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Abstract

Background: One of the factors that limits survival from out-of-hospital cardiac arrest is the
interruption of chest compressions. During ventricular fibrillation and tachycardia the electro-
cardiogram reflects the probability of return of spontaneous circulation associated with
defibrillation. We have used this in the current study to quantify in detail the effects of
interrupting chest compressions.

Methods: From an electrocardiogram database we identified all intervals without chest
compressions that followed an interval with compressions, and where the patients had ventricular
fibrillation or tachycardia. By calculating the mean-slope (a predictor of the return of spontaneous
circulation) of the electrocardiogram for each 2-second window, and using a linear mixed-effects
statistical model, we quantified the decline of mean-slope with time. Further, a mapping from mean-
slope to probability of return of spontaneous circulation was obtained from a second dataset and
using this we were able to estimate the expected development of the probability of return of
spontaneous circulation for cases at different levels.

Results: From 911 intervals without chest compressions, 5138 analysis windows were identified.
The results show that cases with the probability of return of spontaneous circulation values 0.35,
0.1 and 0.05, 3 seconds into an interval in the mean will have probability of return of spontaneous
circulation values 0.26 (0.24–0.29), 0.077 (0.070–0.085) and 0.040(0.036–0.045), respectively, 27
seconds into the interval (95% confidence intervals in parenthesis).

Conclusion: During pre-shock pauses in chest compressions mean probability of return of
spontaneous circulation decreases in a steady manner for cases at all initial levels. Regardless of initial
level there is a relative decrease in the probability of return of spontaneous circulation of about 23%
from 3 to 27 seconds into such a pause.
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Background
Recent evidence indicates that cardiopulmonary resusci-
tation (CPR) during both in- and out-of-hospital cardiac
arrest is characterised by frequent and long interruptions
in chest compressions [1, 2]. This reduces vital organ
perfusion [3], and in animal experiments, increased
length of chest compression pause before shock correlates
with reduced rates of return of spontaneous circulation
(ROSC) and survival [4-6]. Edelson et al. [7] reported that
successful defibrillation, defined as removal of ventricular
fibrillation (VF) for at least 5 seconds, was associated with
shorter pre-shock pauses in man. Eilevstjønn et al. [8]
reported a similar association for shocks with ROSC
outcome but only reported the median length of pre-
shock pauses for ROSC and no-ROSC shocks. Identifying
in detail how pausing in chest compressions affects the
vitality of the myocardium, and thereby the probability of
ROSC (PROSC) after defibrillation, is important because it
affects treatment priorities before a defibrillation, a vital
stage of the resuscitation effort.

During VF and ventricular tachycardia (VT) one can
calculate ROSC-predictors from the electrocardiogram
(ECG) reflecting the PROSC associated with defibrillation
[9-12]. In general terms, we can say that ROSC-predictors
reflect the coarseness of the ECG or the vitality of the
myocardium. ROSC-predictors have been affected posi-
tively by compression sequences both in animals [13] and
man [14] and negatively by periods with no chest
compressions both in animals [15] and man [16].
Unfortunately, we have now realised that the statistical
analysis performed in the last article [16] was flawed. This
is explained in Appendix 1. In the current work therefore,
we reinvestigate the effect of interruptions of chest
compressions on PROSC calculated from the ECG. Our
hypothesis was that PROSC decreases during such inter-
ruptions and that the size of this effect may depend on the
absolute value of PROSC. We use a ROSC-predictor that
represents the most accurate, currently available estimate
of PROSC [11], and a statistical methodology that properly
handles short time variations of the PROSC estimate and
the fact that the PROSC level varies from interval to interval
[17]. We handle the problem not solved in Eftestol et al.
[16] by applying an adequate regression to the data,
representing the underlying trends in PROSC development,
and use this to derive our results. Further, we compare the
results with relevant data from investigations of animal
and human sudden cardiac arrest data.

