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Abstract
Background: We have engaged in an international program designated the Bank On A Cure, which
has established DNA banks from multiple cooperative and institutional clinical trials, and a platform
for examining the association of genetic variations with disease risk and outcomes in multiple
myeloma.

We describe the development and content of a novel custom SNP panel that contains 3404 SNPs
in 983 genes, representing cellular functions and pathways that may influence disease severity at
diagnosis, toxicity, progression or other treatment outcomes. A systematic search of national
databases was used to identify non-synonymous coding SNPs and SNPs within transcriptional
regulatory regions. To explore SNP associations with PFS we compared SNP profiles of short term
(less than 1 year, n = 70) versus long term progression-free survivors (greater than 3 years, n = 73)
in two phase III clinical trials.

Results: Quality controls were established, demonstrating an accurate and robust screening panel
for genetic variations, and some initial racial comparisons of allelic variation were done. A variety
of analytical approaches, including machine learning tools for data mining and recursive partitioning
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analyses, demonstrated predictive value of the SNP panel in survival. While the entire SNP panel
showed genotype predictive association with PFS, some SNP subsets were identified within drug
response, cellular signaling and cell cycle genes.

Conclusion: A targeted gene approach was undertaken to develop an SNP panel that can test for
associations with clinical outcomes in myeloma. The initial analysis provided some predictive
power, demonstrating that genetic variations in the myeloma patient population may influence PFS.

Background
The draft sequence of the human genome published in
2001 [1,2], followed by the more recent improved
sequence release of the International Human Genome
Consortium [3], have shown that there are large genetic
variations in the human genome (polymorphisms).
Unlike somatic mutations, polymorphisms are stable and
heritable. Polymorphisms include single nucleotide poly-
morphisms (SNPs), and micro- and minisatellites, and
may include heritable insertions and deletions (indels).
Significantly, SNPs account for over 90% of genetic varia-
tion in the human genome [2]. An important principle
that has emerged from the consideration of genetic varia-
tion is that disease risk and clinical outcomes can be influ-
enced by individual genetic backgrounds. Thus, while
many diseases may have their unique genetic signatures,
individual patient outcomes are dependent on heritable
variations in a wide variety of genes and pathways affect-
ing cellular functions and drug responses. Moreover,
genetic variations in such global functions as inflamma-
tion, immunity and cellular signaling in the tumor micro-
environment can have an impact on diverse clinical
responses.

Multiple myeloma (MM) is a universally fatal disease
characterized by the accumulation of malignant plasma
cells in the bone marrow [4]. It accounts for 2% of all can-
cer deaths and 15% of all hematologic malignancies, with
about 13,000 deaths per year in the USA [4]. While there
are certain common clinical features such as anemia, bone
lesions, hypercalcemia, immunodeficiency and renal fail-
ure, the disease shows significant heterogeneity with
regard to morphology, disease progression, response to
therapy and incidence of secondary malignancies. This
heterogeneity likely is due, in part, to differences in
genetic abnormalities within the malignant clone, as
shown in many studies on chromosomal abnormalities
[5] and gene expression profiles [6-8].

The growth of MM plasma cells is dependent on a com-
plex interplay among various growth factors, adhesion
molecules and other factors in the tumor microenviron-
ment. Thus it might be expected that genetic variations in
this interplay could have a profound influence on disease
initiation, progression, associated bone complications,
and response. Moreover, genetic variation in immunity

and inflammation is an important consideration, as are
variations in genes coding for drug metabolism and trans-
port. Indeed, death from MM commonly results from
infections associated with a severely compromised
immune system resulting, in part, from therapeutic toxic-
ities that may be related to variable rates of drug metabo-
lism [9].

In order to address these issues we have engaged in an
international program designated as the Bank On A Cure
(BOAC). A cooperative program was established to bank
DNA from multiple cooperative groups and institutional
trials, and to develop a platform for examining the associ-
ation of genetic variation with disease risk and outcomes.
BOAC receives samples through Material Transfer Agree-
ments, and clinical outcomes are provided through agree-
ments with the Cancer Research and Biostatistics Group
(Seattle) and the University of Minnesota (with Institu-
tional Review Board, IRB, approval). Currently, the bank
has over 2100 samples from the USA, representing six dif-
ferent clinical trials, patient-provided BOAC buccal cell kit
samples, and unaffected controls accumulated since 1987.
In this report we describe the development of a novel cus-
tom SNP panel based on the Affymetrix/Gene Chip Tar-
geted Genotyping Platform, which contains 3404 SNPs
representing variations in a variety of cellular functions
and networks, and its initial application to myeloma DNA
samples collected in the BOAC bank. We examined popu-
lation frequencies in affected and unaffected individuals
among different ethnic groups, and we developed some
novel early approaches in using the SNP panel to deter-
mine whether genomic variations in the patient popula-
tion influence survival.

