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Abstract
Background: With the rise of the second pandemic wave of the novel influenza A (H1N1) virus
in the current season in the Northern Hemisphere, pandemic plans are being carefully re-evaluated,
particularly for the strategic use of antiviral drugs. The recent emergence of oseltamivir-resistant
in treated H1N1 patients has raised concerns about the prudent use of neuraminidase inhibitors
for both treatment of ill individuals and post-exposure prophylaxis of close contacts.

Methods: We extended an established population dynamical model of pandemic influenza with
treatment to include post-exposure prophylaxis of close contacts. Using parameter estimates
published in the literature, we simulated the model to evaluate the combined effect of treatment
and prophylaxis in minimizing morbidity and mortality of pandemic infections in the context of
transmissible drug resistance.

Results: We demonstrated that, when transmissible resistant strains are present, post-exposure
prophylaxis can promote the spread of resistance, especially when combined with aggressive
treatment. For a given treatment level, there is an optimal coverage of prophylaxis that minimizes
the total number of infections (final size) and this coverage decreases as a higher proportion of
infected individuals are treated. We found that, when treatment is maintained at intermediate
levels, limited post-exposure prophylaxis provides an optimal strategy for reducing the final size of
the pandemic while minimizing the total number of deaths. We tested our results by performing a
sensitivity analysis over a range of key model parameters and observed that the incidence of
infection depends strongly on the transmission fitness of resistant strains.

Conclusion: Our findings suggest that, in the presence of transmissible drug resistance, strategies
that prioritize the treatment of only ill individuals, rather than the prophylaxis of those suspected
of being exposed, are most effective in reducing the morbidity and mortality of the pandemic. The
impact of post-exposure prophylaxis depends critically on the treatment level and the
transmissibility of resistant strains and, therefore, enhanced surveillance and clinical monitoring for
resistant mutants constitutes a key component of any comprehensive plan for antiviral drug use
during an influenza pandemic.
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Background
A novel influenza A virus H1N1 has spread worldwide
since its initial emergence in North America, causing the
first influenza pandemic of the 21st century [1]. Public
health responses to outbreaks of this nascent virus have
included antiviral treatment and the isolation of infected
individuals, quarantine of suspected cases and school clo-
sures as measures for the reduction of disease transmis-
sion in the population. While pandemic vaccines are
currently being deployed, the timeliness of vaccine availa-
bility, limited acceptability of vaccination to groups tar-
geted for vaccination and the limitations in vaccine
supply could all increase dependence on antiviral drugs
for pandemic mitigation.

Most pandemic plans support the treatment of ill individ-
uals upon diagnosis as an efficient approach to the use of
drug stockpiles [2]. However, the potential role of antivi-
ral prophylaxis for asymptomatic individuals exposed to
infectious cases remains contentious. The use of antiviral
prophylaxis poses both logistical challenges (for example,
due to limited drug supplies and competing distribution
priorities) and could carry adverse epidemiological conse-
quences (for example, by promoting drug resistance
spread) [3,4]. In the absence of transmissible drug-resist-
ant viral strains, models suggest that widespread use of
post-exposure prophylaxis could contain influenza epi-
demics, particularly if applied at the outset [5,6]. How-
ever, the predictions of these models depend strongly on:
the specific location of an initial outbreak; patterns of
exposure to infection in localities; speed at which infected
cases are diagnosed and treated; and how quickly their
contacts are offered prophylaxis. Furthermore, the evolu-
tionary responses of the virus with the generation of trans-
missible drug resistant mutants have been discounted in
their assessment of mitigation strategies.

In the presence of drug resistance, the advisability of a
post-exposure prophylaxis strategy remains uncertain. To
evaluate the merits of such strategy for pandemic mitiga-
tion, we extended a previous modelling framework [7] in
order to combine the effect of treatment and post-expo-
sure prophylaxis of close contacts. Through this evalua-
tion, we identify critical factors that influence the
epidemiological outcome of these antiviral measures. In
what follows, we describe the model and its parameters
with their estimates, present the results of model simula-
tions and discuss our findings and their implications for
preparedness strategies in the context of the 2009 H1N1
pandemic. Details of the model structure and its analysis
are provided in Additional File 1.

Methods
We extended a previously established population dynam-
ical model of influenza transmission with treatment of

clinical infections to include post-exposure prophylaxis of
close contacts of index cases [7]. We included two compet-
ing viral strains in the virus in the model - one being sen-
sitive and the other resistant to antiviral drugs - with the
assumption (consistent with empirical observations in
the 2009 pandemic) that the drug-sensitive strain initially
triggered the epidemic [8]. Resistance emerges and
spreads in the population during the epidemic under the
pressure of drug treatment.

