J, Xu Y, Chai C, Wang S, Gao Y, Jin L, Zhang Y, et al:
Preliminary report: epidemiology of the avian influenza A (H7N9)
outbreak in China. N Engl J Med 2014, 370:520–532.

11. Yu H, Huang J, Huai Y, Guan X, Klena J, Liu S, Peng Y, Yang H, Luo J, Zheng J,
Chen M, Peng Z, Xiang N, Huo X, Xiao L, Jiang H, Chen H, Zhang Y, Xing X, Xu
Z, Feng Z, Zhan F, Yang W, Uyeki TM, Wang Y, Varma JK: The substantial
hospitalization burden of influenza in central China: surveillance for severe,
acute respiratory infection, and influenza viruses, 2010-2012. Influenza Other
Respir Viruses 2014, 8:53–65.

12. Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, Coley CM,
Marrie TJ, Kapoor WN: A prediction rule to identify low-risk patients with
community-acquired pneumonia. N Engl J Med 1997, 336:243–250.

13. Leung GM, Rainer TH, Lau FL, Wong IO, Tong A, Wong TW, Kong JH, Hedley
AJ, Lam TH, Hospital Authority SARS Collaborative Group: A clinical
prediction rule for diagnosing severe acute respiratory syndrome in the
emergency department. Ann Intern Med 2004, 141:333–342.

14. Schafer JL: Multiple imputation: a primer. Stat Methods Med Res 1999, 8:3–15.
15. Harrell FE Jr: Regression Modeling Strategies: With Applications to Linear Models,

Logistic Regression, and Survival Analysis. New York: Springer Verlag; 2001.
16. Little RJ, Rubin DB: Statistical Analysis with Missing Data. 2nd edition.

Hoboken, NJ: Wiley; 2002.
17. Rubin DB: Multiple imputation after 18+ years. J Am Stat Assoc 1996,

91:473–489.
18. Sullivan LM, Massaro JM, D'Agostino RB Sr: Presentation of multivariate

data for clinical use: The Framingham Study risk score functions. Stat
Med 2004, 23:1631–1660.

19. Hanley JA, McNeil BJ: The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 1982, 143:29–36.

20. Hosmer DW, Lemeshow S: Applied Logistic Regression. 2nd edition.
New York: Wiley; 2000.

21. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV: Predicting
mortality among patients hospitalized for heart failure: derivation and
validation of a clinical model. JAMA 2003, 290:2581–2587.

22. Efron B, Tibshirani RJ: An Introduction to the Bootstrap. Chapman & Hall/CRC
Pr; 1998.

23. Harrell FE Jr, Lee KL, Mark DB: Multivariable prognostic models: issues in
developing models, evaluating assumptions and adequacy, and
measuring and reducing errors. Stat Med 1996, 15:361–387.

24. Yu L, Wang Z, Chen Y, Ding W, Jia H, Chan JF, To KK, Chen H, Yang Y, Liang
W, Zheng S, Yao H, Yang S, Cao H, Dai X, Zhao H, Li J, Bao Q, Chen P, Hou
X, Li L, Yuen KY: Clinical, virological, and histopathological manifestations
of fatal human infections by avian influenza A(H7N9) virus. Clin Infect Dis
2013, 57:1449–1457.
25. Qi X, Qian YH, Bao CJ, Guo XL, Cui LB, Tang FY, Ji H, Huang Y, Cai PQ, Lu B,
Xu K, Shi C, Zhu FC, Zhou MH, Wang H: Probable person to person
transmission of novel avian influenza A (H7N9) virus in Eastern China,
2013: epidemiological investigation. BMJ 2013, 347:f4752.

26. Bai T, Zhou J, Shu Y: Serologic study for influenza A (H7N9) among high-risk
groups in China. N Engl J Med 2013, 368:2339–2340.

doi:10.1186/s12916-014-0127-0
Cite this article as: Liao et al.: A clinical prediction rule for diagnosing
human infections with avian influenza A(H7N9) in a hospital emergency
department setting. BMC Medicine 2014 12:127.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Ethics statement
	Statistical analysis

	Results
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Funding
	Author details
	References