Methods
Control and patient samples
DNA was prepared from 102 Coriell cell lines [10], repre-
senting 31 Caucasian, 24 African American, 23 Hispanic,
and 24 Asian racial groups (unaffected by myeloma).
DNA samples were also prepared from 143 myeloma
patients enrolled in phase III clinical trials: E9486, n = 52
[11] and S9321, n = 91 [12], with informed consent; and
34 unaffected, spousal controls (all Caucasian). E9486
patients ranging in age from 55 to 70 years were treated
with Vincristine, Busulfan, Melphalan, Cyclophosspha-
mide, Prednisone (VBMCP) followed by randomization
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to no further treatment, IFN-a, or cylcophosphamide;
and, although there was variation in survival among all
patients, no significant differences in survival were noted
among the three arms of the trial [11]. Patients included
in this study from S9321 were in the same age range, and
received Vincristine, Adriamycin, Dexamethasone (VAD)
induction followed by VBMCP [12]. S9321 patients in the
trial arm randomized to high dose melphalan+TBI fol-
lowed by transplant were not included. Patients for this
analysis were selected based on progression-free survival
(PFS) of less than 1 year (n = 70) or greater than 3 years (n
= 73).

Custom BOAC SNP chip design and content
A directed, custom BOAC SNP chip design was developed
with specific criteria from public and commercial data-
bases. Rather than a total genome wide screen, a plan was
undertaken to develop a custom SNP chip, focusing on
functionally relevant polymorphisms playing a role in
normal and abnormal cellular functions, inflammation
and immunity, as well as drug responses. Candidate gene
lists were created and each gene in the candidate list was

systematically investigated with a selection of SNP data-
bases to harvest SNPs that may have a functional effect on
gene action. Figure 1 outlines the approach. Searches for
genes were developed, using public and commercial soft-
ware programs in PubMed, iHOP [13], as well as pathway
databases, such as PharmGKB Pathways [14], BioCarta
[15], KEGG [16], Ingenuity, and Pathway Assist (Strata-
gene, Inc.).

The Human Gene Mutation Database [17] contains a
searchable database of polymorphisms associated with
diseases cited in the literature. This database was used in
conjunction with SNP500, SNPper, and MutDB to obtain
the SNP id (rs number) of polymorphisms in the gene
lists. A systematic search for all non-synonymous SNPs
(ie, resulting in coding change) with a validated, minor
allele frequency greater than 2% in all of the candidate
genes was completed using SNP 500, dbSNP, and Affyme-
trix databases. SNPs failing to meet a 2% population fre-
quency were included if the frequency was higher than 5%
in selected racial subgroups (eg, Asian, African American,
Caucasian).

SNP selection strategy for the BOAC SNP panelFigure 1
SNP selection strategy for the BOAC SNP panel. For full description, see Methods and Results. Numbers under the cell 
functions indicate the final number of SNPs on the chip in each category.
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A systematic search of the promoter regions in all the can-
didate genes for SNPs present in homologous regions
between human and mouse with a minor allele frequency
greater than 2% were identified using the PromoLign
Database [18]. Many of the SNPs selected in this method
were seen to lie in or adjacent to transcription binding
sites. Some additional promoter SNPs that may affect
transcription binding sites were also identified using the
FESD [19] database. Affymetrix provided several in-house
validated SNP lists, including: inflammation and immu-
nity, drug metabolism, and cancer lists. Three groups of
admixture SNPs, which differ in frequency between Asian,
African and European groups, were added to allow correc-
tions in data analyses for racial specific variations [20].
TagSNPs in genes influencing drug metabolism and trans-
port were added from the supplementary data from
Ahmadi et al. [21]. The full SNP panel includes 3404 SNPs
in 983 genes.

Genotyping was performed using the Affymetrix® Gene-
Chip® Scanner 3000 Targeted Genotyping System (GCS
3000 TG System), which utilizes molecular inversion
probes to simultaneously identify the 3404 pre-selected
SNPs. The protocol has previously been described [22].
All genotyping experiments were performed in strict
adherence to the manufacturer's protocol.

Statistical methods
Patients from the Eastern Cooperative Oncology Group
(ECOG) and Southwest Oncology Group (SWOG) trials
were selected using the following criteria: they were all
Caucasian and between 55 and 70 years of age at diagno-
sis; patients with IgA subtype were excluded (as this is an
independent, poor prognosis variable). Patients with the
longest progression-free survival (PFS > 3 years) and
patients with the shortest progression-free survival (PFS <
1 year) were selected.

Two approaches were used to determine whether there
was true discrimination of SNP genotypes in the PFS anal-
ysis, when analyzed as a conglomerate data set.

1) Leave-one-out cross-validation [23]. In this approach, the
original data set of 143 patients was divided into two
groups: one consisting of a single patient and one consist-
ing of the remaining 142 patients. A classification model
was built using the 142 patients as a training set and then
this classification model was used to classify the single
'left out' patient. For this study, as well as the class label
study below, we used a support vector machine (SVM)
classifier, as implemented by the Weka package [24], and
specified a liner kernel.