Methods
Data were collected by the respective emergency medical
services in an observational prospective study of out-of-
hospital cardiac arrest patients in Akershus (Norway),
Stockholm (Sweden) and London (UK) in the period

March 2002 to September 2004 [1, 18]. The appropriate
ethical boards at each site approved the study, and the
need for informed consent from each patient was waived
as decided by these boards in accordance with paragraph
26 of the Helsinki declaration for human medical
research. The study is registered as a clinical trial at
http://www.clinicaltrials.gov/, (NCT00138996). Contin-
uous ECG, transthoracic impedance, and chest compres-
sion depth measurements were collected using a
modified Heartstart 4000 (Phillips Medical Systems,
Andover, MA, USA) (Heartstart 4000SP (Laerdal Medi-
cal, Stavanger, Norway)) and patient records registered
according to the Utstein template [19]. The ECG was
obtained through the defibrillator's self-adhesive defi-
brillation pads positioned in lead II equivalent positions
and the same types of electrodes were used throughout
the data collection. The signal was digitally recorded
with a sampling rate of 500 samples per second and 16
bits resolution. Before digital sampling the analogue
ECG signal was filtered with a second order bandpass
filter with passband of 0.9–50 Hz and before analysis a
48 tap lowpass digital filter with an upper passband edge
of 30 Hz was applied to the digitised ECG to remove any
50 Hz power line noise. Regarding the mapping-dataset
(described below) ROSC was indicated either by a
clinically detected pulse or by changes in the transthor-
acic impedance >50 mΩ coincident with QRS complexes
[1]. Compression depth measurements were used to
identify the presence and absence of chest compressions.
Further details about registrations and methodology
have been given elsewhere [1].

Intervals without chest compressions
We extracted ECG segments from intervals without chest
compressions following an interval with compressions.
Only segments with VF or VT during both intervals were
included. The ECG segments were then divided into
2-second analysis windows centred at 3, 5, 7 and so on
up to 27 seconds into the pause, depending on the
length of the pause. The first and last 2 seconds of each
interval were left out to ensure that the signals were
uncorrupted by compression artefacts. We will refer to
this dataset as the interval-dataset. ECG segments were
manually checked for noise and noisy parts of ECG
segments were censored from further analysis. The
definition of noise was influence from a pacemaker
(regular spikes on the ECG) or short bursts of high
frequency signal that visually differ substantially from
the surrounding VF or VT. The source of the latter noise
form might be electrode noise or muscle artefacts.

Outline of analysis
The ECG from the analysis windows in the interval-
dataset was characterised by computing the logarithm of
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the mean-slope (logslope), one of the most accurate
indicators of PROSC [11]. Mean-slope can be viewed as a
measurement of the coarseness of the ECG. High
amplitude and frequency of the ECG give high mean-
slope values, indicating a high PROSC. If ecg(n) is the
digitised ECG signal, logslope is defined as

logslope
N

ecg n ecg n
N

= ( ) − −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∑ln ( )
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1

1
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Logslope values have the desirable property of having an
approximate Gaussian distribution, and we thus
expected an approximately linear decay with time in
untreated VF/VT. A linear mixed-effects model was
therefore fitted to logslope versus time. Then a mapping
from logslope to PROSC scale, obtained from a second
clinical dataset (described below), was applied to the
f i t ted l inear mixed-ef fec ts model for eas ier
interpretation.

Mapping logslope to PROSC

The mapping from logslope to PROSC was found from a
dataset (mapping-dataset) of pre-shock logslope values
and corresponding defibrillation outcomes (ROSC or
no-ROSC) that has previously been described [20]. The
mapping-dataset was collected during cases of out-of-
hospital cardiac arrest and ROSC was defined as
circulating rhythm for a minimum 10% of the post-
shock interval. A marginal logistic regression model for
longitudinal data, accounting for correlation between
samples from the same patient [21], was fitted to the
mapping-dataset using the add-on package 'geepack' to
the statistical software R (R Development Core Team, R
Foundation for Statistical Computing). The mapping
function has the following form:

P logslope
e logslope

e logslopeROSC ( ) =
+ ⋅

+ + ⋅

a a

a a
0 1

1 0 1
(2)

a0 and a0 are parameters of the logistic regression
estimated during model fitting. The interval-dataset and
the mapping-dataset were extracted from the same
cardiac arrest episodes. However, since the last 2 seconds
of ECG in an interval without chest compressions were
not included in the interval-dataset, and we only used
the last 2 seconds of ECG before a shock in the mapping-
dataset, there is in this respect no overlap of data
between the datasets.

