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Abstract

Zika virus (ZIKV) is a mosquito-borne flavivirus that has newly emerged as a significant global threat, especially to
pregnancy. Recent major outbreaks in the Pacific and in Central and South America have been associated with an
increased incidence of microcephaly and other abnormalities of the central nervous system in neonates. The causal
link between ZIKV infection during pregnancy and microcephaly is now strongly supported. Over 2 billion people
live in regions conducive to ZIKV transmission, with ~4 million infections in the Americas predicted for 2016. Given
the scale of the current pandemic and the serious and long-term consequences of infection during pregnancy, the
impact of ZIKV on health services and affected communities could be enormous. This further highlights the need
for a rapid global public health and research response to ZIKV to limit and prevent its impact through the
development of therapeutics, vaccines, and improved diagnostics. Here we review the epidemiology of ZIKV; the
threat to pregnancy; the clinical consequences and broader impact of ZIKV infections; and the virus biology
underpinning new interventions, diagnostics, and insights into the mechanisms of disease.
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Background
Zika virus (ZIKV) infection was previously considered to
be of modest public health concern, causing only mild
fever, rash, and arthralgia in 20 % of patients, with 80 %
of infections being asymptomatic [1]. Recently, ZIKV
has caused large outbreaks in the Pacific (especially in
the island of Yap in 2007 and in French Polynesia in
2012–14). The subsequent major outbreaks in Central
and South America (especially Brazil) in 2015–16 led to
the World Health Organization (WHO) declaring the
situation as a Public Health Emergency of International
Concern, placing it on the same priority list as the
recent Ebola virus outbreak (Fig. 1). Increase in research
efforts has led to ZIKV now being an accepted cause of
the major increase in neurological abnormalities, including
microcephaly and Guillain–Barré syndrome, reported in
these regions.

Zika virus epidemiology
ZIKV is a flavivirus that is primarily transmitted by
daytime-active mosquitoes of the Aedes spp. Other routes
of transmission have been reported, including sexual
transmission, with low rates of transmission from oral and
anal sex also described [2–7]. ZIKV was first identified in
a rhesus macaque in the Zika forest in Uganda in 1947
[8]. The first evidence that ZIKV could infect humans
came from serological surveys conducted in Uganda [9].
Evidence of sporadic human infections was then demon-
strated across Africa and parts of South-East Asia, but the
first major ZIKV outbreak described was in 2007 on the
island of Yap in the Federated States of Micronesia. In that
epidemic, it was estimated that >73 % of the total popula-
tion was infected [1]. Since 2007, ZIKV has continued its
eastward migration, detected in French Polynesia in
2012–14, the Easter Islands (Chile) in 2014, and Brazil in
2015, where between 500,000 and 1.5 million cases of Zika
have occurred. ZIKV transmission has now been docu-
mented in 66 countries and territories; since 2015, 49
countries and territories previously ZIKV-negative have
experienced their first reported ZIKV outbreak [10].
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Clinical manifestations
Microcephaly has emerged as an accepted consequence
of ZIKV infection during pregnancy. It describes a fetus
or infant with a head circumference (HC) smaller than
expected for gestation or age, and is usually categorized
as primary microcephaly (mainly from genetic causes) or
secondary microcephaly (nongenetic causes such as
infection or disruption of brain vasculature) [11, 12].
The criteria used to define microcephaly vary. The more
stringent definition is a HC of three standard deviations
(SD) below the mean. This definition includes all those
with clinically significant microcephaly that is highly
likely to be associated with severe developmental delay,
intellectual impairment, and other severe complications.
A less stringent definition of a HC of two SD below the
mean is currently used in Brazil for the postnatal diagnosis
of microcephaly. This is practical given that around 33 %
of infants with a HC between two and three SD below the
mean have moderate to severe intellectual impairment
[13]. In the context of ZIKV infection, the real need for
consensus around the definition of microcephaly is most
important for its in utero diagnosis. This is a technically
difficult task that has been aided by the recently released
guidelines from the Society for Maternal Fetal Medicine