2) Randomization of class labels [25]. For the original data
and labels, we followed the standard practice for building

and evaluating a classifier [25], that is, compare the per-
formance of a classifier using the original and randomly
shuffled class labels (permutations). There were 143 sub-
jects, consisting of 73 cases and 70 controls. The training
set was created by randomly selecting 50 cases and 50 con-
trols and using the remaining subjects as a test set. One
hundred runs were performed for the original data and
class labels.

We also analyzed each clinical trial data set separately and
used the other clinical trial data set as a validation set.
Fisher's exact test was used as a univariate screening tool
to rank the SNPs by how strongly they are associated with
PFS. The top 50 SNPs of each trial with the smallest p-
value were selected and used in a recursive partitioning
analysis. For this recursive partitioning analysis we used
RPART from the R software package, a language and envi-
ronment for statistical computing. The tree-based library
RPART was developed as described [26]. The regression
tree resulting from the analysis was subsequently pruned
in order to avoid over-fitting. This regression tree was used
on both the trial it was developed on as well as the other
trial for validation purposes. Specificity and sensitivity
were determined for each data set.

Finally, we attempted univariate ranking and recursive
partitioning of the conglomerate data set (both trials com-
bined) using random forests [27]. Validation was exam-
ined by randomly mixing survival data sets and
determining and comparing the predictive accuracy of
true survival subsets and random subsets.

Results
SNP chip panel design
A final custom SNP chip panel of 3404 SNPs from 983
genes meeting the above criteria was produced for the
Affymetrix/Gene Chip Targeted Genotyping Platform. A
full documented list of SNPs is found in [28] and includes
rs assignments, gene identifiers (Entrez), functional
grouping, and SNP effect (coding, non-coding, regulatory,
haptag). Table 1 summarizes a variety of functional cate-
gories represented on the chip. Figure 1S (found in [28])
shows the chromosomal distribution of the SNPs
included. Although the SNP chip was not designed to
serve as a genome linkage panel, the chromosomal distri-
bution is quite broad (see additional File 1), and may pro-
vide functional targets for higher density linkage chips or
regions identified by other approaches such as compara-
tive genomic hybridizations or genome wide screens. We
also examined representation among a variety of defined
metabolic and signaling pathways. Because of the filter
criteria, it was found that most pathways did not have a
high degree of representation, suggesting SNPs for many
of the genes not included may not have coding or regula-
tory impact. This becomes an important consideration in
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attempts to associate outcomes with specific pathways.
Instead, common functional groupings turned out to be a
better analytical target (see below).

It is noteworthy to compare the content of the BOAC SNP
chip to the SNPs represented on the Affymetrix 500K
Array genome wide scan. The 500K Array panel is prima-
rily derived from two restriction enzyme cleavage frag-
mentations, with SNP representation for each fragment,
providing a comprehensive, global SNP panel. Well over
95% of the panel is intragenic, non-coding; and thus, its
primarily use is to identify copy number, chromosomal
regions, and linkage. Indeed, of the 3404 SNPs on the
BOAC SNP chip, only 401 are present on the 500K Array
panel. Thus, while the BOAC SNP chip does not have gene
wide coverage, it does have a higher density of coding and
regulatory content.

Samples and quality control assessments
For this study, a total of 279 DNA samples were profiled
by the BOAC SNP chip. One hundred and thirty-six unaf-
fected controls from the Coriell panel and spouses of mye-
loma patients were profiled. The Coriell panel included
31 Caucasian, 24 Asian, 23 Hispanic, and 24 African
American samples of unaffected individuals. One hun-
dred and forty-three myeloma samples were profiled,
from the phase III clinical trials, ECOG E9486 (n = 52)
and the chemotherapy arm of the ECOG-SWOG inter-
group trial S9321 (n = 91). Treatment protocols are given
in the Methods section. This study was in compliance with
the Helsinki Declaration, and approved by the IRB at the

University of Minnesota (approval # 0311M53428), with
patient consents collected by the clinical cooperative
groups' trial offices. Among all samples profiled, we had
an average SNP call rate of 96%. The profiles of the Coriell
panel allowed us to determine allelic frequencies in racial
groups and unaffected populations. Of the 3404 SNPs on
the BOAC panel, 786 were contained in the SNP500 can-
cer database, allowing us to determine concordance
between the two Coriell data sets. We found very good
agreement between our data set and the national data-
base, with an average of > 97% concordance. We also
duplicated the profile of a number of samples (n = 10),
and found better than 99.7% reproducibility between
duplicate samples. This concordance and duplication rate
was also equivalent when comparing the BOAC SNP
panel run in the USA and UK facilities, providing a cross
validation between BOAC laboratory sites. Finally, for
every batch run of 24 samples, the Affymetrix platform
includes a control DNA sample, and this provided contin-
uous monitoring and quality assurance across the study.

