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Abstract

Background: Epidemiological studies have observed a positive association between an earlier age at sexual
development and prostate cancer, but markers of sexual maturation in boys are imprecise and observational
estimates are likely to suffer from a degree of uncontrolled confounding. To obtain causal estimates, we examined
the role of pubertal development in prostate cancer using genetic polymorphisms associated with Tanner stage in
adolescent boys in a Mendelian randomization (MR) approach.

Methods: We derived a weighted genetic risk score for pubertal development, combining 13 SNPs associated with
male Tanner stage. A higher score indicated a later puberty onset. We examined the association of this score with
prostate cancer risk, stage and grade in the UK-based ProtecT case-control study (n = 2,927), and used the
PRACTICAL consortium (n = 43,737) as a replication sample.

Results: In ProtecT, the puberty genetic score was inversely associated with prostate cancer grade (odds ratio (OR)
of high- vs. low-grade cancer, per tertile of the score: 0.76; 95 % CI, 0.64–0.89). In an instrumental variable estimation of
the causal OR, later physical development in adolescence (equivalent to a difference of one Tanner stage between
pubertal boys of the same age) was associated with a 77 % (95 % CI, 43–91 %) reduced odds of high Gleason prostate
cancer. In PRACTICAL, the puberty genetic score was associated with prostate cancer stage (OR of advanced vs.
localized cancer, per tertile: 0.95; 95 % CI, 0.91–1.00) and prostate cancer-specific mortality (hazard ratio amongst cases,
per tertile: 0.94; 95 % CI, 0.90–0.98), but not with disease grade.

Conclusions: Older age at sexual maturation is causally linked to a reduced risk of later prostate cancer, especially
aggressive disease.
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Background
Prostate cancer is now the most frequently detected
cancer among men in Westernized countries [1]. Pros-
tatic intraepithelial neoplasia, a precursor of prostate
cancer, has been observed among men in their 20s,
suggesting that early-life exposures may play a role in
the development of prostate cancer [2] and provide
novel opportunities for prostate cancer prevention [3].
Circulating hormones, which rise during puberty, in

particular androgens and insulin-like growth factors
(IGFs), may play a role in prostate cancer initiation and
progression [4, 5], although the relevance of serum
androgen levels has recently been called into question
[6]. Age at onset of puberty may be a risk factor for
prostate adenocarcinoma in men given that exposure to
high levels of hormones takes place during the critical
window of prostate development in adolescence [3]. Age
of menarche is a well-known risk factor for breast cancer
[7], but it is yet unclear whether sexual maturation simi-
larly influences later life cancer events in men. However,
timing of puberty in boys is difficult to measure as it is
not defined by a specific event as in women (menarche);
thus, assessing it as a risk factor for prostate cancer in
men is challenging.
We investigated whether pubertal development influ-

ences risk of prostate cancer in a population-based cohort.
We used a genetic score comprised of single nucleotide
polymorphisms (SNPs) associated with Tanner genital
stage in adolescent boys [8, 9], as a surrogate for the onset
and progression of pubertal changes, and we determined
associations of this genetic score with prostate cancer risk,
stage and grade. The Tanner scale is a widely used 5-point
scale that rates breast development in girls, genital devel-
opment in boys, and pubic hair growth in both [10]. Using
a genetic score instead of directly assessed Tanner stage,
in an approach known as Mendelian randomization
(MR) [11], allows stronger causal inferences because
genetic variants are usually unaffected by non-genetic
confounding, reverse causality, or measurement error,
which underlie the problematic interpretation of ob-
servational studies [11, 12].