Describing logslope development
Using the statistical software S-plus (Insightful Corpora-
tion, Seattle, WA, USA), we fitted a linear mixed-effects
model to the interval-dataset [17]. The linear mixed-
effects model takes into account the fact that the general

level of logslope varies between intervals by allowing
individual variation in the regression parameters from
interval to interval. The logslope values are the response
variable in the model, and the development of this
described with a polynomial in t, where t is time
(seconds) after chest compressions stopped minus 10
seconds (t = torg-10). The subtraction is performed in
order to decorrelate the covariates of the model (t, t2,
etc). If i identifies the interval (cluster), the model for the
development of logslope with time is given by:

logslope t t U ti k
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K is the polynomial degree for the fixed-effects part of
the model and M the degree for the random-effects part
(accounting for variations between intervals) and K ≥ M.
Gaussian model residuals εit are assumed and also a
multivariate Gaussian distribution of the random terms
Uik, k Œ 1, ..., M

f(Ui0, Ui1, ..., UiM) = N(0, Λ) (4)

The S-plus function used to fit the model, lme, has
several different possible ways of modelling correlation
between residuals within each interval (cluster), and
possible heteroschedasticity in the data [17]. We chose
the optimal correlation model, variance model (for
heteroschedastic data) and the necessary polynomial
degree (K and M), in that order, by comparing Akaike
information criterion (AIC) values. Polynomial degrees
up to four were tested and among possible models with
similar AIC values the model of lowest polynomial
degrees was chosen. We did not experiment with other
variance covariates than the fitted-model value (software
default). For mathematical details about the modelling
of correlation between residuals and heteroschedastic
data we refer to Pinheiro and Bates [17]. After choosing
our final model it was validated by plotting normal
probability plots for the model residuals and the
random terms, the distribution of residuals against
time and fitted-model value and the response against
fitted values.

Calculating PROSC development
The linear mixed-effects model was fitted to logslope
values due to the statistical properties mentioned above,
but we wanted to interpret the implications on the PROSC

scale. More specifically we wanted to find the expected
development of PROSC for intervals with different starting
values. To avoid the random short time variation in
logslope (and PROSC) from influencing the development,
we relate each expected development to the starting
value of the regression, representing the true underlying
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behaviour. The results are derived from the fitted linear
mixed-effects model (not from specific regression lines
for each interval) and the obtained mapping from
logslope to PROSC. Further descriptions of these proce-
dures are given in Appendix 2.

We present the estimated parameters of the chosen linear
mixed-effects model and of the logistic regression model
for the logslope to PROSC mapping, along with 95%
confidence intervals (CI) or standard deviation (Std) of
estimates for all parameters. Further we present estimates
of the expected development with time (into the
intervals without compressions) of PROSC for intervals
with different starting values. Approximate 95% CIs for
the PROSC developments are derived by drawing 1000
simulated parameter values from the model parameters
asymptotic distributions, and then recalculating the
resulting PROSC values for each simulation. The 95% CI
for the estimated expected PROSC developments are
defined as the 95% CI of PROSC at a given time into an
interval, given a chosen PROSC value at the first point of
analysis (3 seconds into the intervals).

Results
Data from 530 defibrillation attempts given to 86
patients were included in the mapping-dataset and
used to estimate the logslope to PROSC mapping. In the
mapping-dataset logslope has an area under the ROSC
curve of 0.876 when used to predict which defibrilla-
tions will result in ROSC. A histogram of these data is
plotted along with the estimated mapping in Figure 1.

Logslope values from 911 intervals without chest com-
pressions were included in the interval-dataset and the
median interval without chest compressions had five
analysis windows. Out of 6229 analysis windows, 17.6%
were excluded because of noise in the ECG, leaving
5138. From the complete records of 363 patients, 134
patients had intervals that were included. By comparing
AIC values of different candidate models we identified a
linear mixed-effects model with an exponential spatial
correlation model with nugget effect, polynomial
degrees K = 1 and M = 1, and an exponential variance
function. Given that a linear model in t (polynomials of
degree one) was chosen shifting of the time covariate is
not necessary, but in order to simplify calculations a
time shift of -3 seconds (t = torg-3) was used when
estimating the final model.