Allelic variations by race
It has been well established that there are significant
allelic frequency differences by race, or ethnic and
regional origins [29]. Part of the SNP panel design
included the admixture SNP panel that shows significant
racial variation. Figure 2A shows a diagonal plot in which
each SNP minor allelic frequency is plotted by frequency
in the Caucasian (n = 92) versus the African American (n
= 27) myeloma populations. Equivalent frequencies
would be expected to cluster on the 45 degree angle; and

Table 1: Functional categories on the SNP panel

Functional Category #Genes #SNPs

ADME/DMET 130 445
Cancer 406 1558
Carbohydrate Metabolism 69 384
Cell Cycle 230 867
Cell Death 433 1662
Cell Signaling 90 352
Cell-To-Cell Signaling and Interaction 248 880
Cellular Growth and Proliferation 420 1451
Cellular Movement 227 923
DNA Replication, Recombination, and Repair 204 854
Drug Metabolism 20 114
Gene Expression 240 951
Hematological Disease 223 876
Immune Response 247 985
Lipid Metabolism 146 664
Molecular Transport 170 708
Nucleic Acid Metabolism 30 161
Skeletal and Muscular Disorders 64 289
Skeletal and Muscular System Development and Function 77 278
Signaling Kinase, Phosphatase, Transferase 198 885
Inflammation & Immunity 196 813
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Racial allelic frequency patternsFigure 2
Racial allelic frequency patterns. A) Diagonal plot comparing minor allele frequencies between BOAC SNPs of Caucasian 
versus African American myeloma patients. Note high rate of allelic variation. B) Diagonal plot comparing minor allele frequen-
cies between BOAC SNPs of Caucasian myeloma patients versus unaffected Caucasians.
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it is readily apparent that frequencies of many of the SNPs
vary widely between races. Indeed, the racial disparities in
allelic frequencies were far more significant than could be
assessed in case-control or outcome studies, so that subse-
quent initial survival analyses were done only on a single
racial group. Moreover, given the inclusion criteria of
SNPs (included if greater than 5% in one racial group), it
is noteworthy that 401 SNPs show allelic variation only in
the African Americans (ie, no variations seen in Cauca-
sian). In contrast, in a comparison of unaffected samples
with affected samples, restricted to Caucasians, there is
high concordance across the total panel of SNPs (Figure
2B). This provides an opportunity to examine smaller
clusters or functional associations with disease that may
be masked by the larger multi-racial pools. However, the
object of this study was not to compare variations within
different ethnic patient populations.

Allelic variations associated with progression-free survival
Although genetic deregulation within the tumor popula-
tion has been shown to stratify clinical outcomes [5-8], a
significant impact on therapeutic outcomes may result
from genetic variations in germline DNA affecting a
number of important functions, including drug metabo-
lism, transport, DNA repair, immune response, growth
factors, angiogenesis, etc. To explore the SNP associations
on the BOAC SNP chip we chose to examine an extreme
phenotype comparison in two phase III clinical trials with
similar chemotherapeutic treatments. E9486 patients
ranging in age from 55 to 70 years were treated with
VBMCP followed by randomization to no further treat-
ment, IFN-a, or cylcophosphamide; and, although there
was variation in survival among all patients, no significant
differences in survival were noted among the three arms of
the trial [11]. Patients included in this study from S9321
were in the same age range, and received VAD induction
followed by VBMCP [12]. S9321 patients in the trial arm
receiving high dose melphalan+TBI, going on to trans-
plant were not included. The goal was to identify SNPs
that may distinguish short term (less than 1 year) versus
long term progression-free survivors (greater than 3
years).

While our banking represents one of the largest collec-
tions of myeloma specimens, one of the difficulties
encountered in this data analysis still results from rela-
tively small sample sizes of patients with similar treat-

ment protocols. With the data sets we had, we used a
variety of approaches to determine whether there was true
discrimination of SNP associations between the two PFS
groups. The 'leave-one-out' approach is a standard
approach in classification [23], but is not typically used,
due to computational cost, when data sets are large. How-
ever, in this case, only 143 classification runs were neces-
sary. The results of those runs performed using an SVM
classifier from Weka [24] are summarized in Table 2. SVM
is a supervised method used for classification and regres-
sion. It belongs to a family of generalized linear classifiers.
A special property of SVM is that it simultaneously mini-
mizes the empirical classification error and maximizes the
predictive separation.

The classification accuracy of the leave-one-out approach
is (50+45)/143 = 0.66. If there was no true discriminating
signal in the data, then the classifiers built by the leave-
one-out procedure should produce a table with a rela-
tively evenly distributed number of entries among the
four cells, since the classes are of roughly the same size
and the predictions should be random. However, the
observed table is far from that random distribution. By
using Fisher's exact test it is possible to compute the prob-
ability (p-value) for obtaining a table with the same or
better accuracy of prediction by random chance. Specifi-
cally, the p-value is 7.7 × 10-5, which strongly indicates
that the result is not due to random chance. The calculated
odds ratio (OR) for survival is 3.9 CI (2.0, 7.8). We subse-
quently focused on SNP subsets that might provide more
directed functional associations and found that the best
predictor of survival was achieved when just the non-syn-
onymous SNPs and the promolign SNP subset in introns
was used. The accuracy of prediction increased to 75.5%
OR = 9.6 CI (4.5, 20.5).