Methods
Subjects
This is a case-control study nested within a multicenter
randomized controlled trial of treatments for prostate-
specific antigen (PSA)-detected prostate cancer: the
Prostate Testing for cancer and Treatment (ProtecT)
study (ISRCTN20141297) [13]. During recruitment to
the ProtecT study between 2001 and 2009, over 100,000
men aged 50–69 years at 337 general practices in nine
UK centres (Birmingham, Bristol, Cambridge, Cardiff,
Edinburgh, Leeds, Leicester, Newcastle, Sheffield) were
offered a PSA test at a community-based ‘prostate check
clinic’, and those with raised levels (≥3 ng/mL) were
offered a diagnostic biopsy [14]. Detected tumours were
all histologically confirmed and clinically staged using
the TNM system [15]. In the current analysis, cancer
stages T1-T2 were categorized as ‘localized’; and T3-T4
as ‘locally advanced’, because few tumors had meta-
stasized. Histologic material obtained at biopsy was
assigned a Gleason score by specialist uropathologists
following a standard proforma and, for the purposes of
this study, categorized as low- (score ≤6) or high-grade
(score ≥7) cancers. All men without evidence of prostate
cancer were eligible for selection as controls; that is,
men with a PSA <3 ng/mL or a raised PSA (≥3 ng/mL)
combined with at least one negative biopsy and no sub-
sequent prostate cancer diagnosis during the follow-up
protocol. We selected one stratum-matched control for
each case from those men who had provided a non-
fasting blood sample at the prostate check clinic.
Controls were randomly selected from the same stratum,
i.e. 5-year age-band (age at PSA test) and GP/family
practice, as cases.
The working dataset consisted of 2,927 individuals

(1,136 cases, 1,791 controls) of European descent with
available genotype and phenotype information. All men
provided written informed consent prior to inclusion in
the study. Trent Multicentre Research Ethics Committee
(MREC) approved the ProtecT study (MREC/01/4/025)
and the associated ProMPT study which collected bio-
logical material (MREC/01/4/061; see Additional file 1:
Supplementary Methods for further details).

Genetic risk score
We derived a genetic risk score for pubertal develop-
ment in boys based on associations between 13 SNPs
and Tanner genital stage in males between 12.6 and
15 years of age described in two recent genome-wide
association studies (GWAS) of sexual maturation [8, 9].
All SNPs in the score were associated with Tanner stage
in boys (independently of whether they were also associ-
ated with Tanner stage in girls or in a combined sample
of boys and girls), and they had previously been associ-
ated with age at menarche [8, 16], although not always
in the direction consistent with their association with
Tanner genital stage [9]. Variants in the same gene were
included in the score provided their linkage disequilib-
rium, r2, was lower than 0.8.
Scores are used instead of individual genetic variants

because they are likely to explain a larger proportion of
trait variability and therefore represent stronger proxies
for the exposure [12]. Scores were calculated by summing
up the dosages of the risk alleles at all 13 SNPs in each
individual, weighted by the effect size of the variant in
males as reported in the discovery GWAS [8, 9], in such a
way that a unit increase in the score corresponded
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approximately to one risk allele. Risk alleles were those
associated with a lower Tanner stage (i.e. delayed pubertal
development). Polymorphisms included in the score are
shown in Table 1.

Statistical analysis
Associations of individual SNPs and the multiple SNP
score for pubertal development with case/control status
and other binary outcomes (localized [reference] vs.
locally advanced stage and low [reference] vs. high
grade) were determined using logistic regression, with
adjustment for age, study center, and the 10 principal
components which defined the population structure.
The genetic score was entered into the regression

models as a categorical variable with three levels (tertiles).
We also used this variable to test for linearity of effect and
compare prostate cancer risk among men in the lowest
and highest tertiles (i.e. with the earliest and latest sexual
maturation, respectively). All analyses were carried out in
Stata 13 (StataCorp LP, College Station, TX).
Table 1 SNPs included in the pubertal development genetic risk sco

SNP Nearest gene
(distance)

