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Abstract

Background: Disease models are useful for prospective studies of pathology, identification of molecular and
cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review
animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by
expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a
recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited.

Methods: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal
ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia,
high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations).

Conclusions: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not
fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3)
further translational models, and improved cognitive testing instruments, are required.

Keywords: Vascular dementia, Vascular cognitive impairment, VCID, Experimental models, In vivo models, Translational
models

Introduction
Vascular cognitive impairment (VCI) is a spectrum of
clinical disease states [1–4] that range from post-
stroke mild cognitive impairment or dementia following a
large artery stroke, through ‘sporadic’ small vessel dis-
ease (SVD), to pure genetic small vessel arteriopathy
(CADASIL, CARASIL, COL4A1/4A2 mutations) [1, 5, 6].
The most common pathology underlying VCI is cerebral
SVD, which leads to focal lacunar ischaemic infarcts,
diffuse white matter lesions, and small haemorrhages in
deep brain areas [3, 4]. These disease states manifest in a

spectrum of cognitive impairments. Further complexity
arises as most clinical dementia in older persons is likely
to be ‘mixed’ as a result of Alzheimer’s disease (AD) com-
bined with vascular pathology [7, 8]. While characterisa-
tion of the neuropathological and radiological features of
human VCI has improved over the last two decades (see
adjoining articles) the molecular changes that underpin
these characteristics remain elusive [6]. VCI currently
lacks symptomatic treatment (comparable to donepezil for
AD) and molecular targets (comparable to tau, amyloid
precursor protein (APP) and β-amyloid (Aβ)).
Because VCI arises from a spectrum of diseases, no single

model will reproduce all pathological and cognitive features
of SVD or VCI [6, 9–12] (Table 1). Furthermore, as with
any animal model for dementia, the behavioural-cognitive
phenotype of any given model can never fully represent hu-
man cognitive deficits. We define a ‘translational’ model as
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one that impacts on clinical practice [13]. Therefore, in
order to be translational an animal model should repro-
duce at least one of the pathological processes in human
VCI [6, 12, 14]. A fully translational model would permit
(1) prospective studies of the timescale and the sequence
of events during development of the pathological process,
(2) identification of novel molecular, cellular and physio-
logical mechanisms, (3) pre-clinical testing of drugs and
other interventions, for proof-of-concept studies, (4) pre-
clinical testing of safety profile of drugs, optimal dosing
and time-scale, and (5) validation of clinical biomarkers
and endpoints such as radiological or biochemical signa-
tures. Models representing the initiating factors would
allow translation of preventive strategies, whereas models
of advanced disease states allow testing of therapeutic
interventions. It is appropriate and timely to seek inter-
national accord on such models [15]. Following the recent
NIH-sponsored Alzheimer’s Disease-Related Dementias
2016 Summit (https://aspe.hhs.gov/alzheimers-disease-re-
lated-dementias-adrd-summit-2016-prioritized-research-mi
lestones), the number one recommendation for VCI was to
“Establish new animal models that: (i) reproduce small ves-
sel disease and other key pathogenic processes thought to re-
sult in cognitive impairment; (ii) are easily applicable to
both VCID and AD research for advances in mixed etiology
dementias; (iii) address vascular contributions to dementia
via both white matter and grey matter or (iv) include genetic
and acquired conditions that are associated with VCID”.
Here, we review published models relevant to VCI, in-

cluding rodents and emphasising larger species. This re-
view is the result of discussions between experts from 12
laboratories across seven countries. Relevant systematic
reviews are available [10, 12].

Overview of experimental species
Rodents
We have included models of focal ischaemia (middle
cerebral artery occlusion; MCAo) [16–19] as this is a
validated, translational model of cerebrovascular injury.
Global hypoperfusion models include bilateral carotid
artery occlusion (BCAo) in rats [20] and bilateral carotid
artery stenosis (BCAS) using wire coils in mice [21, 22].
A refinement of the BCAo protocol employs constrictor
cuffs to give a gradual arterial occlusion over approxi-
mately 1–2 days [20]. These global models produce is-
chaemic white matter lesions, likely reflecting the low
baseline perfusion of white matter. Other pathologies
can also occur, including hippocampal cell death, small
haemorrhages and vascular amyloid deposition. Genetic
alterations include inbred strains (e.g., SHR, stroke-prone
spontaneously hypertensive rats (SHRSP)) [23–26] or
transgenic manipulations (e.g., Notch3 mutant strains)
[27–29]. VCI-relevant animals can also result from ma-
nipulation of risk factors, such as age, hypertension,

diabetes mellitus, hyperhomocysteinemia or a high-salt/
high-fat (‘fast food’) diet [14, 25, 26, 30, 31].