[14]. Other structural cerebral abnormalities are also
associated with congenital ZIKV syndrome, including
brainstem and cerebellar hypoplasia, delayed myelination,
severe ventriculomegaly, gross calcification of the brain
parenchyma, and some cases of lissencephaly (absence of
normal cerebral folds) [15, 16]. Unlike other viruses in
pregnancy that are associated with a more generalized
congenital syndrome affecting a number of different or-
gans, ZIKV appears to predominantly affect neural tissues.
Two recent reports of neuroimaging in a total of 46
infants with likely ZIKV-associated microcephaly demon-
strated severe brain damage in almost all cases [15–17].
Guillain–Barré is an additional serious complication that
may follow ZIKV infection. Guillain–Barré syndrome is
an immune-mediated disease affecting the peripheral
nervous system that can lead to a severe peripheral
neuropathy causing muscle paralysis, and can result in
death in some cases [18]. Guillain–Barré syndrome has a
range of potential causes, including other flaviviruses [19];
the association between ZIKV infection and Guillain–
Barré syndrome in French Polynesia has now been clearly
established [20]. However, this review will focus on ZIKV
infection during pregnancy and the development of fetal
microcephaly and other complications (Fig. 2).

Fig. 1 Zika virus infection has rapidly emerged as a significant global threat. See text for further details
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Level of threat to pregnant women
The rapidly expanding distribution of ZIKV and its po-
tentially high penetrance in newly affected populations
pose very significant threats to pregnant women and
their fetuses in many regions. The first trimester of preg-
nancy is a crucial period for brain development and
ZIKV infection early in pregnancy is likely to be more
strongly associated with microcephaly than infections
later in pregnancy, as demonstrated in French Polynesia
[21]. Consequently, the impact of the expansion of ZIKV
to previously unexposed populations may not be per-
ceived for a number of months, as seen in the delayed
observations of microcephaly and fetal malformations in
French Polynesia [21] and Brazil [22]. As of 25 June
2016, in Brazil, there were 8165 reported cases of micro-
cephaly suspected to be associated with ZIKV infection,
of which 5104 have been investigated and 1638 (32 %)
were confirmed to be linked to ZIKV [23]. Modeling
data from French Polynesia revealed that the risk of
microcephaly from infection in the first trimester was
1 % [21]. This estimation relied on passive surveillance
of only ~30 % of general practice clinics and is likely to
be an underestimation of the actual risk given that some
mothers could have had a miscarriage or stillbirth or
may not have presented for clinical care. Such data from
the Brazil outbreak are not yet available. This relatively
low risk has to be balanced with the large population ex-
posure and high incidence of ZIKV in some regions
(e.g., ~70 % in French Polynesia [21] and Yap [1]). The
reasons why microcephaly and other congenital compli-
cations associated with ZIKV have become prominent in
recent outbreaks is currently unclear. It may be

explained by specific mutations in ZIKV strains causing
recent epidemics, and/or host or other cofactors. The
enormous size of recent and ongoing epidemics has also
aided the detection of complications.

Strength of the evidence for a link between
Zika virus and microcephaly
Evidence for a causal link between ZIKV and microcephaly
is now very strong and widely accepted [24] (Table 1).

Fig. 2 Zika virus disease pathogenesis. The figure summarizes key points regarding ZIKV transmission, clinical features and complications, and
mechanisms of fetal infection and microcephaly and central nervous system abnormalities

Table 1 Evidence for a causal link between ZIKV and microcephaly

Epidemiological and clinical findings

Increase in microcephaly cases coincides with increase in ZIKV
transmission (with a 6-month delay)

Data modeling shows that the main period at risk is the first trimester
of pregnancy

Of the microcephaly cases investigated in Brazil, 32 % were linked to
ZIKV

Case study: Miscarriage of a baby with microcephaly was positive for
ZIKV (including in its brain), but negative for other known infectious
causes of microcephaly

Laboratory studies

ZIKV can infect human neural progenitor cells and attenuate their
growth in vitro

Primary human placental macrophages and trophoblasts are
permissive to ZIKV infection in vitro

Animal models

Mouse model of ZIKV display signs of microcephaly

Analogy to related viruses

Rubella virus, another flavivirus, causes microcephaly when infection
occurs during pregnancy