Model development
A typical course of symptomatic influenza infection
includes an incubation period (a period during which an
infected individual is asymptomatic) and clinical disease
(Figure 1). We considered the incubation period as a com-
bination of two stages: (i) a latent stage representing the
interval between exposure and infectiousness in an indi-
vidual; and (ii) an asymptomatic infectious stage, which
represents the interval between the end of latency and the
onset of clinical symptoms (referred to in this study as
pre-symptomatic infection). Treatment of clinical infec-
tions is most effective when initiated within 48 h of symp-
tom onset and we, therefore, considered two stages of
symptomatic infection: (i) primary treatment that occurs
during this initial window; and (ii) secondary treatment
which is initiated after this window has closed. We
assumed that treatment will be made available to individ-
uals who are identified within the primary stage of symp-
tomatic infection (Figure 1).

An important feature of influenza virus infection is its
potential for transmission by infectious individuals who
are truly asymptomatic or who experience sufficiently
mild symptoms that they remain undiagnosed and
untreated [9]. We included such individuals in our model
which could, of course, mistakenly receive 'prophylaxis'
(unwitting treatment) to prevent acquisition (or develop-
ment) of infection. We assumed that treatment of infected
individuals (symptomatic or asymptomatic) could result
in selective pressure under which transmissible, antiviral-
resistant strains might arise with some probability in
treated patients. We assumed that an antiviral therapy
would be ineffective against resistant infection [10,11].

For post-exposure prophylaxis, we targeted only close
contacts of treated index cases who could be identified
and prophylaxed within 24 h of case identification [12]
and before the onset of symptoms. Contact tracing is
always challenging for medical and public health workers
[13], but we assumed that the time lag between diagnosis
of clinical cases and identification of their close contacts
(including households, neighbourhood clusters, school
groups and workplaces) could be relatively short and,
therefore, that prophylaxis would be provided prior to the
onset of symptoms in individuals already infected by the
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index case. Further details of the model structure are pro-
vided in Additional File 1.

Model parameters and estimates
Despite ongoing surveillance and epidemiological studies
of the novel H1N1 virus, there remains substantial uncer-
tainty in several key characteristics of the virus, such as
attack rates of H1N1 illness, case-fatality rates, sensitivity
of the virus to antiviral drugs and the effectiveness of treat-
ment in reducing or preventing severe morbidity and mor-
tality. For model parameters, we therefore relied on
estimates provided in the literature for influenza A infec-
tion in humans without pre-existing immune responses.
We assumed a mean latent period of 1.25 days for the dis-
ease within the estimated range 1.48 ± 0.47 days [6,14].
The probability of developing clinical symptoms is taken
to be 0.6 which lies in the range 0.5 - 0.7 utilized in previ-
ous studies [5,6]. We assigned a pre-symptomatic infec-
tious period of 0.25 day, consistent with other
investigations [6,10]. We assumed a window of opportu-
nity of 2 days (after latency) for the initiation of an effec-
tive course of antiviral treatment and a mean duration of
2.85 days for the secondary stage of symptomatic infec-
tion (during which time initiating antiviral treatment
would be unhelpful) [7,10]. The mean duration of asymp-
tomatic infection was assumed to be 4.1 days [5] and anti-
viral treatment was assumed to reduce the infectiousness
by 60% from when treatment is initiated [4,6]. In order to
produce a profile of viral shedding over time, Ferguson et
al. [6] fitted a log-normal model to household longitudi-
nal data on influenza transmission [15]. We used this pro-
file to estimate the relative infectiousness in different

stages of clinical infection by considering a step-function
superposed on the log-normal curve with respect to trans-
mission rates of the pre-symptomatic, primary and sec-
ondary stages of symptomatic infection (Table S1 in
Additional File 1). Asymptomatic infection was assumed
to be 50% less infectious than the symptomatic phase [5].
Post-exposure prophylaxis was assumed to reduce the
probability of developing clinical disease by 70% and
infectiousness by 80% [16] and we assumed that the
probability of de novo emergence of resistance on treat-
ment to be 0.018 per day during primary infection and
0.036 per day during secondary infection, with a range of
resistance rates extending as high as 0.072 per day [4,10].
In our model, these rates correspond to estimates pro-
vided in oseltamivir clinical trials, during which 1% - 4%
of treated adults [17] and 5% - 6% of treated children
were found to shed resistant viruses [18], although more
recent studies have reported resistance in 16% - 18% of
oseltamivir-treated children [19,20]. Resistance rates were
reduced by 80% for individuals who developed sympto-
matic infection on prophylaxis [16]. Finally, we assumed
that the resistant strain would sustain a 'fitness cost', such
that the baseline transmissibility of the resistant strain was
90% of that seen with the non-resistant strain. Both treat-
ment and prophylaxis were considered to be ineffective
against infections caused by exposure to resistant viruses
[21,22].