Larger species
Larger animals have a longer natural life span than ro-
dents. Experimental ruminants (sheep, goats) are predom-
inantly used to simulate acute cerebrovascular pathologies
such as ischaemic stroke [32–34] and cerebral haemor-
rhage [35]. In domestic dogs, hypercaloric or unbalanced
diet, lack of physical exercise and dyslipidemia are preva-
lent [36]. As in humans, hypertension [37] and cerebral
arteriosclerosis [38] are often observed in older subjects.
Consequently, a canine cognitive dysfunction syndrome,
featuring some clinical aspects of VCI, has been described,
particularly in breeds living long enough (>9 years) to fully
develop a neurological phenotype [39–42]. In cats, less is
known about the relation between aging, vascular patholo-
gies and cognitive decline. Aβ and tau pathologies have
been described in cats showing clinical signs of cognitive
decline [43–45]. Hypertension associated with arterio-
sclerosis, as well as small, multifocal cerebral haemor-
rhages, have also been reported for felines [46].
Behavioural paradigms for cognitive assessment in lar-

ger species have been reported from specialist centres for
sheep, pigs and cattle [41, 47–51]. The most advanced
cognitive abilities are seen in primates, for which so-
phisticated cognitive tools have been developed [52, 53].
Hypercaloric diet can decelerate aging and prevent
microvascular pathologies and cognitive decline in
primates [54, 55], without changing the lifespan [56].
Nevertheless, physiological aging can take decades in
primates, and studies relevant to VCI may be re-
stricted to specialised colonies [57, 58].
Large animal models allow clinical neuroimaging with-

out significant limitations in resolution, acquisition time
or data analysis. MRI protocols are now available for
dogs [59], cats [60], non-human primates [61–63], pigs
[64, 65] and sheep [66]. MRI (T1, T2, FLAIR) is advanta-
geous for analysis of tissue volume and lesions [66], as
well as for anatomical evaluation of particular brain
areas [67]. Perfusion and diffusion-weighted sequences
reveal cerebral blood flow (CBF) dynamics and vascular
permeability [68]. Templates, automatic segmentation
and labelling routines for larger species are essential for
studies aiming at quantitative morphometric analysis of
MRI and/or PET images. Automatic labelling and process-
ing routines have been developed for rhesus and cynomol-
gus monkeys [61, 69, 70], sheep [67], pigs [71, 72], and
dogs [73]; this enables efficient, observer-independent
analysis of grey and white matter regions.

Review methods
For each model, expert practitioners used web-based
searches and their own expertise to write a section of
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the review. All synopses were circulated for editing by
all authors, and subsequently by the scientific committee
of an international conference (International Conference
on Vascular Dementia, ICVD2015, Ljubjiana, Slovenia).
Only peer-reviewed sources in English were included.

Ethical statements on animal data
Sheep experiments from which data were derived were
approved by the responsible authorities for University of
Lübeck and University of Leipzig, Germany (animal
protocol numbers TVV33/09, TVV09/11, TVV33/12).
Experiments using monkeys were approved by the Insti-
tutional Animal Care and Use Committee of Boston
University Medical Center. All procedures with dogs were
conducted in accordance with University of Kentucky ap-
proved animal protocols (2009-0483) and the NIH Policy
on Humane Care and Use of Laboratory Animals.

Expert reviews of specific models
Large Vessel Ischaemia – Middle Cerebral Artery Occlusion
(MCAo) in Rodents
MCAo induces acute focal ischaemia bordered by a par-
tially ischaemic penumbra [74, 75]. While recovery of
sensorimotor function is well-characterised using behav-
ioural tests, there is less literature on cognitive impair-
ment [76]. Spatial learning, assessed by Y- and T-maze
tests, is hippocampus-dependent, but as other regions
are also required, including prefrontal cortex and basal
forebrain, these tests are relevant to the MCAo model
[77]. Following MCAo, male rats showed decreased rates
of spontaneous alternation compared with sham-operated
animals at day 21 post-stroke [78]. At 4 days post-MCAo,
male mice spend less time exploring a novel object than
sham animals [79]. Fear-motivated tasks such as passive
avoidance have also been used to assess cognitive impair-
ment after stroke [80]. While passive avoidance is a simple
task, it is stressful so could confound results of other be-
havioural tests [76].

