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Abstract

The launch of the 5th version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) has sparked a
debate about the current approach to psychiatric classification. The most basic and enduring problem of the DSM
is that its classifications are heterogeneous clinical descriptions rather than valid diagnoses, which hampers scientific
progress. Therefore, more homogeneous evidence-based diagnostic entities should be developed. To this end,
data-driven techniques, such as latent class- and factor analyses, have already been widely applied. However, these
techniques are insufficient to account for all relevant levels of heterogeneity, among real-life individuals. There is
heterogeneity across persons (p:for example, subgroups), across symptoms (s:for example, symptom dimensions)
and over time (t:for example, course-trajectories) and these cannot be regarded separately. Psychiatry should
upgrade to techniques that can analyze multi-mode (p-by-s-by-t) data and can incorporate all of these levels at the
same time to identify optimal homogeneous subgroups (for example, groups with similar profiles/connectivity of
symptomatology and similar course). For these purposes, Multimode Principal Component Analysis and
(Mixture)-Graphical Modeling may be promising techniques.
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Introduction

With the launch of the fifth version of the Diagnostic
and Statistical Manual of Mental Disorders (DSM-5), the
debate about current psychiatric diagnostics has come
into the limelight again, focusing on specific alterations
in the DSM-5, such as the deletion of pervasive develop-
mental disorder not otherwise specified (PDD-NOS) and
Asperger’s Disorder [1,2] and the inclusion of mourning
in major depressive disorder (MDD). However, more
fundamental topics,such as the medicalization of normal
behavior [3] and the categorical approach to continuous
phenomena, are also debated [4]. Perhaps the most
important criticism of the DSM-5 regards the poor val-
idity of its classification. Several researchers have even
stressed that the DSM-5 hampers research into the
underlying mechanisms in the etiology of psychopatho-
logy and that the current state of affairs is one of scien-
tific stagnation [5]. We argue that the development of
more valid psychiatric classifications is important in
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order to link mental states to specific causes in scientific
research, and that this process should be evidence-based.
Decreasing the amount of diagnostic heterogeneity is cen-
tral in this process.

The problem of diagnostic heterogeneity

Current psychopathological concepts are heterogeneous
by default whichrestricts their usefulness for research
[6,7]. In the past, evidence-based attempts to decrease
heterogeneity have been made. For depression, for in-
stance, subtypes have been identified with latent class
analyses (LCA) [8,9], symptom-dimensions with factor
analyses (FA) [10,11] and course-trajectory groups with
mixture growth analyses (MGA) [12,13]. Unfortunately,
these studies tackle only one aspect of heterogeneity at a
time. LCA focuses on person (p)-level heterogeneity, but
does not account for within-class symptom and course
variations. FA tackles symptom (s)-level heterogeneity,
but assumes stability across persons and time. MGA de-
scribes temporal (t) heterogeneity, but does not account
for s-level heterogeneity. Not surprisingly, these ap-
proaches have led to artificial models with limited replic-
ability [11].
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The solution: simultaneous heterogeneity reduction

If homogeneous diagnoses are what psychiatry aims for,
a data-driven approach should be designed to minimize
heterogeneity on each level simultaneously. To enable
reduction of p-, s- and t-level heterogeneity, three-mode
data are needed, visualized by Cattell’s data cube [14]
(Figure 1A). The cube consists of measured data (s-axis)
for n individuals (p-axis) at k time-points (t-axis). For
each combination of axes (slices), different statistical
techniques apply. Cross-sectional studies of heterogen-
eity apply to the p-by-s slice: LCA divides the p-axis into
classes (Figure 1B) and FA divides the s-axis into fac-
tors (Figure 1C). To model heterogeneity of the whole
slice, model combinations (for example,factor mixture
models) [15] can be used. Longitudinal studies of het-
erogeneity (for example, MGA) apply to the p-by-t slice,
modeling classes-based temporal trajectories on one or
more variables (Figure 1D). Although incomplete, this
summary shows that none of these models incorporate
all three sources of variation. If we look to other fields
(for example, psychometrics, mathematics), we can see
that statistical advances have reached the point where
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‘three-dimensional models’ are a possibility. Here, we
briefly discuss two candidates.

The latent variable approach: three-mode principal
component analysis (3MPCA)

3MPCA [16] is an exploratory technique, designed to
decompose the latent structure of three-dimensional
data by identifying the number of components that
make up each of the axes. Investigation of the interac-
tions between the modes can yield insights into the la-
tent structure of three-dimensional data as a whole. In
anxiety patients, for instance, 3MPCA showed that pa-
tients could be divided into subgroups (p-component)
with different clusters of symptoms (s-component) in
different situations (t-component) [17]. Such an approach
can be extended to a broader range of psychopathological
phenomena. 3MPCA does have its limitations: it requires
subjective judgments to enable modelselection and can
yield hard-to-interpret results. However, it is a fully de-
veloped technique that can be used to explore three-
dimensional psychopathology data for more homogeneous
diagnostic entities.
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Figure 1 Cattell’s ‘data-cube’ (A), latent class analysis with three classes (red, green, blue) in the S-by-P slice (B), factor analysis with
two factors within the S-by-P slice (C) growth mixtureanalysis with three classes (red, green, blue) within the P-by-T slice (D).
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The network approach: (mixture) graphical analysis
Traditional concepts of psychopathology (diagnoses,
subtypes, dimensions) lean heavily on the assumption
that corresponding latent constructs exist. Unfortu-
nately, it is uncertain to what extent this is a realistic as-
sumption [18]. Rather than assuming that different
symptoms (energy loss, suicidal ideation) are caused by
one underlying disease (for example, depression), one
could instead look at how symptoms interact, amplify
and sustain each other over time in a network of symp-
toms (nodes) and causal links (edges) [18,19], using
graphical model methodology, developed in biostatistics
[20]. Such patient-descriptions are highly personalized:
they take homogeneity to the extreme, both at the s-
and p-level. Within three-dimensionaldata the s-axis is
completely subdivided down to its smallest components
(for example, symptoms). On the p-axis, for each person,
the repeatedly measured symptoms are incorporated in a
personalized network model. On the p-level, such an ap-
proach could lead to an indefinite number of possible
network configurations, leaving us without any common
denominators. However, subgroups with common net-
work characteristics can be identified by mixture/latent
class analyses on networkmodel parameters. Such an ap-
proach can yield subtypes that are not merely defined by
common symptomatology, but particularly by their ob-
served interconnectedness.

Conclusions

The development of evidence-based diagnoses in psych-
iatry is bound to require the use of datadriven tech-
niques. In order for the resulting diagnostic models to
optimally reflect real-world variation among patients,
multiple sources of heterogeneity should be simulta-
neously evaluated. Although complex, and dependent
upon the dataquality, such methods are a necessity when
psychiatric diagnosis seeks an empirical basis.
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