To estimate the baseline transmission rate of the drug sen-
sitive strain, we used the final size equation and the
expression for the basic reproduction number of disease
[23], defined as the average number of new infections

Typical course of influenza infection leading to clinical disease with antiviral treatmentFigure 1
Typical course of influenza infection leading to clinical disease with antiviral treatment.
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generated by a single infected case introduced into an
entirely susceptible population (see Additional File 1).
The reproduction number of the sensitive strain in the
absence of antiviral therapy is given by

In this expression: β is the transmission rate of the sensi-
tive strain; S0 is the initial size of the susceptible popula-

tion, p is the probability of developing clinical disease; δA,

δP and δU are the relative transmissibility of the virus dur-

ing asymptomatic, pre-symptomatic and secondary stage

of symptomatic infection, respectively; τ and n represent
the durations of pre-symptomatic and primary stage of

symptomatic infection; and μA and μU are the mean infec-

tious periods of asymptomatic and secondary stage of
symptomatic infection. Given the range 25% - 50% of
clinical attack rate of a pandemic strain [24], the reproduc-

tion number  varies between 1.25 and 1.85. With 90%

fitness of resistance (as the baseline value for simula-
tions), the reproduction number of the resistant strain

( ) varies in the range 1.13 - 1.67. Epidemiological

analyses using data collected during the early stages of the

current H1N1 pandemic suggest that the reproduction
number of this new virus varies in the range 1.3 - 1.7

[25,26]. We therefore used  = 1.6 as the baseline value

for our simulations, which is slightly lower than estimates
for the 1918 pandemic [27] and lies within the range esti-
mated for the 1957 pandemic [24]. When treatment and
post-exposure prophylaxis are applied, the number of
new infections generated by a single infected case is deter-
mined by the control reproduction number of disease
(Rc), as detailed in Additional File 1. The principal aim of

public health measures is to bring Rc below one, so that

the spread of disease is contained.

Results
In order to realize the model, we considered a population
of S0 = 100,000 individuals, with the introduction of an

infected (drug-sensitive) case at time t = 0, and assumed
that the treatment of clinical cases began one day after the

onset of symptoms. For the baseline value of  = 1.6(

= 1.44), Figure 2a shows contour plots for the control
reproduction number Rc as a function of treatment level of

indexed cases and prophylaxis coverage of close contacts
(the proportion of close contacts that are given prophy-
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Effect of treatment and prophylaxis on the reproduction number and spread of sensitive and resistant virusesFigure 2
Effect of treatment and prophylaxis on the reproduction number and spread of sensitive and resistant viruses. 

(a) The combined effect of treatment and prophylaxis in reducing the control reproduction number of disease (Rc) with  = 

1.6. (b) The region for co-existence and dominance of sensitive and resistant strains as a function of treatment level of indexed 

cases and prophylaxis coverage of close contacts with  = 1.6. The dominance of the sensitive (resistant) strain in white 

region (in the grey area) corresponds to the greater reproduction number of that strain; in the light grey area, the reproduc-
tion number of the sensitive strain is less than one (that is, the sensitive infection is contained) and only outbreaks of the resist-
ant strain may occur. Baseline values of other parameters are given in Table S1 of Additional File 1.

Rs
0

Rs
0

Page 4 of 10
(page number not for citation purposes)



BMC Medicine 2009, 7:73 http://www.biomedcentral.com/1741-7015/7/73
laxis). As the treatment level increases, the effect of post-
exposure prophylaxis becomes more pronounced in
decreasing Rc, but also makes a greater contribution to the

spread of resistance due to substantial reduction in the
transmission of drug sensitive strain. Figure 2b illustrates
the regions for: (i) co-existence of sensitive and resistant
infections (white area) where sensitive strain dominates;
(ii) co-existence of sensitive and resistant infections (dark
grey area) where resistant strain dominates; and (iii)
spread of only resistant strain (light grey area) where drug
sensitive infection is contained. For a sufficiently low
treatment level (below approximately 40%) the resistant
strain may be out-competed by the dominant drug-sensi-
tive competitor and large outbreaks of sensitive infections
can occur. When the treatment level increases above 40%,
the coverage of post-exposure prophylaxis is a key param-
eter determining the outcome of competitive interference
between different strains: higher prophylaxis coverage
limits the spread of the sensitive strain, thereby shifting
the competitive balance in favour of the resistant strain
(grey area).