Estimated model parameters of the logistic regression
model for the logslope to PROSC mapping and of the
chosen linear mixed-effects model are given in Table 1.
The logslope value on average decreases 0.00601 per
second in our data range (3 to 27 seconds into an

Figure 1
Logslope to PROSC mapping. (a) Mapping (solid line)
estimated with logistic regression model. Point-by-point
mapping (asterixes) obtained with a standard histogram
technique (based on histograms in (b) and (c)). (b) Histogram of
pre-shock logslope values of defibrillations resulting in return of
spontaneous circulation (from mapping-dataset). (c) Histogram
of pre-shock logslope values of defibrillations resulting in no
return of spontaneous circulation (from mapping-dataset).

Table 1: Estimated parameter values of statistical models

Chosen linear mixed-effects model

Parameter Estimate 95% confidence interval

b0 -5.224 [-5.263–5.184]
b1 -0.00601 [-0.00712–0.00490]
Standard deviation (U0) 0.594 [0.564 0.6324]
Standard deviation (U1) 0.00708 [0.00564 0.00889]
Correlation (U0, U1) -0.201 [-0.366–0.0416]
Range 3.11 [1.64 5.88]
Nugget 0.520 [0.401 0.629]
Power -0.598 [-0.805–0.391]

Logistic regression model

Parameter Estimate Standard deviation

a0 9.28 1.51
a1 2.26 0.315

Estimated model parameters of the chosen linear mixed-effects model and
themarginal logistic regressionmodel for the logslope to probability of return
of spontaneous circulation (PROSC) mapping. b0 and b1 are the fixed-effects
parameters. Standard deviation (U0), standard deviation (U1) and correlation
(U0, U0) give the properties of the zero-mean bivariate Gaussian distribution
of the random-effects terms. Range and nugget are parameters in the model
for correlation between residuals. Power is the parameter in the variance
function. a0 is the intercept in the logistic regression models linear function,
and a1 represents the change in log-odds ratio (ROSC versus no-ROSC)
with a unit change in the covariate (logslope).

BMC Medicine 2009, 7:6 http://www.biomedcentral.com/1741-7015/7/6

Page 4 of 9
(page number not for citation purposes)



interval without chest compressions). The diagnostic
plots confirmed that the linear mixed-effects model is
adequate for the data.

The data in the interval-dataset and how the linear
mixed-effects model represents these are illustrated by
Figure 2. The figure shows the logslope values and fitted-
model values of three intervals. We observe that the
intervals are of different length, have logslope values at
different levels, and that the fitted lines are allowed to
have different intercepts and slopes. The fitted values of
Standard deviation(U0), Standard deviation(U1) and
correlation(U0, U1) given in Table 1 describe how the
intercepts and slopes are distributed in our data.

Using Equation (8) in Appendix 2 we computed a set of
expected developments of PROSC given different PROSC

values 3 seconds into an interval, shown in Figure 3.
According to the b0 parameter, the logslope value 3
seconds into an interval has a Gaussian distribution with
mean -5.224 and standard deviation 0.594 (Std(U0)) in
our dataset, and we characterise each development by
the quantile the initial logslope value (corresponding to
the chosen initial PROSC value) is at in this distribution.
About 60% of the intervals have initial PROSC below 0.1.

Using the approach described in Appendix 2 we estimate
that if all the intervals without chest compressions were

shocked with 3 seconds pre-shock pause the mean PROSC

would be 0.126, while with 27 seconds pause it would
be 0.0971. The estimated relative decrease in mean
PROSC, 1-(0.0971/0.1255) ≈ 0.23, (95% CI: 0.17–0.29) is
comparable with that in each of the developments in
Figure 3, meaning that independent of the absolute
PROSC level about 23% of the chance of ROSC will be
lost with increasing the pre-shock pause in chest
compressions from 3 to 27 seconds.

Discussion
Our analysis shows that PROSC, as determined from ECG
analysis, decreases in a steady manner with time in VF/
VT intervals without chest compressions for all initial
values of PROSC. This shows that limiting interruption in
chest compressions is important for patients in all states
and that every second without perfusion has a negative
effect on PROSC. The current results therefore give support
for a strong focus on improving CPR quality.

Unlike the results of Eftestol et al. [16], the current
results show that PROSC does not decrease sharply during
the first 5 seconds of an interruption. Therefore, a

Figure 2
Calculated logslope values and regression lines from
the linear mixed-effects model for three intervals
without chest compressions. The linear mixed-effects
model is capable of representing that the logslope values
(plusses, squares and circles) of different intervals are at
different levels (have different intercepts) and decrease or
increase at different rates (regression lines have different
slopes). The fitted model parameters describe how
intercepts and slopes are distributed in the dataset.