Larger species: sheep with vascular ischaemic lesions
Permanent [32] and transient [34] MCAo have been per-
formed in sheep, resulting in well controlled and reprodu-
cible lesion sizes (Fig. 1). Histopathological investigations
revealed both grey and white matter changes, including
glial scar formation, microglial activation and replacement
of the tissue by new formation of blood vessels and foamy
fat cells [33]. Moreover, ovine models have been success-
fully employed to test experimental therapeutic paradigms
in short- [81] and longer-term (up to 7 weeks) approaches
[33], during which benefits of single- and multi-mode im-
aging protocols became evident.
A caveat in this species (and other domestic mammals)

is the rete mirabile epidurale rostrale, a local arborisation
within the carotid artery [82]. This often necessitates a

transcranial approach for MCAo. Leaving the trepanation
covered only by soft tissue reduces intracranial pressure,
which greatly increases long-term survival. In mild and se-
vere global cerebral ischaemia models in sheep, it became
evident that the basilar artery can contribute a higher pro-
portion of CBF than in humans [83]. After prior bilateral
clamping of both common carotid arteries for 4–30 min,
no lesions were found in brains of sheep subjected to the
method for less than 10 min. Longer duration produced
neuronal changes of several brain regions, similar to those
described in other species.

Primates and rodents: chronic brain hypoperfusion
With the assumption that reducing CBF is a common
feature of VCI [3, 84, 85], the original mouse BCAS
model was developed by placing microcoils on the ca-
rotid arteries to induce cerebral hypoperfusion [86].
While complete ligation of the carotid arteries (i.e.,
BCAo) substantially increased mortality, mice can with-
stand up to 50% BCAS [22, 87]. Monitoring cognitive
function using the Y, radial arm, Barnes maze and
Morris water maze has provided robust evidence that
the BCAS model replicates some features of VCI, in

Fig. 1 Focal ischaemic lesions in ovine brain. a Adult sheep brain in
coronal section. T1-weighted population-averaged brain template
(left), depiction of grey and white matter, as well as cerebrospinal
fluid (middle panel, overlay on template) and surface reconstruction of
white (white) and grey matter (yellow) in stereotactic space (right). Grey
and white matter spaces are derived from a priori tissue probability
maps. b Focal ischaemic lesion, 6 h after permanent middle cerebral
artery occlusion (MCAO). Hyperintense area is seen in the left temporal
cortex and medulla in T2-weighted TSE MRI (left-top). In this area, a
decreased diffusion in apparent diffusion coefficient maps of
diffusion weighted imaging (DWI-ADC, left-bottom) is visible. Fractional
anisotropy map of diffusion tensor imaging (DTI-FA, middle panel)
reveals a loss of fibre integrity. Following sacrifice and brain removal,
the mitochondrial marker TTC labels living cells (red). The ischaemic
lesion is unlabelled by TTC (right)

Hainsworth et al. BMC Medicine  (2017) 15:16 Page 4 of 12



particular the deficit of working memory [10, 86, 87]. In
BCAS, global CBF drops rather abruptly. With the same
principle as BCAS, ameroid micro-constrictors made of
casein (which swells on absorbing water) were placed
around the carotid arteries to provide a more gradual
stenosis [20]. Ameroid constrictors have also been ap-
plied to spontaneously hypertensive rats [20]. Further re-
finements have allowed the development of mice models
that exhibit subcortical infarcts and white matter dam-
age by surgical implantation of an ameroid constrictor
to the right common carotid artery and placement of a
microcoil to the left common carotid artery to induce
approximately 50% arterial stenosis; this is referred to as
gradual carotid artery stenosis [88]. There was gradual
reduction of CBF over 28 days, and multiple infarct
damage in right subcortical regions, including the cor-
pus callosum, internal capsule, hippocampal fimbria, and
caudoputamen in 81% of mice [88, 89]. These hypoper-
fusion models are discussed further elsewhere [12].
A baboon (Papio anubis) model evaluated whether

partial cerebral ischaemia or oligaemia resulting from re-
duced blood flow to the brain induces white matter
pathology consistent with SVD or AD-like changes. The
baboon model is ideal to relate to AD because it exhibits
both aβ and tau pathology with ageing and carries APOE4
associated with AD pathology. Adult, male baboons were
subjected to three-vessel occlusion by complete ligation of
the internal carotid arteries bilaterally, and occlusion of
the left vertebral artery. We have recently reported
subcortical and white matter changes in animals to
28 days after three-vessel occlusion [90]. This model
is useful to evaluate interventions at various stages
and specifically examine the effects of ageing, high-fat
diet, hypertension and neuroinflammation. Ameroid
constrictors to replicate a gradual reduction in CBF
may be a future refinement [84, 85].