Chr Positiona Tanner stage
decreasing/
other allele

Tanner sta
allele freq
(ProtecT c

rs2274465 KDM4A 1 44121557 C/G

rs6427782 NR5A2 (+198 kb) 1 199798339 A/G

rs6762477 RBM6 3 50093209 A/G

rs2153127 LIN28B (+36 kb) 6 105348544 T/C

rs7759938 LIN28B (+6 kb) 6 105378954 C/T

rs7821178 PEX2 (–181 kb) 8 78093837 C/A

rs10453225 TMEM38B (–381 kb) 9 108920220 G/T

rs2090409 TMEM38B (–428 kb) 9 108967088 C/A

rs10739221 TMEM38B (–522 kb) 9 109060830 C/T

rs1324913 KLF12 13 74635588 T/G

rs12915845 DET1 15 89042467 C/T

rs246185 MKL2 (–35 kb) 16 14395432 C/T

rs12446632 GPRC5B (–38 kb) 16 19935389 A/G

aPosition based on GRCh37.p13 assembly
bn = 1,791
We plotted the effect of each SNP in the genetic score
on Tanner stage in approximately 13- to 15-year-old
boys against the corresponding effect on high-grade
prostate cancer, the disease outcome with the strongest
association with the score. The likelihood of bias due to
overall directional pleiotropy was formally evaluated
with MR-Egger regression [17]. MR-Egger regression
also provides an unbiased effect estimate (see definitions
in Additional file 1: Supplementary Methods).
We did not have data on Tanner stage measured in

adolescence in ProtecT men, and therefore could not
estimate its association with the genetic score in
ProtecT, in order to run a typical instrumental variable
analysis. However, we used a recently developed MR
method (summarized data allele score with correlated
variants) that provides an estimate of the causal effect of
the exposure (i.e. Tanner stage) on the outcome of
interest (i.e. prostate cancer) using information on the
association of individual SNPs in the score with expos-
ure and outcome [18]. We obtained the effect estimates
re in the ProtecT study

ge decreasing
uency
ontrols)b

Tanner stage
decreasing allele
frequency (CEU)

Hardy–Weinberg
equilibrium
P value

Gene function

0.664 0.676 0.9 Histone
demethylation

0.510 0.556 0.005 DNA binding/
steroid hormone
receptor activity

0.547 0.551 0.6 Regulation of
alternative splicing

0.530 0.515 0.8 Cell reprogramming

0.318 0.373 1.0 Cell reprogramming

0.665 0.658 0.1 Peroxisome
biogenesis

0.681 0.700 0.2 Maintenance of
intracellular
calcium release

0.680 0.688 0.3 Maintenance of
intracellular calcium
release

0.772 0.770 0.5 Maintenance of
intracellular
calcium release

0.338 0.312 0.6 Transcription factor/
gene expression
regulation

0.587 0.582 0.1 Development
regulation

0.313 0.300 0.6 Regulation of
immediate early
genes/muscle genes

0.146 0.127 0.8 Modulation of
insulin secretion
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of SNPs on Tanner stage at approximately 13–15 years
from published GWAS data [8, 9].
Replication analyses were carried out in the PRAC-

TICAL consortium (PRostate cancer AssoCiation group
To Investigate Cancer-Associated aLterations in the
genome) to test the association of the puberty genetic
score with prostate cancer risk and progression. Overall,
there were 45,928 individuals of European ancestry, of
which 22,160 prostate cancer cases and 21,577 controls
had genotype data available after applying quality control
procedures. Additionally, amongst men with prostate
cancer in PRACTICAL, we estimated associations of the
puberty score with 15-year all-cause and prostate
cancer-specific mortality (as an indication of long-term
survival) using Cox proportional hazards regression with
date at diagnosis as the start date and date at death or
final follow-up as the exit date, adjusted for age at diag-
nosis and 15 principal components, with robust standard
errors to account for within study clustering. All studies
in the consortium have the relevant Institutional
Review Board approval in each country in accordance
with the Declaration of Helsinki. More detailed infor-
mation is provided in the consortium website (http://
practical.ccge.medschl.cam.ac.uk) and Additional file 1:
Supplementary Methods and Tables S1 and S2.

Results
ProtecT
Men with prostate cancer were on average older, had
less benign prostatic hyperplasia (BPH), a lower body
mass index (BMI), more relatives with prostate cancer,
lower IGF-I, and higher IGF-II and IGF binding protein
(BP)-3 levels than controls (Table 2). The IGF-I:IGFBP-3
molar ratio, an indicator of bioavailable IGF-I, was con-
sequently lower in patients; 30 % of men with prostate
cancer were classified as having high-grade disease
(Gleason score ≥7), and 12 % as having locally advanced
disease (TNM stages T3-T4).
The genetic score was normally distributed (Additional

file 1: Figure S1) and for the most part not correlated
with population stratification axes (data not shown).
We found evidence of an inverse association between