Note: See text for further details and discussion of the evidence
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Despite the lack of data from adequately powered pro-
spective longitudinal studies, the link between ZIKV
and microcephaly is supported by applying Shepard’s
Criteria for Proof of Teratogenicity in Humans [24]
and the Bradford–Hill criteria for causality [25], espe-
cially for the aspects of temporality, biological plausi-
bility, and analogy. For example, temporality of the
association is supported by individual case reports as
well as the ~6-month delay between ZIKV outbreaks
and the increase in the incidence of microcephaly in
French Polynesia [21] and Brazil [22], suggesting a
causal link between microcephaly and ZIKV infection in
the first/early second trimester. Moreover, modeling of
French Polynesia cases demonstrated that “the best-
fitting models of period-of-risk all included the first
trimester of pregnancy, with that including only the first
trimester having the best fit” [21], even if central
nervous system abnormalities have been reported for fe-
tuses infected as late as 27 weeks of gestation [26].
Plausibility is supported by the detailed study of an
aborted microcephaly case from Ukraine for which
other infectious causes of microcephaly were ruled out
[27]. This case had evidence of ZIKV infection in the
fetal brain, suggesting ZIKV can cross the fetal blood–
brain barrier. This is supported by reports of vertical
transmission of ZIKV in a mouse model, leading to im-
paired fetal brain development [28]. Furthermore, ZIKV
can infect human neural progenitor cells and attenuate
their growth [29]. These findings have been replicated
in a mouse model in which ZIKV targets primarily
neural progenitor cells, causing their cell-cycle arrest,
apoptosis, and inhibition of differentiation, resulting in
cortical thinning and microcephaly [30]. This and other
animal models have recently provided evidence that
ZIKV infection can lead to microcephaly (reviewed in
[31]), indicating that a causal link between early preg-
nancy ZIKV infection and microcephaly is plausible in
humans (see below for possible mechanisms). Mouse
models point to the importance of a type I IFN response
in the susceptibility to ZIKV infection and in the devel-
opment of clinical symptoms (including microcephaly)
[32, 33]. The relevance of these findings in humans is
unclear. There is also an analogy between ZIKV and
other viruses (including flaviviruses) for which a link
with microcephaly has been demonstrated; for example,
rubella can cause microcephaly with cerebral calcifica-
tions [34], as described with ZIKV infection [27] and
cytomegalovirus [35].
These and other lines of evidence collectively support

that ZIKV can cause microcephaly and led the Centers for
Disease Control and Prevention (CDC) to conclude that
“sufficient evidence has accumulated to infer a causal
relationship between prenatal Zika virus infection and
microcephaly and other severe brain anomalies” [24].

Consequences of Zika virus-associated microcephaly
on public health and health economics
The WHO predicts up to 4 million ZIKV infections in
2016 in the Americas alone [36] and initial modeling
suggests that up to 2.17 billion people live in areas con-
ducive to ZIKV transmission [37]. Given the potential
enormous scale of the issue, greater attention needs to
be given to the public health consequences and likely
economic impacts of an increased number of children
with microcephaly and other neurological and ocular
abnormalities [38, 39]. These abnormalities, as well as
microcephaly, are strongly associated with intellectual
impairment, seizures, visual and hearing impairment,
feeding difficulties, and significant developmental delay,
signifying a poor prognosis for affected children with
many unable to talk or walk [40–42]. As mentioned
above, ZIKV infections in adults have also been linked
with Guillain–Barré syndrome, a potentially debilitating
and serious complication.
ZIKV could potentially impact on the economies of

affected countries, such as through reduced tourism and
impact on trade [43]. However, there has been little
focus on the economic impact to the health system and
implications regarding cost of treatment, and the loss of
productivity of affected children and their carers. Dis-
ability is associated with lower educational attainment,
higher unemployment, and additional financial costs for
families [44]. These financial costs are at times over
40 % of household income, representing a potentially
catastrophic health expense that may drive some house-
holds into poverty and perpetuate the cycle of
entrenched poverty and poor health [44, 45]. Providing
appropriate healthcare and support services for these
children will further stretch already overburdened health
systems. Quantifying this burden on a society, health
system, and economy is difficult due to the paucity of
available data, but it is likely to be substantial. Evidence
emerging from Brazil describes families struggling to
access appropriate specialist services and treatment, a
situation further exacerbated by Brazil’s current economic
downturn [46, 47]. Dengue virus, a related flavivirus also
transmitted by Aedes spp., caused around 58 million
symptomatic infections in 2013, and is thought to have
cost US$8.9 billion to the global economy in 2013 [48].
The epidemiological and clinical differences between
Dengue virus and ZIKV limit the generalizability of this
cost estimate; however, it does highlight the potential scale
of economies that could be at stake. For example,
since January 2012, the Pacific region has experienced a
major surge in mosquito-borne diseases with concurrent
epidemics of dengue, chikungunya, and ZIKV infections
affecting all 22 Pacific island countries and territories [49].
There is also a pressing need to assess the implications of
ZIKV on global maternal and child health, and to ensure
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an equitable and accessible provision of quality, compre-
hensive care for affected families.