To illustrate the effect of post-exposure prophylaxis on the
epidemic size, we performed simulations for different
treatment levels and calculated the final size of infection
by varying prophylaxis coverage. Figure 3a shows that, as
the treatment level increases, prophylaxis coverage should
be reduced to minimize the total number of infections.
This is illustrated for the 20%, 40% and 60% treatment
levels (corresponding to dotted, dashed and solid lines),
in which the minimum in the final size occurs, respec-
tively, at 90%, 26% and 0% prophylaxis coverage of close
contacts. The time courses of disease epidemics corre-
sponding to the minimum final size (circled in Figure 3a)
are shown in Figures 3b, c and 3d, which indicate no sig-
nificant differences in the peak times of outbreaks,
although the relative proportion of virus types (sensitive
or resistant) do change.

We ran further simulations in order to explore the com-
bined effects of treatment and post-exposure prophylaxis
on the final epidemic sizes, and total deaths. Figure 4a
shows that, in the presence of drug-resistant strains, final
size is minimized at intermediate levels of treatment (rep-
resented by the dark blue valley) and requires a steep
reduction in prophylaxis coverage (from 90% to 0% of

Optimal prophylaxis coverage for various treatment levels with the corresponding time-courses of epidemicFigure 3
Optimal prophylaxis coverage for various treatment levels with the corresponding time-courses of epidemic. 
(a) Total number of infections (final size) as a function of prophylaxis coverage of close contacts for different treatment levels 

with  = 1.6. For the minimum final size corresponding to each treatment level (circled in (a)), the time courses of disease 

outbreaks are illustrated in (b), (c) and (d) for both sensitive and resistant infections. Each curve in the lower panel of the figure 
represents an epidemic curve for a given treatment group (U = untreated, P = propylaxed, T = treated), with subscript r denot-
ing whether or not the virus is resistant to antiviral drugs.
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close contacts) as the treatment level increases (from 20%
to 60%). While the total number of infections can be min-
imized at low treatment levels with relatively high proph-
ylaxis coverage, our simulations suggest that high
treatment levels without prophylaxis are most effective in
reducing the total number of deaths (Figure 4b).

We tested our results for the final size of the pandemic by
performing a sensitivity analysis for a range of key param-

eters, including: the fitness of resistant virus (δr, range: 0.6

- 0.9); the probability of developing clinical disease with-
out prophylaxis (p, range: 0.5 - 0.7); the probability of
developing clinical disease with prophylaxis (pP, range:

0.2 - 0.4); the rate of developing de novo resistance due to
treatment within primary stage of symptomatic infection

(ρ, range: 0.009 - 0.036); the rate of developing de novo
resistance due to treatment during secondary stage of

symptomatic infection (α, range: 0.018- 0.072); the rate
of developing de novo resistance due to prophylaxis within

primary stage of symptomatic infection (ρP, range: 0.0018

- 0.0072); and the rate of developing de novo resistance
due to prophylaxis during secondary stage of sympto-

matic infection (αP, range: 0.0036 - 0.0144). In the sensi-

tivity analyses, other parameters were fixed at their

baseline values (Table S1 in Additional File 1), with  =

1.6. Using the Latin Hypercube Sampling technique (see
Additional File 1), we simulated the model when treat-
ment level varied in the range 20% - 80% in order to
determine the optimal prophylaxis coverage that mini-

mizes the total number of infections. Figure 5a shows
box-plots for the minimum total number of infections as
a function of treatment level, corresponding to box-plots
illustrated in Figure 5b for the optimal prophylaxis cover-
age. For low treatment levels, the total number of infec-
tions is minimized with high prophylaxis coverage of
close contacts (Figure 5a). However, when treatment
increases to moderate and high levels (above approxi-
mately 35%), resistance spreads more readily and a reduc-
tion in prophylaxis coverage is required to achieve
minimum infections (Figure 5b), which is consistent with
the results shown in Figure 4a. From the sensitivity analy-
ses for the optimal prophylaxis coverage, we made an
important observation - that the minimum number of
infections is strongly correlated with the fitness of resist-
ant strain, as illustrated in Figure 5c. We obtained similar
results for minimizing the mortality of the population
(Figures 5d, e, f), with a more pronounced effect of the
treatment in reducing mortality than morbidity at the
optimal prophylaxis coverage.