our genetic score for pubertal development in boys and
prostate cancer, i.e. the higher the score and, thus, the
later the sexual maturation, the lower the risk for
prostate cancer. The association was particularly strong
for Gleason grade (odds ratio (OR) low- vs. high-grade
disease, per tertile: 0.76; 95 % CI, 0.64–0.89; P = 0.001;
Table 3). A dose-response effect of the genetic score in
tertiles on high-grade prostate cancer was observed.
Men in the highest score tertile (representing the most
sexually immature individuals at a specific age) had a
43 % (95 % CI, 21–59 %) lower risk of high- versus low-
grade disease than men in the lowest tertile (Table 4).
The reported effect of each SNP in the score on Tanner
stage in boys [8, 9] was correlated with the corresponding
effect on having high-, compared to low-grade, prostate
cancer (R2 ~ 31 %; Additional file 1: Table S3, Fig. 1).
Overall, there was no evidence of an association be-

tween the genetic score and potential confounders among
controls, such as age, BMI, weight, birthweight, BPH, fam-
ily history of prostate cancer, or diabetes. No association
between the genetic score and PSA was found either.
Marginal positive associations with leg length, a trait
affected by the timing of puberty [19], and adult height
were detected. In addition, we uncovered weak associ-
ations with IGFBP-2 and IGFBP-3 serum levels, as
well as with the IGF-I:IGBP-3 molar ratio (Additional
file 1: Table S4).
Using an estimated genetic score with summarized

data [18] we determined that there would be a substan-
tial reduction in high-grade (compared to low-grade)
prostate cancer per unit decrease in Tanner stage in re-
lation to peers (OR: 0.23; 95 % CI, 0.09–0.57; P = 0.002).
The MR-Egger’s test did not suggest the presence of dir-
ectional pleiotropy (P for intercept >0.05; see symmet-
rical funnel plot in Additional file 1: Figure S2), and gave
a similar causal estimate to that obtained with the allele
score with the summarized data method (OR: 0.16; 95 %
CI, 0.04–2.94; P = 0.2). No heterogeneity was apparent in
the causal estimates obtained from each genetic variant
individually (I2 = 0.0 %, P = 1.0).

PRACTICAL
We created a weighted genetic score with 12 of the 13
SNPs used in ProtecT, as rs1324913 was not available in
PRACTICAL. Information on SNPs in the score is
provided in Additional file 1: Table S5, and the score dis-
tribution is shown in Additional file 1: Figure S1. No
correlation between the Tanner score and principal
components was evident, and similarly, the score was
not associated with age at diagnosis, family history, or
method of disease detection (not shown).
In a meta-analysis of 21 studies included in PRAC-

TICAL, the genetic score was associated with prostate
cancer risk, such that a higher score – and therefore, a
delayed maturation – showed a protective effect (OR per
tertile: 0.97; 95 % CI, 0.94–1.00; P = 0.03). A slightly
bigger effect was found with prostate cancer stage (local-
ized vs. advanced, OR per tertile: 0.95; 95 % CI, 0.91–
1.00; P = 0.03; Fig. 2) but not with grade (low vs. high
grade, OR per tertile: 0.98; 95 % CI, 0.95–1.02; P = 0.4;
Additional file 1: Table S6). Heterogeneity between studies
was low (I2 < 33 %; P >0.05).
There were 15 studies with mortality data in PRAC-

TICAL. Overall, the average time to death or final
follow-up was 7 years, with a maximum ranging from
approximately 6 (in PCMUS) to 38 years (in Tampere).

http://practical.ccge.medschl.cam.ac.uk
http://practical.ccge.medschl.cam.ac.uk


Table 2 Clinical characteristics of prostate cancer cases and controls in the ProtecT study