SHRSP with modified diet or hypoperfusion
Hypertensive rat strains can undergo white matter
changes [23–26, 91]. SHRSP typically live for 9–12
months before developing ischaemic and haemorrhagic
stroke lesions [12, 92]. When a low-protein, high-salt diet
is given to the SHRSP, lesions and death are accelerated
[93]. Starting the diet after 6 weeks of life leads to haemor-
rhagic strokes, but delaying the onset of the diet until the
12th month slows the onset of strokes and allows the
damage to the white matter to occur earlier [25]. The
white matter damage results from hypoxic hypoperfusion
[94]. In a recent study, minocycline, a tetracycline deriva-
tive with the ability to inhibit matrix metalloproteinases,
reduced white matter damage and reversed the behav-
ioural changes in SHRSP [26]. For a more extensive dis-
cussion of SHRSP, see [12, 92].

Dietary induction of hyperhomocysteinemia
Elevated circulating homocysteine (hyperhomocysteine-
mia) is caused by a variety of genetic, physiologic and diet-
ary conditions extensively studied in rodents [95–98].
These cause cognitive impairment in ApoE null mice,
transgenic mouse models of Alzheimer’s disease, and wild-
type mice and rats [31, 99, 100], with surprisingly little
neurodegeneration or inflammation. Feeding wildtype
C57BL6J mice a diet deficient in three B-vitamins (folate,
B12 and B6) for 10 weeks resulted in hyperhomocysteine-
mia, microvascular rarefaction and impaired performance
in the Morris water maze [31, 100]. The same dietary
regime in APP transgenic mice worsened cognitive
impairment [101], and in combination with excess
methionine in dual mutant APP/PS1 mice, the diet
induced the redistribution of amyloid from brain par-
enchyma to the microvasculature along with micro-
haemorrhages, as determined by histology and MRI
[30, 102]. In Sprague–Dawley rats, folate-deficiency alone
was sufficient to induce homocysteinemia and cognitive
impairment, and to reduce cerebral blood volume and re-
activity measured by absolute, non-invasive, near-infrared
spectroscopy [103–105]. For further discussion of hyper-
homocysteinemia models, see [12].
Dietary modification can be applied to most species,

models and co-morbidities. Caveats are that dietary
models typically have higher variability and more subtle
effects than genetic or pharmacological models. Out-
comes are sensitive to dietary formulation and feeding.
This underscores the need for biochemical and meta-
bolic verification of the diet in brain and the periphery.
While chronic folate and B12 deficiency in humans
causes macrocytic anaemia and myeloneuropathy, these
outcomes are almost never observed in rodent models.
Associations between microvascular rarefaction and cog-
nitive impairment, in the absence of neurodegenerative
changes have been observed in other models, including
mice fed a high-fat diet [106], aged rats [107], and irradi-
ated rats [108].

Primates with chronic hypertension
The basis of this model is the induction of hypertension
by surgical coarctation of thoracic aorta in the rhesus
monkey [52, 109–111]. A segment of the thoracic aorta
is mobilised and dissected without injuring the medias-
tinal and intercostal branches. The external diameter of
the same segment is measured and then narrowed to a
luminal diameter of 2.0–2.5 mm (Fig. 2). A pressure
transducer inserted into the femoral artery is advanced
through the surgical site. Typically, systolic/diastolic
pressure is 170/100 mmHg above the coarctation and
80/50 mmHg (normal for rhesus monkeys) below.
Given the known effects of chronic hypertension on