To determine whether genotypes in the SNP panel had
true discriminatory power we randomly permuted the
outcome across the two groups and calculated the classifi-
cation accuracy. A total of 10,000 random group compar-
isons were performed (ie, survival groups were randomly
mixed) with the distribution of accuracy shown in Figure
3. As expected, the most common accuracy was close to
50%, with a random distribution around the mean. Nota-
bly, no random grouping achieved the accuracy of the
original survival classification of 66%, nor the 75% sub-

Table 2: Predicted vs. actual survival classes for patients.

Actual Patient PFS < 1 year Actual Patient PFS > 3 year

Predicted Patient PFS < 1 year 45 23
Predicted Patient PFS > 3 years 25 50
TOTALS 70 73
Page 7 of 14
(page number not for citation purposes)



BMC Medicine 2008, 6:26 http://www.biomedcentral.com/1741-7015/6/26
set, indicating that, as a group, the SNPs are providing a
measure of true discrimination of survival.

Another approach that is commonly used for classifica-
tion is the generation of random subsets for training and
validation. A classification model is built on the training
subset, and is evaluated on a separate test set. The process
is repeated and yields a distribution of accuracy on the
data set labels (eg, short versus long PFS). This is then
repeated with random shuffling of the survival data sets to
determine whether there is true signal accuracy. For this
analysis, we again used a support vector machine classi-
fier, as implemented by the Weka package [25], using a
preset linear kernel option). The training set consisted of
repeated samples of 50 short term and 50 long term survi-
vors, with the remaining patient samples used for test val-
idation. One hundred runs were performed for the short
and long term classifiers, and the average accuracy on test

set analysis was 61.4% +/-7.1%. One hundred runs of ran-
dom mixed set comparisons generated an average accu-
racy of 47.5% +/-7.3%. This further suggests that there are
true differences in the genotypes that impact survival clas-
sification. A t-test was performed to evaluate the differ-
ence between the classification results based on the
original and randomized class labels, resulting in a p-
value for survival classification of less than 0.0001. This
further indicates that, as a group, the SNPs are providing
a measure of true discrimination of survival.

Each of the above approaches demonstrated that the SNP
panel provided discrimination; however, we attempted to
explore possible subsets of SNPs that may drive the asso-
ciation. We used Fisher's exact test as a univariate screen-
ing tool to determine the association of SNPs with each
trial separately (Tables 3 and 4), then using the top 50
rank ordered SNPs, performed recursive partitioning to

Survival prediction accuracy versus distribution of random subsets from the BOAC SNP panelFigure 3
Survival prediction accuracy versus distribution of random subsets from the BOAC SNP panel. The 173 SNP 
profiles were randomly paired 10,000 times, and the accuracy of the SNP prediction was determined, resulting in a distribution 
of accuracy, centered around 50%. This is compared with survival group prediction accuracy of the full SNP panel (66%) and 
the subset of SNPs (76%) described in the text. Odds ratios and confidence intervals are given for each. In both cases the p-
value for predictive power is less than 0.0001.
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identify the combination of SNPs that best distinguish
PFS groups. In recursive partitioning each genotype is
evaluated on its ability to make a correct prediction, creat-
ing a decision node. A pruned decision tree is created in
which the minimum number of the strongest nodes cre-

ates a group prediction. From the results of each trial, we
then validated on the other trial.

In the univariate ranking, we did not correct for multiple
comparisons; that would certainly reduce the p-value sig-

Table 3: Top SNPs ranked by univariate analysis for trial S9321

Rank rs ID pval Gene Sym Gene Name SNP Function

1.0 rs2066534 0.001280 FMO3 Flavin containing monooxygenase 3 intron
2.0 rs696217 0.001877 GHRL Ghrelin precursor coding-nonsynon
3.0 rs1043424 0.002404 PINK1 PTEN induced putative Kinase 1 coding-nonsynon
4.0 rs174680 0.003361 COMT Catechol-O-methyltransferase intron
5.0 rs316132 0.003443 GSTA4 Glutathione S-transferase A4 intron, TagSNP:GSTA4
6.0 rs1884725 0.004564 XDH Xanthine dehydrogenase coding-nonsynon
7.0 rs2069391 0.004830 CDK2 Cyclin-dependent kinase 2
8.0 rs4148217 0.006167 ABCG8 ATP-binding cassette, sub-family G (WHITE), member 8 