Figure 3
Estimated developments of mean probability of
return of spontaneous circulation in ventricular
fibrillation/ventricular tachycardia intervals without
chest compression given different starting values of
probability of return of spontaneous circulation. We
specified the following starting values (corresponding
quantile in our dataset in parenthesis, starting from the top):
0.5(0.97), 0.35(0.92), 0.2(0.80), 0.1(0.6), 0.05(0.38) and 0.01
(0.06). The actual starting value of each development
deviates slightly from these values because we must integrate
out the residual term in our regression model for logslope
and since we have a non-linear logslope to probability of
return of spontaneous circulation mapping function. The
solid line is the mean probability of return of spontaneous
circulation. The dashed lines represent approximate 95%
confidence intervals for each of the developments.
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pre-shock pause in compressions of a couple of seconds
to ensure the safety of EMS personnel, or to perform
rhythm analysis on artefact-free ECG, may be acceptable.
Concerning safety, pre-shock pauses of 1 to 2 seconds
might be sufficient as it has been argued that the risks of
accidental defibrillation of resuscitation providers have
been over emphasised [22]. Further, the accuracy of
rhythm analysis during ongoing compressions might in
the future be improved as a result of either improved
artefact removal algorithms or of using dedicated ECG
recording electrodes generating fewer artefacts than
combined recording and defibrillation electrodes [23].
This will also reduce the need for pre-shock pauses in
compressions. Although the current results show that
pre-shock interruptions in compressions should be
minimised, they do not indicate that it is critical,
although favourable, for the outcome of resuscitation
to compress during defibrillation. This is because there is
no indication of a sharp decrease in PROSC during the
first few seconds of an interruption.

The effect of pre-shock interruptions in chest compres-
sions on resuscitation outcome or ROSC has also been
studied in animals [4-6]. In agreement with the current
results all three studies found a clear negative effect of
longer pre-shock interruptions. Edelson et al. [7] found
strong negative correlation between duration of pre-
shock interruptions on first shock success in humans,
defined as removal of VF for at least 5 seconds following
defibrillation, but no significant effect of pre-shock
pause duration on ROSC or survival to hospital
discharge. It was stated that one possible reason for
this was the limited dataset with lower incidence of
ROSC and survival than of shock success with the
possibility of a statistical type II error. Eilevstjønn et al.
[8] found that the median length of pre-shock interrup-
tion of chest compressions for ROSC was 15 seconds
versus 18 seconds for no-ROSC shocks (P = 0.008), but
did not quantify further the negative effect of increasing
length of interruptions.

A limitation of our approach is that the effect was
studied indirectly by using the established fact that the
PROSC can be estimated from the ECG waveform [9-12],
instead of by direct analysis of the relation between pre-
shock pause length and rate of ROSC. The latter could
however, only have identified how the mean probability
of ROSC for the population would be influenced by
increasing pre-shock pauses in CPR, and could not have
identified possible differences in the development for
cases with different probabilities of ROSC at the start of
the pre-shock interval without chest compressions. Using
ECG analysis we can estimate PROSC continuously for
every available interval without chest compressions that
follow an interval with chest compressions and,

therefore, estimate the expected development of PROSC

for cases at different starting levels. A further limitation is
that we excluded from the analysis all segments where
the ECG apparently was affected by a pacemaker and one
group of patients was therefore excluded from the
analysis. Performing a re-analysis including also the
data with noise did however only produce minor
changes in the results. At last, the effects of right
ventricular dilation and left ventricular contraction
occurring during interruptions in compressions,
described by Chamberlain et al. [24], may not be
reflected in the ECG waveform. The current results may
in this respect possibly underestimate the detrimental
effect of interrupting compressions.