Discussion
Post-exposure prophylaxis has been considered in previ-
ous modelling studies and projected to be a useful meas-
ure for mitigating the spread of pandemic infections in the
absence of antiviral resistance [5,6,28]. Stochastic models,
developed to simulate potential outbreaks of the avian
influenza H5N1 strain in rural Southeast Asia, predicted
that a pandemic could be contained at the source through
a combination of targeted blanket prophylaxis of close
contacts and social distancing. In addition to being a use-
ful measure in reducing the secondary influenza transmis-

Rs
0

The combined effect of treatment level of indexed cases and prophylaxis coverage of close contactsFigure 4
The combined effect of treatment level of indexed cases and prophylaxis coverage of close contacts. (a) The 

total number of infections (final size); (b) the total number of deaths, with  = 1.6.Rs
0
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sion in households [29,30], targeted prophylaxis has been
shown to be effective in reducing the overall attack rates
and in slowing disease spread in the community [28]. Fur-
thermore, an economic evaluation of mitigation strategies
suggests that post-exposure prophylaxis provides a cost-
effective strategy during an influenza pandemic [16].
However, despite such potential benefits, the emergence
of drug resistance poses a significant threat to the effec-
tiveness of post-exposure prophylaxis and the use of lim-
ited drug stockpiles.

To our knowledge, this study represents the first model-
ling attempt to evaluate the projected effectiveness of
prophylaxis of close contacts of infected individuals
treated within 48 h of symptoms onset in the context of
drug resistance. Our model incorporates several impor-
tant parameters that impact the epidemiological outcome
of any antiviral strategy, including: the population level of
treatment; the rate of de novo resistance in treated patients;
the transmission fitness of resistant strains; and the
prophylaxis coverage of close contacts. When resistance is
included, the projected effectiveness of prophylaxis-based

strategies in our model differs from those presented in
previously published papers [5,6,16,28]. The model
extends our previous work on pandemic influenza with
antiviral resistance [7,10,11] and illustrates optimal sce-
narios when treatment is combined with post-exposure
prophylaxis.

Our results show that the impact of post-exposure proph-
ylaxis depends on the treatment level and the transmissi-
bility of resistant strains. For low treatment levels, the
sensitive strain has a fitness advantage and spreads
quickly, and therefore a limited number of resistant cases
are generated. In this situation, post-exposure prophylaxis
is projected to lower the incidence of disease in the popu-
lation, consistent with findings of previous work [4,31].
However, increasing treatment to moderate and higher
levels limits the incidence of drug sensitive infection and
shifts the competitive balance in favour of the resistant
strain. With a sufficiently high transmission fitness of the
resistant strain, our simulations and sensitivity analyses
demonstrate that post-exposure prophylaxis will actually
enhance the spread of drug resistance. This could effec-

Effect of parameter changes on the optimal prophylaxis coverage, final size and deathsFigure 5
Effect of parameter changes on the optimal prophylaxis coverage, final size and deaths. Sensitivity analyses for the 
effect of treatment level on the minimum number of infections and deaths (a, d), corresponding to the optimal prophylaxis cov-
erage as a function of treatment level (b, e). For the optimal prophylaxis coverage, (c) and (f) illustrate the sensitivity of the 
minimum number of infections and deaths to the transmission fitness of the resistant strain.
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tively counterbalance reductions in disease transmission
and illness associated with antiviral prophylaxis and
adjunctive prophylaxis would offer no advantages (and
possible disadvantages) relative to an antiviral strategy
that restricts provision of antiviral drugs for the timely
treatment of diagnosed cases. We project that, when anti-
viral resistance is considered, strategies that prioritize the
treatment of ill individuals will be most effective in reduc-
ing morbidity and mortality during an influenza pan-
demic.

Our results corroborate the findings of a recent assess-
ment of the effectiveness of post-exposure prophylaxis in
nursing homes [32]. If resistance developed, post-expo-
sure prophylaxis was shown to be significantly less effica-
cious in protecting patients. There was more selection for
resistance during continuous prophylaxis which could
result in an increased prevalence of resistant viruses. Sub-
sequent transmission of resistance to visitors and those
caring for patients with influenza could lead to the spread
of drug resistant viruses in the wider-community; thereby
substantially limiting the impact of antiviral measures. In
this context, it has been suggested that allocating different
drugs for treatment and prophylaxis may constrain the
development of resistance [31]. However, it is important
to note that the emergence and spread of resistance is also
influenced by other factors, such as compensatory muta-
tions that ameliorate the fitness costs associated with
resistance evolution. For example, a dramatic rise in the
emergence of drug resistance in seasonal influenza H1N1
viruses has been reported worldwide, even in geographic
areas where the drugs have been infrequently used. Recent
work suggests that the globally increasing frequency of
resistance is more likely attributable to its interaction with
fitness-enhancing mutations rather than to direct drug
selection pressure [33]. Thus, the use of drugs may not be
the sole factor in the elevated population incidence of
drug resistance.