(sterolin 2)
coding-nonsynon

9.0 rs11700112 0.007423 PAK7 P21 (CDKN1A)-activated kinase 7 coding-nonsynon
10.0 rs1052536 0.007643 LIG3 Ligase III, DNA, ATP-dependent untranslated
11.0 rs2618346 0.008033 DUSP1 Dual specificity phosphatase 1 3' UTR
12.0 rs9282564 0.008239 ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1 coding-nonsynon
13.0 rs53683 0.008429 GHRL Ghrelin precursor intron
14.0 rs2227314 0.009244 IL12A Interleukin 12A 

(natural killer cell stimulatory factor 1, cytotixic lymphocyte 
maturation factor 1, p35)

intron

15.0 rs1801243 0.010739 ATP7B ATPase, Cu++ transporting, beta polypeptide 
(Wilson disease)

coding-nonsynon

16.0 rs2953983 0.010792 POLB Polymerase (DNA directed), beta intron
17.0 rs4148946 0.011822 CHST3 Sarbohydrate (chondroitin 6) sulfotransferase 3 untranslated
18.0 rs7185307 0.011895 TNFRSF17 Tumor necrosis factor receptor superfamily, member 17 locus, TagSNP:TNFRSG17(BCMA)
19.0 rs699473 0.012077 SOD3 Superoxide dismutase 2, extracellular intron
20.0 rs880324 0.012969 NFATC2 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-

dependent 2
intron

Table 4: Top SNPs ranked by univariate analysis for trial E9486.

Rank rs ID pval Gene Sym Gene Name SNP Function

1.0 rs10018625 0.001536 TAG ERROR TAG ERROR unknown, TAG ERROR
2.0 rs1047643 0.001603 FDFT1 Farnesyl-diphosphate farnesyltransferase 1 coding-synon
3.0 rs20541 0.001644 IL13 Interleukin 13 coding-nonsynon
4.0 rs2108622 0.0020374 CYP4F2 Cytochrom P450, family 4, subfamily F, polypeptide 2 coding-nonsynon
5.0 rs3759259 0.002362 STYK1 Protein kinase STYK1 coding-nonsynon
6.0 rs1801133 0.003251 MTHFR 5, 10-methylenetetrahydrofolate reductase (NADPH) coding-nonsynon
7.0 rs2069456 0.003375 CDK5 Cyclin-dependent kinase 5 intron
8.0 rs1131532 0.005650 TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10 coding-synon
9.0 rs882709 0.005965 SETX senataxin coding-nonsynon
10.0 rs4646421 0.007847 CYP1A1 Cytochrome P450, family 1, subfamily A, polypeptide 1 intron
11.0 rs1799969 0.008221 ICAM1 Intercellular adhesion molecule 1 (CD54), human rhinovirus receptor coding-nonsynon
12.0 rs3822430 0.009157 SRD5A1 Steroid-5-alpha-reductase, alpha polypeptide 1 

(3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1)
coding-synon

13.0 rs7903344 0.009471 CHUK Conserved helix-loop-helix ubiquitous kinase coding-nonsynon
14.0 rs13926 0.011531 TRAP1 TNF receptor-associated protein 1 coding-nonsynon
15.0 rs3172469 0.012006 BCL6 B-cell CCL/lymphoma 6 (zinc finger protein 51) intron
16.0 rs215101 0.012028 ABCC1 ATP-binding cassette, sub-family C (CFTR/MRP), member 1 intron, TagSNP:ABCC1
17.0 rs2227564 0.012246 PLAU Plasminogen activator, urokinase coding-nonsynon
18.0 rs3096057 0.012484 CSF1 Colony stimulating factor 1 (macrophage) Promoter
19.0 rs6474491 0.013935 STAR Steriodogenic acute regulator Promoter
20.0 rs2066471 0.015231 MTHRF 5, 10-methlyenetetrahydrofolate reductase (NADPH) intron
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nificance, but would not alter the rank order comparison.
This approach does examine the association of each indi-
vidual SNP; it is more likely that complex interactions
may drive association of groups of SNPs not revealed by
univariate ranking. Nevertheless, among the top ranked
individual SNP variations in both trials were those associ-
ated with drug metabolism/detoxification/transport,
including: cyp genes, multiple variants of GSTA4, SLCO,
UGT1, NAT2, ABCB genes; as well as genes impacting cel-
lular response, including: BMP2 (inducing myeloma
apoptosis) [30], cathepsin B (inducing IL-8 dependent
cellular migration and angiogenesis [31,32], XRCC5
(DNA repair); and genes associated with proliferative
responses (PCNA, MAPK, cyclin kinase). The association
of multiple alleles of GSTA4 is particularly compelling,
suggesting consistency in its impact across several variant
alleles. In addition, several alleles are in linkage disequi-
librium, appearing as a cluster in the list – providing qual-
ity controls (as linked genes would be expected to show
the same association).