Zika virus biology and vaccines
A strong knowledge of ZIKV biology is important for
the development of vaccines, therapeutics, and better
diagnostics. Recently, cryo-electron microscopy revealed
the architecture of ZIKV strain H/PF/2013 isolated in
Micronesia in the 2013–14 outbreak, confirming its
structural analogy with other flavivirus members [50].
Similar to other flaviviruses, ZIKV is an icosahedral
enveloped virus with an ~11 kb positive-sense RNA gen-
ome encoding a single polyprotein of 3417–3423 amino
acids. The polyprotein encodes three structural proteins
[capsid (C), precursor membrane (prM), and envelope
protein (E)] and seven nonstructural proteins (NS1,
NS2A, NS2B, NS3, NS4A, NS4B, and NS5 proteins),
which are derived by cleavage of the large polyprotein by
proteases. By analogy to other flaviviruses, viral entry of
ZIKV into host cells is assumed to involve the specific
binding of viral surface glycoprotein E to cellular recep-
tors, followed by endocytosis, viral fusion, and delivery
of the nucleocapsid into the cytoplasm. Viral replication
occurs in the cytoplasm and viral assembly occurs in the
endoplasmic reticulum [51]. The ectodomain of the
ZIKV glycoprotein E comprises a typical three-domain
organization (domain I, II, and III). The fusion loop
resides at the tip of domain II and is important for viral
fusion with the host-cell membrane during viral entry.
Domain III is connected via the stem region to the
transmembrane domain (TMD) that anchors the glyco-
protein E to the viral membrane [50, 52, 53]. The region
surrounding the Asn154 glycan of the glycoprotein E
shows the biggest structural deviation from the dengue
virus envelope glycoprotein as a result of an insertion of
two N-terminal and four C-terminal residues flanking
Asn154. In the related West Nile virus, the Asn154
glycan is associated with neurovirulence in isolates
obtained post-1999; mouse-adapted strains with poor
neurovirulence lack a glycan at this position [54]. Fur-
ther study on the role of the Asn154 glycan in ZIKV are
required to examine whether it plays a role in ZIKV
neurovirulence. Understanding the nature and function
of these proteins and glycans is important for developing
novel anti-ZIKV drugs and vaccines.
At this stage, a number of vaccine approaches are

being pursued, including DNA-based and recombinant
protein subunit vaccines. Live attenuated vaccines are
also promising, being modeled off work for yellow fever
and dengue viruses. Given recent findings in animal
models, a vaccine for ZIKV appears to be a feasible
proposition. A study conducted in Balb/c mice showed
that a single vaccination of DNA encoding the full-
length prM-E region of the BeH815744 strain from

Brazil afforded complete protection 4 or 8 weeks later
from a challenge dose of 102 plaque-forming units (pfu)
of either a ZIKV isolate from Brazil (ZKV2015) or an
isolate from Puerto Rico (PRVABC59), two strains from
the Asian lineage that differ by five amino acids [55].
Truncation of the prM-E region to remove either the
TMD of glycoprotein E or the TMD and stem region of
glycoprotein E, or immunization with full-length glyco-
protein E alone, TMD-truncated glycoprotein E, or
TMD and stem-truncated glycoprotein E were not
protective; however, viral loads were lower compared to
those in sham-vaccinated animals. Analysis of the corre-
lates of protection revealed that glycoprotein E-specific
antibody titers correlated with protection and inversely
correlated with viral load in challenged animals. The
protective efficacy of this vaccine was mediated by IgG,
as demonstrated by the fact that passive transfer of IgG
into naïve animals was protective, and depletion of CD4+