This study is highly relevant to decisions currently being
made by public health agencies faced with trying to con-
trol the 2009 influenza A (H1N1) pandemic. Although
initial investigations documented the sensitivity of the
pandemic influenza strain to neuraminidase inhibitors
(that is, oseltamivir and zanamivir) [8], the recent devel-
opment of drug-resistance in patients treated with osel-
tamivir is extremely concerning. Of 31 confirmed cases of
H1N1 oseltamivir-resistance (with the same H275Y muta-
tion) reported as of 4 October 2009, 12 were associated
with post-exposure prophylaxis with this drug [34]. Osel-
tamivir-resistance was also isolated in a patient travelling
between San Francisco and Hong Kong, with no docu-
mented treatment with oseltamivir (3 July 2009), which
raises concerns about the transmissibility of resistant
mutants (as well as the rapid international dissemination

of such mutants). A similar case of resistance in someone
who had not been previously treated with oseltamivir was
identified in Japan on 22 August 2009. A recent Centres
for Disease Control and Prevention report provides fur-
ther evidence for the possible transmission of oseltamivir-
resistant viral strains among individuals involved in a pro-
gramme of mass oseltamivir prophylaxis during an out-
break of influenza-like illnesses at a summer camp [35].
Given the extensive use of drugs in some affected coun-
tries, enhancement of the prevalence of oseltamivir resist-
ant viral strains in the current pandemic does appear
likely. Therefore, enhanced surveillance and clinical mon-
itoring for the rapid detection of resistant viruses and the
determination of transmission fitness constitutes a most
desirable complement to any programme involving wide-
spread distribution of antiviral medications for pandemic
mitigation.

Like any mathematical model, our model is subject to
limitations, including the simplifying assumption of
homogeneity in the population interactions and the
absence of stochastic ('random') effects that may play a
dominant role in disease spread early in an epidemic.
Recent studies provide a solid foundation for the exten-
sion of our model to include heterogeneity in population
dynamics of disease transmission [36,37]. In the absence
of data on the novel pandemic influenza strain, we have
used antiviral effectiveness estimates derived from studies
performed during seasonal influenza [38] and we have
used published parameters which are subject to some
degree of uncertainty. Nonetheless, while these assump-
tions may limit the precise quantitative predictive ability
of our model, we note that our projections were robust in
the face of wide-ranging sensitivity analyses and we
emphasize the qualitative aspects of this study which
should help public health professionals as they strive to
provide guidance on the best use of antiviral drugs in the
face of substantial uncertainty.

Conclusion
In the presence of transmissible drug resistant viruses, the
strategic use of antiviral drugs is crucial to the mitigation
of the impact of pandemic influenza on individuals and
the population as a whole. Our findings suggest that strat-
egies that prioritize the treatment of only ill individuals,
rather than prophylaxis of those suspected of having been
exposed, are most effective in reducing morbidity and
mortality of the pandemic.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
SM and CB developed the model. GR and JW analysed the
model theoretically. CB conceived and performed the
Page 8 of 10
(page number not for citation purposes)



BMC Medicine 2009, 7:73 http://www.biomedcentral.com/1741-7015/7/73
experiments. SM, CB, GR, DF and JW contributed rea-
gents/materials/analysis tools. SM and DF designed the
study and wrote the paper. All the authors have read the
final version of the paper and approved it.

Additional material

Acknowledgements
This research was supported by the Canadian Institutes of Health Research 
(CIHR), the Natural Sciences and Engineering Research Council of Canada 
(NSERC) and Mathematics of Information Technology and Complex Sys-
tems (MITACS). GR was supported by the Hungarian Research Fund 
(Grant OTKA K75517), the Bolyai Scholarship, and the TAMOP-4.2.2/08/
1/2008-0008 programme of Hungarian National Developmental Agency. 
SM, DF and JW are members of the Pandemic Influenza Outbreak Research 
Modelling Team (Pan-InfORM), and would like to acknowledge the support 
received from the CIHR Catalyst Grant for Pandemic Preparedness (PI: 
SMM). The authors also would like to thank the reviewers for their insight-
ful comments.

References
1. World Health Organisation   [http://www.who.int/mediacentre/

news/statements/2009/h1n1_pandemic_phase6_20090611/en/
index.html]

2. Democratis J, Pareek M, Stephenson I: Use of neuraminidase
inhibitors to combat pandemic influenza.  J Antimicrobl Chem-
other 2006, 58:911-915.

3. Lipsitch M, Cohen T, Murray M, Levin BR: Antiviral resistance and
the control of pandemic influenza.  PLoS Med 2007, 4:e15.

4. Regoes RR, Bonhoeffer S: Emergence of drug-resistant influ-
enza virus: population dynamical considerations.  Science
2006, 312:389-391.