Conclusion
We have shown that the probability of ROSC estimated
from the ECG decreases in a steady manner with
increasing pre-shock pauses in chest compressions.
Regardless of initial level, there is a relative decrease in
the estimated probability of ROSC of about 23% from 3
to 27 seconds, or, in other words, a 1% relative decrease
for every second into such a pause.
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Appendix 1
This section describes why we claim that the analysis in
Eftestol et al. [16] was flawed. That particular paper is the
only previous study to use ECG analysis on clinical data
to investigate the effects of interrupting chest compres-
sions on the probability of ROSC. In Eftestol et al. [16],
the ECG segments (from pre-shock VF intervals without
chest compressions) were divided into three groups, one
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for those with an initially high PROSC value (the first
PROSC value in the segment >0.4), one with medium
initial values (0.25< first PROSC < 0.40), and one with
low initial values (<0.25). After this the development
with time of the median of PROSC in the segments in
these three groups was calculated. However, there are
quite large random short time variations, or measure-
ment noise, in the PROSC estimate used [25], and these
influence the group to which the segments are assigned
in the first place. Therefore, for the group of segments
with high initial PROSC value a large proportion of the
segments will have high values only at the start of
the segment. The median of each group will approach
the median of all the segments for the consecutive
measurements. We can demonstrate this by re-analysis of

the original data from Eftestol et al. [16], but assign the
segments to three groups according to the PROSC values
at 10 seconds into the segments rather than according to
the initial values. The result of this is shown together
with the original plot from Eftestol et al. [16] in Figure 4.
If the PROSC estimate from each ECG segment had little
or no random variation between consecutive measure-
ments, this modification of the analysis should have
little effect on the results. However, changing the time at
which the assignment to groups is performed totally
changes the plot and we must, therefore, conclude that
the analysis is flawed. The inadequate analysis led to
unjustified conclusions,most prominently for the 'high' and
'low' subgroups. For cases with a high initial level a dramatic
decrease in median PROSC (from 0.5 to 0.25) with only 5

Figure 4
Two plots illustrating the problem with the analysis performed in the article by Eftestol et al. (a) The original plot
from Eftestol et al.'s [16] article where each case was assigned to one of three subgroups ('high', 'medium' and 'low') according
to their initial value of probability of return of spontaneous circulation (PROSC). The time axis refers to time into intervals
without compressions. The median PROSC in each group is represented with a solid line and the various broken lines represent
the 25th and 75th percentiles for each group. The median of the 'high' group differs from the median of the 'medium' group
only for the first 5 seconds, and the median of the 'low' group appears to be increasing towards the end. (b) This plot was
generated with the same analysis as (a), but here the cases were assigned to the three subgroups according to their PROSC value
at 10 seconds. From the difference between plots (a) and (b), it is evident that the short time random variations in the PROSC
estimates greatly affect the results of this form of analysis.
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seconds interruption in chest compressions was falsely
indicated, and for the group of cases with low initial PROSC,
representing 85% of the total number of cases, it was
indicated that the median PROSC is stable or slightly
increasing during interruptions of up to 20 seconds, despite
there being no coronary perfusion. It should be noted that
two of the authors (TE and PAS) of the criticised article are
also co-authors of the current article.

Appendix 2
If we choose value x at t = 0 for the regression to logslope, for a
hypothetical interval h by choosing Uh0 = x - b0, we can
estimate the development of the mean PROSC for intervals
with a specific starting value. In this way the estimated
development is not influenced by the random short time
variation in logslope at t = 0, represented by εh0. By analogy,
thiswas the problemwith the analysis performedby Eftestol
et al. [16]. With the above choice of Uh0 the marginal
distribution of the other random terms is given by:
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and, using Equation (2) for the logslope to PROSC

mapping, the model for PROSC at t is given by:
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Then the expected PROSC development given the chosen
initial value can be calculated by:

E P t U x

P t U U U x

ROSC h h

ROSC h h hM h

,

,

|

.. , , ..., |

( ) + =⎡⎣ ⎤⎦ =

+ =( )

0 0

1 0 0

b

b ⋅⋅ ( ) ⋅ ( )
−∞

∞

−∞

∞

∫∫ f U U f dU dU dm h hM ht h hM ht1 1,..., , .., ,e e

(8)

By choosing different values for x we can calculate the
expected PROSC development for cases with different
starting values. For a given starting value of PROSC, the
corresponding logslope value x is found using Equation
(2). If we make no specific choice of logslope at t = 0, but
modify Equation (8) to integrate out the random
intercept Uh0 as well as the other random terms, we

can obtain an estimate for how the mean PROSC develops
with time, pooling together cases at all PROSC levels.
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