Cases Controls n P value

Total, n 1,136 1,791 2,927

Age, years 62.2 ± 5.1 61.6 ± 5.2 2,927 0.003

PSA, ng/mL 8.5 ± 15.4 1.1 ± 1.3 2,925 <0.001

Gleason grade, % (<7/≥7) 70.0/30.0 n/a 1,135

TNM stage, % (localized/advanced) 88.4/11.6 n/a 1,136

BPH, % (no/yes)a 92.7/7.3 89.0/11.0 1,363 0.02

BMI, kg/m2 27.0 ± 3.7 27.5 ± 4.1 1,973 0.01

Height, cm 176.4 ± 7.0 175.9 ± 6.9 2,078 0.2

Weight, kg 84.5 ± 13.0 85.9 ± 14.6 2,677 0.02

leg length, cm 76.7 ± 4.8 76.5 ± 4.6 2,055 0.3

Birthweight, g 3,437.2 ± 744.9 3,476.1 ± 663.4 939 0.4

Family history, % (no/yes)b 92.7/7.3 95.0/5.0 2,908 0.01

Diabetes, % (no/yes)c 92.8/7.2 91.1/8.9 1,895 0.2

IGF-I, ng/mL 156.1 ± 55.8 163.2 ± 57.0 1,756 0.01

IGF-II, ng/mL 862.1 ± 323.6 733.7 ± 265.3 1,720 <0.001

IGFBP-2, ng/mL 731.5 ± 426.0 726.2 ± 444.7 1,745 0.5d

IGFBP-3, ng/mL 4,673.6 ± 1,041.9 4,370.8 ± 1,055.7 1,711 <0.001

IGF-I:IGFBP-3 molar ratioe 0.12 ± 0.04 0.14 ± 0.06 1,711 <0.001d

Continuous variables: mean ± SD
Two-sided t-tests and χ2 tests were used to analyze continuous and categorical variables, respectively
PSA Prostate-specific antigen, BMI Body mass index, BPH Benign prostatic hyperplasia, IGF Insulin-like growth factor, IGFBP Insulin-like growth factor
binding protein
an cases = 682, n controls = 681
bn cases = 1,131, n controls = 1,777
cn cases = 735, n controls = 1,160
dP value obtained from analysis of natural log transformed variable
eIGF-I:IGFBP-3 molar ratio = 0.13*[IGF-I]:0.036*[IGFBP-3]
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The genetic score was associated with 15-year prostate
cancer-specific mortality amongst men with prostate
cancer (hazard ratio (HR) per tertile: 0.94; 95 % CI,
0.90–0.98; P = 0.01), and marginally with 15-year all-
cause mortality (HR per tertile: 0.97; 95 % CI, 0.95–1.00;
P = 0.04). The proportional hazards assumption was not
met (P <0.001), probably due to the fact that up to
5 years post-diagnosis there do not appear to be differ-
ences in survival between individuals with different
Table 3 Pubertal development genetic risk score and prostate
cancer risk, stage and grade in the ProtecT study

Trait n OR 95 % CI P value

Control/case (0/1) 2,927 0.95 0.87–1.04 0.3

Gleason score (0:≤6/1:≥7)a 1,135 0.76 0.64–0.89 0.001

Stage (0:localised/1:locally advanced) 1,136 0.80 0.64–1.01 0.06

BPH (0:no/1:yes) 1,363 1.11 0.88–1.40 0.4

ORs indicate effects per tertile increase in the genetic score, adjusted by age,
recruitment centre and 10 principal components for population structure
a0 corresponds to the reference category
BPH Benign prostatic hyperplasia, CI Confidence intervals, OR Odds ratio
numbers of risk alleles (i.e. alleles associated with later
pubertal timing; Additional file 1: Figure S3).
We estimated the effect of being ranked a unit lower

in the Tanner stage (for the same age) on 15-year
prostate cancer-specific mortality as HR 0.62 (95 % CI,
0.49–0.78; P <0.001). The corresponding funnel plot and
MR-Egger results, which did not uncover evidence of
pleiotropy, are shown in Additional file 1: Figure S4.
Table 4 Odds ratios (ORs) for high- vs low-grade prostate cancer
by pubertal development genetic risk score tertiles in the
ProtecT study

Genetic score tertiles OR 95 % CI P value

T1 Reference 0.003

T2 0.79 0.58–1.07

T3 0.57 0.41–0.79

High-grade prostate cancer = Gleason ≥7
Low-grade prostate cancer = Gleason ≤6
OR adjusted by age, recruitment centre and 10 principal components for
population structure
n = 1,135
CI Confidence intervals