5. Longini IM Jr, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W,
Cummings DAT, Halloran ME: Containing pandemic influenza at
the source.  Science 2005, 309:1083-1087.

6. Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S,
Meeyai A, Iamsirithaworn S, Burke DS: Strategies for containing
an emerging influenza pandemic in Southeast Asia.  Nature
2005, 437:209-214.

7. Alexander ME, Bowman CS, Feng Z, Gardam M, Moghadas SM, Röst
G, Wu J, Yan P: Emergence of drug-resistance: implications for
antiviral control of pandemic influenza.  Proc R Soc B 2007,
274:1675-1684.

8. CDC: Drug susceptibility of swine-origin influenza A (H1N1)
viruses, April 2009.  MMWR 2009, 58:433-435.

9. Fraser C, Riley S, Anderson RM, Ferguson NM: Factors that make
an infectious disease outbreak controllable.  Proc Natl Acad Sci
USA 2004, 101:6146-6151.

10. Moghadas SM, Bowman CS, Rost G, Wu J: Population-wide emer-
gence of antiviral resistance during pandemic influenza.  PLoS
One 2008, 3(3):e1839.

11. Arino J, Bowman CS, Moghadas SM: Antiviral resistance during
pandemic influenza: implications for stockpiling and drug
use.  BMC Infect Dis 2009, 9:8.

12. Centers for Disease Control and Prevention   [http://
www.cdc.gov/h1n1flu/recommendations.htm]

13. Klinkenberg D, Fraser C, Heesterbeek H: The effectiveness of
contact tracing in emerging epidemics.  PLoS One 2006, 1:e12.

14. Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings
DA: Incubation periods of acute respiratory viral infections:
a systematic review.  Lancet Infect Dis 2009, 9:291-300.

15. Cauchemez S, Carrat F, Viboud C, Valleron AJ, Boelle PY: A Baye-
sian MCMC approach to study transmission of influenza:
application to household longitudinal data.  Stat Med 2004,
23:3469-3487.

16. Sander B, Nizam A, Garrison LP Jr, Postma MJ, Halloran ME, Longini
IM Jr: Economic evaluation of influenza pandemic mitigation
strategies in the United States using a stochastic microsim-
ulation transmission model.  Value Health 2009, 12:226-233.

17. Gubareva LV, Kaiser L, Matrosovich MN, Soo-Hoo Y, Hayden FG:
Selection of influenza virus mutants in experimentally
infected volunteers treated with oseltamivir.  J Infect Dis 2001,
183:523-531.

18. Whitley RJ, Hayden FG, Reisinger KS, Young N, Dutkowski R, Ipe D,
Mills RG, Ward P: Oral oseltamivir treatment of influenza in
children.  Pediatr Infect Dis J 2001, 20:127-133.

19. Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C,
Kimura K, Hayden FG, Sugaya N, Kawaoka Y: Resistant influenza
A viruses in children treated with oseltamivir: descriptive
study.  Lancet 2004, 364:759-765.

20. Ward P, Small I, Smith J, Suter P, Dutkowski R: Oseltamivir (Tami-
flu(R)) and its potential for use in the event of an influenza
pandemic.  J Antimicrob Chemother 2005, 55(Suppl 1):i5-i21.

21. Moscona A: Oseltamivir resistance - disabling our influenza
defenses.  N Engl J Med 2005, 353:2633-2636.

22. Moscona A: Global transmission of oseltamivir-resistant influ-
enza.  N Engl J Med 2009, 360:953-956.

23. Diekmann O, Heesterbeek JAP: Mathematical Epidemiology of
Infectious Diseases.  Chichester: Wiley; 2000. 

24. Gani R, Hughes H, Fleming D, Griffin T, Medlock J, Leach S: Potential
impact of antiviral drug use during influenza pandemic.
Emerg Infect Dis 2005, 9:1355-1362.

25. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove
MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ,
Jombart T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson
NM, Rambaut A, Pybus OG, Lopez-Gatell H, Alpuche-Aranda CM,
Chapela IB, Zavala EP, Guevara DM, Checchi F, Garcia E, Hugonnet S,
Roth C, WHO Rapid Pandemic Assessment Collaboration: Pan-
demic potential of a strain of influenza A (H1N1): early find-
ings.  Science 2009, 324(19):1557-1561.

26. Pourbohloul B, Ahued A, Davoudi B, Meza R, Meyers LA, Skowronski
DM, Villaseñor I, Galván F, Cravioto P, Earn DJ, Dushoff J, Fisman D,
Edmunds WJ, Hupert N, Scarpino SV, Trujillo J, Lutzow M, Morales J,
Contreras A, Chávez C, Patrick DM, Brunham RC: Initial human
transmission dynamics of the pandemic (H1N1) 2009 virus in
North America.  Influenza Other Respiratory Viruses 2009,
3:215-222.