T cells, CD8+ T cells, or CD4+ and CD8+ T cells did not
alter the level of protection afforded by the vaccine.
These observations were extended to a conventional

vaccine platform using an inactivated purified ZIKV
vaccine (Puerto Rico PRVABC59 strain). Immunization
of Balb/c mice with the vaccine (formulated with alum
as the adjuvant) generated neutralizing antibodies and
all animals were protected when challenged with the
Brazilian ZKV2015 strain [55]. It is important to note
that the Brazilian ZKV2015 strain used in these challenge
studies has been demonstrated to cause fetal microcephaly
and intrauterine growth restriction in wild-type SJL mice
[56]. In addition, while the Balb/c mice used by Larocca et
al. [55] did not have a fatal outcome from infection,
viremia was detected and its duration was similar to that
observed in human infections of ZIKV. How these
findings will translate to humans and the prevention
of microcephaly is unclear, but these findings provide
a proof of concept that it will be possible to develop
a ZIKV vaccine for clinical evaluation in humans
using a nonreplicating vaccine.

Diagnosis of Zika virus infection
The current tools available to accurately diagnose ZIKV
infections are limited, and there is a need for highly spe-
cific point-of-care tests for ZIKV detection and improved
serological tools for clinical diagnosis and population-
based surveillance [57, 58]. Available diagnostics have
mainly been used to test symptomatic individuals and it is
unclear how they perform in asymptomatic individuals,
who comprise ~80 % of infected individuals and who may
be important reservoirs for virus transmission [1]. These
diagnostic uncertainties are especially important for
pregnant women who may infect their fetus, with severe
consequences for fetal development, despite having
asymptomatic infections themselves. Therefore, and in
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accordance with recent CDC guidelines for testing preg-
nant women with possible ZIKV exposure, there is a
strong justification for testing asymptomatic at-risk preg-
nant women as long as laboratory capacity is adequate
[59]. These at-risk women include those who have trav-
eled to areas with active ZIKV transmission and those
who have had sex without a condom with a male partner
with possible ZIKV exposure, especially if they or their
partner develop symptoms or signs of ZIKV disease.
Anti-ZIKV antibodies are highly cross-reactive as a

result of antigenic relatedness between ZIKV and other
flaviviruses such as dengue, Japanese encephalitis, West
Nile virus, Kunjin virus, yellow fever, Murray Valley
encephalitis, and others that often co-circulate with
ZIKV [60]. Cross-reactivity with antibodies induced from
vaccination with yellow fever and Japanese encephalitis
vaccines can also occur [61]. These limitations in current
serological assays remain a major obstacle for individual
diagnostics and screening, as well as population-based ser-
osurveillance. The detection of circulating antigen(s) is
currently not available for ZIKV, but this approach is likely
to be valuable because the period of antigenemia extends
beyond the period of viremia. In dengue, detection of NS1
antigen has been used for direct virus detection, and IgM-
specific reactivity adds specificity. Various technology
platforms are exploring ways of multiplexing serological
responses to a range of flaviviruses and other co-
circulating arboviruses [62, 63].
As with other arboviruses, viral culture itself is possible,

but is impractical for routine diagnostic use. Plaque reduc-
tion neutralization assays (PRNT) may be used as con-
firmatory assays if there is no prior evidence of previous
flavivirus infection or vaccination with a flavivirus vaccine
as the potential for cross-reactivity of antibodies acquired
from exposure to other flaviviruses can be problematic.
Nucleic acid amplification methods like reverse transcrip-
tion (RT) PCR remain the main diagnostic approach in
acutely symptomatic individuals owing to their high sensi-
tivity and specificity. The viremia period extends from a
brief pre-patent period and commonly continues for 3–5
days after the onset of symptoms [64–66], but may extend
for up to 11 days [60, 67]. RT-PCR can also be used to
detect ZIKV in amniotic fluid [68], breast milk [69, 70],
semen [71], and saliva [72], and may be used to screen
blood products. Given that ZIKV can be found in urine
for up to 7 days longer than in serum, urine may be a
more useful sample when there are delays in presentation
[73, 74]. With proven or suspected microcephaly, testing
for other etiological factors is important, including rubella,
cytomegalovirus (CMV), toxoplasmosis, herpes simplex
virus, varicella zoster virus, HIV, and chikungunya virus,
as well as excluding other noninfectious causes. PCR
assays are often used with consensus primers targeting
multiple flaviviruses, followed by sequencing or ZIKV-

specific PCR. Generic flavivirus PCRs may suffer from
lower sensitivity compared to species-specific PCR, but it
provides a practical screening tool, especially when a
range of other infections need to be considered.