Fig. 1 Effect of Tanner stage change in boys on the risk of developing
high-grade prostate cancer. In ProtecT, proportional risk reduction for
high-grade prostate cancer (Gleason ≥7) for each SNP plotted against
each SNP’s absolute effect on lowering Tanner stage. The trend line,
set to intercept the axes at the origin, represents the percentage risk
reduction for high-grade disease per unit decrease in Tanner stage.
Excluding SNP rs6427782, which was out of Hardy–Weinberg equilibrium
pre-Bonferroni correction for multiple testing, from the plot did not
produce an appreciable change in the results. Tanner genital stage in
boys was treated as a quantitative trait on a scale of 1–5, according to
the studies where the associated SNPs were first described [8, 9]

Fig. 2 Pubertal development genetic risk score and prostate cancer
risk (top) and stage (bottom) in the PRACTICAL consortium
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Discussion
Main findings
In a study of PSA-detected prostate cancer cases and
controls we found strong evidence that a genetic score,
comprised of SNPs associated with Tanner stage in
approximately 13- to 15-year-old boys, was inversely
associated with prostate cancer progression. A later
pubertal development (expected among those with
higher genetic score values) lowered the risk of develop-
ing high-grade disease, a possible clinically relevant sub-
type because of its stronger relationship than low-grade
disease to progression.
Replication analysis using 21 prostate cancer studies

across Europe, the USA and Australia in the PRAC-
TICAL consortium, uncovered a weak inverse associ-
ation between prostate cancer risk and stage and the
puberty genetic score, with a reduced effect detected on
disease grade. However, we found a stronger association
of the score with prostate cancer-specific mortality up to
15 years after diagnosis, indicating that (on average)
men whose sexual maturation was later than their peers
were less likely to die due to the disease than those
whose onset of puberty was earlier. This is in agreement
with our findings in ProtecT, regarding the association
of earlier puberty with high-grade disease, as men with
more aggressive cancer tend to have a poorer prognosis
[20]. It is possible that differing definitions of low- and
high-grade prostate cancer across studies may have pre-
vented the detection of an effect of the puberty score on
this phenotype, with mortality being a stronger and
more clear-cut marker of an aggressive disease. There
were also differences between studies in method of
disease detection: the cases enrolled in ProtecT were
PSA-detected, whereas the majority of men in the
PRACTICAL studies were clinically identified. Addition-
ally, in PRACTICAL, there was a wide variation in the
proportion of men with a positive family history of pros-
tate cancer, which ranged from as low as 2.4 % in EPIC
to 42.4 % in WUGS (conversely, the proportion of men
with a positive family history in ProtecT was ~6 %).

Mechanisms explaining the observed associations
It has been suggested that endogenous androgen and
IGF-I hormones may underlie the relationship between
puberty timing and prostate cancer risk [4, 5]. The
concentrations of these hormones increases markedly
during puberty and are likely to be especially influential
on the prostate gland as it becomes fully developed at
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this time [21]. Because the prostate is still maturing,
puberty may be an important biological window at
which early life exposures could have long-term effects
on the prostate [3].
Androgens play a central role in the etiology of prostate

cancer, as prostate cancer is dependent on androgen re-
ceptor activation for growth and survival [22]. A delayed
pubertal onset may reduce the length of time an individual
is exposed to high androgen levels during a period when
the prostate is particularly susceptible to carcinogenic
exposures [3].
IGF-I is a potent mitogen and inhibitor of apoptosis

that mediates growth during childhood and adolescence
and, consequently, stimulates carcinogenesis. IGF-I
levels increase from birth to a pubertal peak before
declining steadily from young adulthood [23, 24]. It is
possible that a younger age at the initiation of puberty is
linked to an increase in prostate cancer risk by its
association with higher IGF-I levels. Serum IGF-I has
been positively associated with an earlier pubertal age in
an observational study examining adult IGF-I levels,
suggesting that higher pre-pubertal IGF-I (if reflected by
higher adult IGF-I) may accelerate childhood growth
and the start of puberty [24].
In our study, the puberty genetic score was not associ-

ated with circulating IGF-I, although the effect appeared
to be in the direction anticipated [24], but we observed
an inverse association with the IGF-I:IGFBP-3 molar
ratio, suggesting that an earlier pubertal development
may be influenced by higher levels of bioavailable IGF-I.
The weakly positive association of the genetic score