27. Mills CE, Robins JM, Lipsitch M: Transmissibility of 1918 pan-
demic influenza.  Nature 2004, 432:904-906.

28. Germann TC, Kadau K, Longini IM Jr, Macken CA: Mitigation strat-
egies for pandemic influenza in the United States.  Proc Natl
Acad Sci USA 2006, 103:5935-5940.

29. Welliver R, Monto AS, Carewicz O, Schatteman E, Hassman M,
Hedrick J, Jackson HC, Huson L, Ward P, Oxford JS, for the Oseltami-
vir Post-Exposure Prophylaxis Investigator Group: Effectiveness of
oseltamivir in preventing influenza in household contacts: a
randomized controlled trial.  JAMA 2001, 285:748-754.

30. Hayden FG, Belshe R, Villanueva C, Lanno R, Hughes C, Small I,
Dutkowski R, Ward P, Carr J: Management of influenza in
households: a prospective, randomized comparison of osel-
tamivir treatment with or without post-exposure prophy-
laxis.  J Infect Dis 2004, 189:440-449.

31. McCaw JM, Wood JG, McCaw CT, McVernon J: Impact of emerg-
ing antiviral drug resistance on influenza containment and
spread: influence of subclinical infection and strategic use of
a stockpile containing one or two drugs.  PLoS One 2008,
3(6):e2362.

32. Dool C van den, Hak E, Bonten MJM, Wallinga J: A model-based
assessment of oseltamivir prophylaxis strategies to prevent
influenza in nursing homes.  Emerg Infect Dis 2009, 15:1547-1555.

33. Simonsen L, Viboud C, Grenfell BT, Dushoff J, Jennings L, Smit M,
Macken C, Hata M, Gog J, Miller MA, Holmes EC: The genesis and
spread of reassortment human influenza A/H3N2 viruses

Additional file 1
Post-exposure prophylaxis during pandemic outbreaks. Model structure 
and its analyses with parameter values used for simulations are provided.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7015-7-73-S1.PDF]
Page 9 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1741-7015-7-73-S1.PDF
http://www.who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html
http://www.who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html
http://www.who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17253900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17253900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16627735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16627735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16079251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16079251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16079797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16079797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17507331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17507331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19407738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19407738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15071187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15071187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18350174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18350174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19161634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19161634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19161634
http://www.cdc.gov/h1n1flu/recommendations.htm
http://www.cdc.gov/h1n1flu/recommendations.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17183638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17183638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19393959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19393959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15505892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15505892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15505892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11170976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11170976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11170976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11224828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11224828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15337401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15337401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15337401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15709056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15709056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15709056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16371626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16371626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19258250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19258250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19433588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19433588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19433588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15602562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15602562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16585506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16585506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11176912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11176912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11176912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14745701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14745701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14745701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18523549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18523549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18523549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19861044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19861044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19861044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17522084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17522084


BMC Medicine 2009, 7:73 http://www.biomedcentral.com/1741-7015/7/73
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

conferring adamantane resistance.  Mol Biol Evol 2007,
24:1811-1820.

34. World Health Organisation   [http://www.who.int/csr/don/
2009_09_25/en/index.html]

35. Centers for Disease Control and Protection: Oseltamivir-resist-
ant 2009 pandemic influenza A (H1N1) virus infection in two
summer campers receiving prophylaxis - North Carolina,
2009.  MMWR 2009, 58:969-972.

36. Alexander ME, Dietrich SM, Hua Y, Moghadas SM: A comparative
evaluation of modelling strategies for the effect of treatment
and host interactions on the spread of drug resistance.  J The-
oret Biol 2009, 259:253-263.

37. Debarre F, Bonhoeffer S, Regoes RR: The effect of population
structure on the emergence of drug resistance during influ-
enza pandemics.  J R Soc Interface 2007, 4:893-906.

38. Halloran ME, Hayden FG, Yang Y, Longini IM Jr, Monto AS: Antiviral
effects on influenza viral transmission and pathogenicity:
observations from household-based trials.  Am J Epidemiol 2007,
165:212-221.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1741-7015/7/73/prepub
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17522084
http://www.who.int/csr/don/2009_09_25/en/index.html
http://www.who.int/csr/don/2009_09_25/en/index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19745803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19745803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19745803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17609176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17609176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17609176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17088311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17088311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17088311
http://www.biomedcentral.com/1741-7015/7/73/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Model development
	Model parameters and estimates

	Results
	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References
	Pre-publication history