The first survival separation was analyzed for clinical trial
S9321, and the top 20 rank ordered SNPs are presented in
Table 3 (more extended rank order presented in Table 2S
of [28]). Figure 4 shows the pruned recursive partitioning
tree, resulting in two SNPs with the highest classification
prediction of survival groups. One SNP is in catechol

methyl transferase (COMT) and one is in Ghrelin precur-
sor (GHRL). The potential significance of these SNPs on
outcomes is discussed below. The correct classification
rate (survival prediction) was 71%, which dropped to
58% on validation testing with the E9486 trial. The specif-
icity and sensitivities are also presented. The converse
analysis was done (E9497 training set; S9321 validation);
and the rank order of SNPs was determined (Table 4 and
an expanded Table 3S in [28]). A recursive partitioning
tree of two SNPs showed 79% classification on the train-
ing E9487 set, and 56% on the S9321 validation (Figure
4). The SNPs identified in this trial were farnesyl trans-
ferase (FDFT) and ABCC1 (in the family of ATP transport-
ers). The potential significance is also provided in the
Discussion.

As an exploratory approach, we combined the data sets
from both trials, then used Fisher's exact test as a univari-
ate screening tool to determine the association of each
SNP with survival. When we treated the top 165 SNPs
(univariate p < 0.02) as a set for short versus long PFS clas-
sification prediction using a random forest multiple sam-
pling approach [27], we found a 79% correct classification
rate. However, similar classification accuracy could be
achieved with random class labels, demonstrating the
potential of false positive associations in such complex
data sets.

Recursive partitioning tree from S9321 and E9486Figure 4
Recursive partitioning tree from S9321 and E9486. The classification prediction was calculated for one trial and tested 
on the other as validation.
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Discussion
We have designed a novel SNP panel, containing 3404
genetic variations associated with 983 genes involved in a
variety of cellular functions that could impact population
variations in tumor progression and response (Table 1
and [28]). This approach is distinct from using genome-
wide SNP arrays of 500,000 SNPs. The Affymetrix 500K
SNP Panel is based on restriction enzyme cleavage sites
and representative spacing on the chromosomes. While
having significantly greater content, over 90% of the SNPs
on the whole genome array are intragenic; and the chip is
most often analyzed for linkage associations. The multiple
comparison false positive error rate is large, and the tech-
nology considerably more expensive. Indeed, of the 3404
gene-associated SNPs on the BOAC SNP panel, only 401
are contained on the 500K SNP panel.

There are limitations to the BOAC SNP panel as well. The
public and Affymetrix databases used to construct the chip
content are constantly updating, so that missing elements
may be noted. While we targeted SNPs in non-synony-
mous coding sequences or highly conserved regulatory
sequences, many of the SNPs have not yet been function-
ally documented for effects. As such, SNP associations in
the BOAC panel represent a first step in exploring the
genome for clinically relevant genetic variations that will
require both extensive validations as well as functional
assays to confirm their effect.

We made a considerable effort to ensure that quality con-
trols were in place. The Affymetrix platform provided a
high call rate (96%) as well as very high concordance in
replicate samples, even those run at different facilities. The
concordance extended to 786 SNPs on the panel that were
documented for the Coriell cell lines we have included
[10]. All of the samples we analyzed had high quality
DNA (A260/280 ratios > 1.7, and little DNA degradation).
In subsequent unrelated studies, we found that even
highly degraded DNA provides robust, high call rates and
reproducibility (not shown); probably because the initial
amplifications are across 100–150 bp of DNA. The most
likely source for quality control error may come from
sample misidentification or placement in multi-well
plates. To control for this, we routinely incorporate ran-
domly positioned controls and replicates.

Within the Coriell cell line panel is a distribution of racial
groups. It is striking how much allelic frequencies differ in
the African American vs. Caucasian racial groups. It is
likely there is more refinement of allelic variations associ-
ated with more geographical based lineages [33], as racial
definitions are somewhat subjective and often self
reported. Importantly, as the BOAC database increases,
multiple comparisons can be done with appropriate cor-
rections for allelic variations among races. It will be

important to include the full spectrum of patients as the
database expands.

Disease progression, response and survival vary widely
among patients. There are a number of studies that have
examined variations in tumor cell chromosomal abnor-
malities [5] and gene expression profiles [6-8]. The evi-
dence strongly suggests that patient outcomes are
impacted by these tumor cell variations. However, patient
populations show considerable germline variation that
could influence the microenvironment, immune status,
and drug metabolism or transport. For example, the
authors (DJ, GM) have presented evidence that germline
variations in GSTP1 show alterations in melphalan
metabolism, and have been associated with different out-
comes in patients receiving high dose melphalan thera-
pies [34]. Numerous examples of variations in drug
metabolism, transport, and DNA repair have been docu-
mented, with emerging associations on therapeutic out-
comes.

