Skip to main content
Fig. 1 | BMC Medicine

Fig. 1

From: Population-level mathematical modeling of antimicrobial resistance: a systematic review

Fig. 1

Sources of antimicrobial contamination, transmission of AMR, and development of mathematical models. Drivers of AMR as well as resistant pathogens themselves (antimicrobial, biocides, metals) may enter the environment through water (as effluent or through water sanitation systems) or soil (manure application or illegal dumping) from various sources including (i) medical therapeutic and prophylactic use in humans, (ii) veterinary use in companion or food animals, (iii) non-veterinary use in animals (growth promoters), (iv) direct or indirect use in horticulture and crop farming, (v) industrial scale prophylactic use in aquaculture, and (vi) pharmaceutical manufacturers themselves and various industrial applications. Resistant pathogens may then be transmitted to various living organisms through various routes including foodborne, waterborne, airborne, vectorborne, or direct contact. Zoonotic transmission is possible between humans and animals (domestic and wild). Transmission can be further intensified by insect vectors such as mosquitoes and flies, as well as human activity, such as global travel (tourism, migration) and food importation. The goal of mathematical modeling is to synthesize the data collected on AMR and design models to inform public health policy: step 1, identify key questions; step 2, extract or estimate disease parameters based on available data to build a model; step 3, assess model uncertainty/sensitivity; step 4, validate model results with an independent dataset and use to inform policy; and step 5, refine and revise model as needed with new data.

Back to article page