
COMMENTARY Open Access

A practical method to target individuals for
outbreak detection and control
Gerardo Chowell1,2* and Cécile Viboud2

Abstract

Identification of individuals or subpopulations that
contribute the most to disease transmission is key to
target surveillance and control efforts. In a recent
study in BMC Medicine, Smieszek and Salathé
introduced a novel method based on readily available
information about spatial proximity in high schools, to
help identify individuals at higher risk of infection and
those more likely to be infected early in the outbreak.
By combining simulation models for influenza
transmission with high-resolution data on school
contact patterns, the authors showed that their
proximity method compares favorably to more
sophisticated methods using detailed contact tracing
information. The proximity method is simple and
promising, but further research is warranted to
confront this method against real influenza outbreak
data, and to assess the generalizability of the
approach to other important transmission units, such
as work, households, and transportation systems.
See related research article here http://www.
biomedcentral.com/1741-7015/11/35
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Background
The transmission potential of an infectious disease is
directly related to the characteristics of the infectious
agent, its host population and the local environment [1].
The contribution of these factors can be encapsulated in
a single parameter that is key for disease control,
namely, the ‘reproduction number’, which quantifies the

average number of secondary cases generated by an
infectious individual during the early epidemic phase
[1]. Identification of individuals or subpopulations asso-
ciated with high transmission potential is particularly
useful to guide surveillance and control strategies, espe-
cially when resources are limited [2].
Understanding the complexity of dynamic human

interactions and contact networks is crucial to identify-
ing hotspots of disease transmission during an outbreak
[3]. The dynamic social contact networks relevant for
disease spread depends on a number of factors, includ-
ing individual host characteristics (e.g, age, prior immu-
nity, number of contacts), pathogen characteristics
(transmission mode), characteristics of the space in
which individuals interact (for example, confined versus
open setting, room capacity), and the duration and
proximity of human interactions.
Recent technological advances in miniature wireless

sensing devices have allowed unobtrusive and unsuper-
vised quantification of the dynamic network of human
interactions in various settings, including schools [4-6],
conferences [7], and hospitals [8]. In particular, these
innovative technologies have increased our understand-
ing of face-to-face contact patterns relevant for the
spread of rapidly transmitted infectious agents [4,9].
Given the large amount of costly information captured
by these devices, there is active debate on the minimum
level of data that is required to capture the essence of
disease transmission and to be sufficient to inform dis-
ease control [7,10].

Performances of various indicators of social
connectivity
A recent study by Smieszek and Salathé, published in
BMC Medicine [11], used high-resolution contact-net-
work data collected by wireless sensing devices during a
1-day period at a high school in the USA, combined
with extensive epidemic simulations, to evaluate the
effectiveness of several metrics to identify individuals
who play a significant role in outbreak dissemination.
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The consolidated network dataset was limited to close
proximity interactions, based on records indicating face-
to-face contacts within a distance of less than 3 m at a
certain point in time. The dataset also included location
records indicating the presence of an individual in a
specific classroom.
The authors then quantified the performances of a vari-

ety of indicators of social connectivity, which required
different levels of information on the high-school contact
network to identify individuals with high transmission
potential. In particular, the authors introduced a low-cost
indicator of social connectivity, based on the ‘collocation-
ranking method’, which relies on the cumulative amount
of time that an individual spends with other individuals
in the same room, modulated by class size. Such informa-
tion does not rely on the detailed structure of the high-
school contact network, and can be retrieved from sche-
dule data alone. The Smieszek and Salathé study relied
on simulations of influenza transmission on the detailed
high-school contact network to assess the performances
of the different indicators, in terms of their ability to
identify individuals at higher risk of infection and those
with early disease onset.

Findings and potential applications
Epidemic simulations showed that the simple schedule-
based collocation ranking indicator clearly outperformed
methods selecting individuals at random, and compared
favorably with more data-hungry indicators. Because col-
lecting reliable data about individual-level interactions is
cumbersome and expensive to obtain at the community
level, the authors proposed that their low-cost collocation
method can be exploited for the design of sentinel surveil-
lance systems, with the potential to quickly detect the
onset of an infectious disease outbreak, and thereby opti-
mize mitigation and prevention strategies. In particular,
sentinel high-school students could be selected from those
with high collocation ranking, and these could then be
monitored for their infection status throughout the influ-
enza season, and/or be prioritized for vaccination in the
case of vaccine shortage, in an effort to stamp out an
emerging outbreak.

Limitations and future directions
This interesting proof-of-concept study by Smieszek and
Salathé addressed social interactions within a high
school, which is an important focus for seasonal and pan-
demic influenza transmission [12]. As acknowledged by
the authors, a key limitation of this study is the lack of
validation against epidemiological data from real school
outbreaks. The simulation model used to evaluate the
performances of the method is a conceptualized version
of disease transmission, and although it is driven by real
contact information, it remains one step removed from

the actual disease-transmission process. A previous study
combining outbreak data in an elementary school with
contact-network information highlighted the importance
of gender on influenza transmission, with children of the
same gender infecting each other more frequently
(reflecting assortative mixing) [4], an issue that was not
considered by Smieszek and Salathé. Interestingly, school
outbreak data have also shown that the exact location of
children within the classroom does not matter, which
supports the use of simple class-schedule information as
proposed by Smieszek and Salathé [11] rather than the
use of more detailed seating charts. Although there has
been good progress overall in elucidating social interac-
tions among school-age children, more studies are
needed to address whether contact patterns, and hence
transmission links, might differ between elementary and
high schools.
Another limitation of the school-based study by Smies-

zek and Salathé [11] relates to the contribution of other
units to disease transmission. About one-third of all
influenza secondary-transmission events are believed to
occur within households [13], whereas only 7 to 20% are
thought to occur in schools [14]. Hence, estimating the
relative infection risk of individuals in a variety of settings
relevant for disease transmission, including schools,
households, conferences, and transportation systems, will
be important in future research. It is not clear how the
method proposed by Smieszek and Salathé [11] could be
generalized to household and work environments, where
systematic ‘schedules’ are more difficult to obtain.
As noted by the authors, the transmission mode of

influenza and other respiratory pathogens is not clearly
understood, but probably involves a combination of
direct contact and transmission by fomites and aerosols,
which makes it difficult to capture the social network
relevant for disease transmission. Because the transmissi-
bility of influenza has been shown to be associated with
environmental conditions [15,16], actual transmission
rates could vary within the same school, house, or office
building, owing to local differences in the environment.
In the future, more elaborate studies should collect local
environmental variables such as room ventilation rates to
better quantify influenza transmission potential in con-
fined settings [17].
In summary, Smieszek and Salathé [11] have introduced

a promising and practical method to identify individuals
with high infection potential who can be targeted for out-
break detection and control. Future studies should employ
consistent methodological approaches to measure contact
networks in different settings, in parallel with careful dis-
ease monitoring. Technological advances in contact-net-
work sensing devices and pathogen identification methods
(for example, multiplex PCR), combined with innovative
approaches for disease surveillance (for example, web-based
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and smart-phone technologies [18]), have huge potential to
increase our understanding of infectious disease transmis-
sion and to suggest novel ways of detecting and controlling
outbreaks.
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