Our approach was to provide a more global germline
analysis that was driven by bioinformatic searches for
potentially relevant variations in multiple genes and gene
functions. This is still an exploratory approach to identify
potential variations of functions that impact upon thera-
peutic responses and disease progression that may result
in differences in survival outcomes. Rather than a linear
progression of survival, we chose to examine two extreme
ends of the PFS spectrum, to maximize the first steps in
identifying potential functional variations. Patients were
stratified by short (< 1 year) versus longer (> 3 years) PFS
groups. Nevertheless, it is likely that survival is a complex
endpoint resulting from both tumor progression and ther-
apeutic failure that may impact upon multiple organ sys-
tems. Moreover, we recognized that a) tumor variation
among patients may have dominant effects that are asso-
ciated with survival; b) the trials we examined used multi-
drug regimens, and each drug response may be impacted
upon by complex genetic variations in transport, metabo-
lism, and export; and c) sample number is still limiting
statistical power. Thus, our initial approaches in this study
were to determine whether germline variations had any
measurable influence on survival.

We felt it was important to determine, first, if there were
any true discrimination of the SNP panel in the two PFS
groups, when the complete SNP profile was considered.
Using a variety of methods that were tested against ran-
domly mixed sample analysis, we found the SNP panel
had true signal to discriminate the short and long progres-
sion-free survivors, although the accuracy did not reach
the level of prediction that would allow clinical applica-
tion. Notably, a smaller subset increased the predictive
power. Significantly, no individual genetic variation pro-
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vided a strong, independent prediction of survival. This
likely reflects the fact that individual germline variations
may impact upon response, but are not solely responsible;
and it is likely that such variations are the result of com-
plex interactions. Indeed, genetic variations in the tumor
cell may play a dominant role in response and survival.
Thus, patient responses are likely to involve interactions
affecting multiple functions within the tumor cell as well
as external factors affecting tumor progression and drug
response. Nevertheless, our analysis of the SNP panel as a
group suggests it is likely that germline variations impact
upon patient survival and deserve further attention.

Recognizing the limited statistical power to detect single
SNPs associated with PFS, we did perform a univariate
analysis to rank order the SNPs that individually best dis-
criminated the groups in the two similar phase III clinical
trials. We did not correct for multiple comparisons, which
would certainly reduce the p-value significance but would
not alter the rank order comparison. This approach also
assumes association for the individual SNP. It is more
likely that complex multi-SNP groupings influence
response. Nevertheless, among the top SNP variations in
both trials were those associated with drug metabolism/
detoxification/transport, including: cyp genes, multiple
variants of GSTA4, SLCO, UGT1, NAT2, ABCB genes; as
well as genes impacting cellular response, including:
BMP2 (inducing myeloma apoptosis), cathepsin B
(inducing IL-8 dependent cellular migration and angio-
genesis [31,32], XRCC5 (DNA repair); and genes associ-
ated with proliferative responses (PCNA, MAPK, cyclin
kinase). The association of multiple alleles of GSTA4 is
particularly compelling, suggesting consistency in its
impact across several variant alleles. In addition, several
alleles are in linkage disequilibrium, appearing as a cluster
in the list – providing quality controls (as linked genes
would be expected to show the same association). Surpris-
ingly absent from the SNP association lists are cytokines,
growth factors and receptors that might be expected to
cause variations in disease progression and resistance,
with the exception of IL-10, which has been reported in
previous studies [35].

While still an exploratory analysis, the paired SNPs iden-
tified by recursive partitioning in each trial have some
intriguing possible connections to PFS. COMT (catechol-
O-methyltransferase) metabolizes catechol drugs, and has
been linked to breast cancer risk and survival [36]; GHRL
has been shown to stimulate angiogenesis [37] and regu-
late bone formation through osteoblasts [38,39]; FDFT is
the farnesyl transferase that may regulate important sign-
aling (eg, ras) [40,41]; and ABCC is among a class of trans-
porters that may influence multi-drug resistance [42]. It is
noted that strong association in one trial was significantly
reduced in the validation trial. Nevertheless, the func-

tional impact of these genetic variations may warrant fur-
ther investigation.

Conclusion
The exploratory analyses provide some of the first
attempts to use larger, targeted SNP panels to develop
models of genomic variations that may influence treat-
ment outcomes, and that may deserve further analysis of
functional significance. Not surprisingly, among the most
significant variations correlating with survival were genes
that could be functionally categorized as pharmacologic.
However, the group analysis suggests various functions
may interplay in disease progression and response. It is
important to consider the fact that we could not identify a
small driver set of SNPs that strongly associated with sur-
vival, particularly with the limited sample size. However,
we note that, as a group, germline genomic variations do
have impact on event-free survival. As the Bank On A Cure
data set is expanding, SNP associations are being analyzed
for more specific phenotypes in response, disease compli-
cations (eg, bone disease), and adverse or toxic drug
effects (eg, thrombolytic events associated with thalido-
mide).

Heterogeneity in tumor gene deregulation certainly con-
tributes to variation in disease outcome. It would seem
appropriate to consider combining an understanding of
tumor heterogeneity (chromosomal and expression pro-
files) with germline variations (eg, SNP variations associ-
ated with pharmacologic functions or disease
complications) that can lead to development of more
individualized therapies that take into account both
tumor and population variations.
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