with adult leg length and height agrees with studies that
showed that earlier age at puberty was associated with
shorter stature, primarily attributable to shorter leg
length, in US women [25] and Swedish men [19].
Growth in leg length, an indicator of pre-pubertal living
conditions, on the other hand, has been positively
associated with IGF-I levels in UK children, particularly
boys [26].
Our finding that a younger age at sexual maturation

increases the risk of developing high-grade prostate
cancer, and of dying due to the disease, strengthens the
idea of the existence of trade-offs between reproductive
success and health. MR analysis suggests that there may
be a causal relationship between early life environments
that promote an accelerated onset of puberty under
conditions of uncertainty (e.g. in cases of familial stress
due to low income, marital conflict or father absence),
so as to favour reproduction, and a detrimental effect on
health and longevity in the long term [27, 28].

Strengths and limitations
Studies of puberty in men are problematic because its
initiation is not defined as a single event in the way that
menarche is. In addition, in studies of middle aged and
elderly men, an attempt to measure puberty is likely to
suffer from recall bias. The genetic score represents a
more accurate instrument to assess the causality of the
association of pubertal development and prostate cancer
risk. The association with leg length provides to some
extent a validation of the genetic score in the ProtecT
population.
A genetic score is unlikely to be associated with

non-genetic confounders, which frequently obscure
the interpretation of observational data, and this is, in
fact, the case in our study with respect to a few
measured confounders.
As the genetic score in our study was not associated

with age, PSA, BMI, diabetes, or BPH, we believe that its
association with prostate cancer does not represent an
artefact of detection due to, for instance, men who are
seen more frequently by a doctor having an incidental
diagnosis of prostate cancer.
One important assumption in MR is that the instrument

(i.e. the genetic score) should be associated with the
outcome of interest (i.e. prostate cancer) only via the
exposure (i.e. pubertal development). Some SNPs in the
score have been associated with height (P <0.05, http://
www.gwascentral.org/index) while four of them are
located near genes (LIN28B and TMEM38B) recently
associated with sitting height ratio and found to dispro-
portionately affect leg length [29]. However, this could be
an example of mediated pleiotropy (where a single process
influences a cascade of events) [30] and as such it does
not undermine our findings. Furthermore, a formal test of
the assumption of no pleiotropy, implemented using MR-
Egger’s regression, found no evidence of a violation of this
principle.
Replication of our findings as well as uncovering the

potential mechanisms through which the timing of
puberty might affect the progression of prostate cancer
were likely hindered by differences in phenotype ascer-
tainment in PRACTICAL studies.

Comparison with existing literature
Few studies have examined the role that pubertal devel-
opment has on the initiation and progression of prostate
cancer, in contrast to the more extensive research on age
at menarche and breast cancer. This research shows that
an earlier age at menarche is reliably associated with
greater breast cancer risk [31]. Given the difficulties in
defining puberty among males, studies have used a
variety of traits as proxies, mainly age at different life
events such as shaving initiation [21, 32], first sexual
intercourse [33–36], first ejaculation [37], peak height
velocity [24], attainment of adult height [38], as well as
the well-established Tanner scale [10]. Results from
studies that assessed these variables with respect to

http://www.gwascentral.org/index
http://www.gwascentral.org/index
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prostate cancer showed that later growth relative to
peers [37], height attainment [38], age at first sexual
intercourse [33–36], and being older than 16 at first
ejaculation [37] were all associated in a protective
direction with prostate cancer. Older age at initiation of
shaving was also protective but only among African
Americans [21]. As far as we know, no observational
study to date has used Tanner stage to investigate the
relationship between pubertal development and prostate
cancer, so a comparison with our MR findings is not
possible.

Conclusions
Using an MR approach, we have found evidence that
experiencing a later sexual maturation reduces prostate
cancer risk, especially that of aggressive prostate cancer,
as well as mortality owing to the disease. The mecha-
nisms that underlie this relationship may involve the
androgenic or IGF pathways, but additional MR studies,
using specific instruments for these exposures, should be
carried out to investigate this further. Although altering
pubertal timing is not a viable prostate cancer prevention
strategy there is public health value in identifying those in-
dividuals who are more likely to have a worse prognosis
[3]. On the other hand, if pubertal development is shown
to be driven by increased IGF-I levels, then dietary
interventions to regulate its course could potentially be
considered.
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