Potential mechanisms linking Zika virus and
microcephaly
Microcephaly developing in utero (hereafter microcephaly)
is principally due to impaired neurogenesis, which includes
a reduced number of neural progenitor stem cells and/or
impaired neuronal division and differentiation [75]. Several
noninfectious causes or conditions associated with
microcephaly have been described, including genetic
predisposition [76] and prenatal alcohol exposure [77].
Supporting ZIKV infection as a cause of microcephaly,
ZIKV has been detected in the brain tissue of microceph-
alic fetuses [27, 78] and in vitro evidence demonstrates
that ZIKV can infect neural progenitor cells and attenuate
their growth [29]. Infection of human cortical neural
progenitor cells can cause cell cycle dysregulation and
caspase-3-mediated apoptosis [29]. Permissiveness of cells
for ZIKV entry appears to be supported by several surface
receptors, including DC-SIGN, AXL, Tyro3, and, to a
lesser extent, TIM-1, with a major role for AXL [79]. In
fetal brain tissue, AXL is highly expressed in cells of the
developing cerebral cortex, including radial glial cells, as-
trocytes, endothelial cells, and microglia, but the expres-
sion of Tyro3 and DC-SIGN is low or absent, respectively
[80]. Expression of AXL in the outer margin of the neural
retina and in cells of the ciliary marginal zone adjacent to
neural retina provides a possible explanation for the devel-
opment of blindness in babies born to ZIKV-infected
mothers [80, 81]. After entry of the virus, replication of
viral RNA induces a strong antiviral response with upreg-
ulation of TLR3 mRNA as well as RIG-I and MDA-5
mRNA. Silencing of TLR3 causes strong upregulation of
viral replication but does not alter the type I interferon
(IFN) response. Treating infected cells with IFN-α, IFN-β,
or IFN-γ caused a dose-dependent inhibition of viral repli-
cation [79], which may suggest potential therapeutic
approaches for future development.
ZIKV could reach the fetal brain by transplacental

passage and/or diffusion into the amniotic and yolk sacs
during embryogenesis [82]. A transplacental passage is
plausible, even if term placental cells appear to be
protected against ZIKV infection by a constitutive IFN-λ
response [83]. It is not known whether these protective
mechanisms are in place and efficient in early pregnancy.
A recent study showed that primary human placental
macrophages and trophoblasts were permissive to pro-
ductive ZIKV infection [84]. This in vitro evidence is sup-
ported by ex vivo findings of ZIKV detection in chorionic
villi. This demonstrates that ZIKV can infect the placenta,
most likely from maternal blood. Other routes of fetal
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ZIKV infection early in pregnancy could include leakage
through the trophoblastic plugs or diffusion of ZIKV into
the amniotic and yolk sacs as they form. ZIKV has been
identified in semen, which could give the virus access to
the early embryo given the strong evidence for sexual
transmission of ZIKV [85]. However, this is unlikely to be
the main route of embryonic infection.
Placental ZIKV infection could impair placental func-

tions, contributing to the fetal growth restriction and
placental insufficiency sometimes described for ZIKV
infections associated with microcephaly [21, 22, 27]. In
particular, aberrant placental autophagy could contrib-
ute to an impairment of placental functions. In pla-
cental cells, autophagy usually limits viral replication
[86]. However, in skin fibroblasts, ZIKV appeared to
stimulate autophagy, which is associated with higher
ZIKV loads [79].

Conclusions
ZIKV has recently emerged as a major global threat to
pregnancies, and there is now strong evidence linking
ZIKV infection with microcephaly and other significant
congenital abnormalities. Given the serious congenital
complications that can arise from ZIKV infection and
the substantial long-term consequences of these, a
strong and rapid global public health and research re-
sponse to the virus is essential to limit and prevent the
major health, social, and economic impact of the virus,
and to advance the development of therapeutics,
vaccines, and improved diagnostics. This will require
substantial ongoing funding commitments. Moreover, the
current Zika crisis is a salient reminder of the ongoing
threat to human health posed by infectious pathogens.
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