attention, memory and executive function in humans,
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these domains were assessed in adult primates (5–11
years of age). The tasks consisted of an automated task of
simple attention, two tasks of memory function, the de-
layed non-matching to sample task (DNMS) [112, 113]
and the delayed recognition span task [114, 115], and a
primate analogue to the Wisconsin Card Sort task, the
Conceptual Set-Shifting Task (CSST) [116]. Performance
was compared with sham-operated controls that under-
went every stage of the surgical procedures up to, but not
including, narrowing of the aorta. Animals with coarcta-
tion were grouped into borderline (135–150 mmHg) or
hypertensive (> 150 mmHg).
On the task of simple attention in which monkeys are

required to select the same target stimulus on the touch-
screen, there was a positive correlation between response
time and systolic and mean blood pressure; hypertensive
(but not borderline) animals were significantly impaired

relative to the sham-operated group. Hypertensive mon-
keys were impaired on a task that required orienting to,
and then responding by touching, a randomly-presented
visual stimulus. Unlike normotensive animals, hyperten-
sive monkeys did not benefit from the presentation of a
cue that preceded the target stimulus. The effect did not
appear to be related to motivational state as there was no
difference in the number of missed trials. These findings
suggest a reduction in the speed of processing in the
stimulus–response chain.
The findings on memory assessment revealed a signifi-

cant difference among the groups on the DNMS up to
12 months post-surgery. Hypertensive monkeys re-learned
the DNMS task less efficiently than sham-operated con-
trols (Fig. 2). On both the spatial and pattern conditions
of the delayed recognition span task, the performance of
the hypertensive monkeys was significantly impaired with

Fig. 2 VCI in adult monkeys with surgically-induced chronic hypertension. a Arteriogram showing surgical coarctation of the thoracic aorta
(arrow) in the monkey. b Delayed non-matching to sample (DNMS) scores for re-acquisition of the basic task. Y-axis: errors to criterion for control
(sham-operated, black bar) and hypertensive monkeys (grey bar). c Delayed recognition span (DRS) test scores. Y-axis: group mean span, for
control (black bars) and hypertensive monkeys (grey bars). d Blood pressure correlates with overall cognitive function. Y-axis: blood pressure (mmHg).
X-axis: cognitive function index. The level of impairment on this index was significantly and linearly related to both systolic (black symbols, solid line;
r = 0.80, P < 0.005) and diastolic blood pressure (open symbols, dashed line; r = 0.75, P < 0.005). Modified from [52] with permission
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respect to the control monkeys, suggesting that, in
addition to affecting attentional function, hypertension
produced an impairment in ‘rule learning’.
The CSST requires the monkey to establish a cognitive

set based on a reward contingency, to maintain that set
for a period of time, and then shift the set as the reward
contingency changes. A subset of hypertensive monkeys
was unimpaired on the initial phase of the CSST (a simple
three choice discrimination). In contrast, hypertensive
monkeys were impaired at abstracting the initial concept
of colour on the CSST and were subsequently impaired
when shifted to the concept of shape, when shifted back
to the concept of colour, and again when shifted back to
the concept of shape. The findings from this task suggest
that the two groups of monkeys were able to learn a
stimulus reinforcement contingency at the same rate and
that the impairment seen on the CSST is most likely one
of abstraction and cognitive flexibility.
Overall, hypertension significantly influenced higher cog-

nitive function. Blood pressure correlated with a composite
z-score (similar to an IQ score), suggesting a direct rela-
tionship between blood pressure and cognition (Fig. 2).
Various neuropathologies are seen in this primate

model, including tortuous small vessels, hemosiderin-
filled macrophages and, most conspicuously, micro-
infarcts in both grey and white matter [110, 111]. The
micro-infarcts are of irregular shape and relatively uni-
form size (average maximum diameter ~ 0.5 mm). In the
grey matter, these lesions were characterised by a total
loss of neurons, and in white matter by marked loss of
myelinated fibres.

Larger species: aged canine model
Aging dogs spontaneously develop cerebrovascular path-
ology linked to cognitive decline [41, 42], including
cortical atrophy and ventricular enlargement (Fig. 3).
Cognitive impairment was evident on measures reflect-
ing learning and memory, and a subset of aged animals
became severely impaired [41, 42]. A strength of the
model is that Aβ, critically involved with plaque accu-
mulation and cerebral amyloid angiopathy (CAA), is very
similar in dogs and humans [117–119]. Vascular and peri-
vascular abnormalities and cerebrovascular Aβ pathology
are frequently found in aged dogs [40, 120–124]. Dogs
may be a suitable model system in which to examine the
consequences of CAA on cognition [125]. As in humans,
canine CAA is associated with cerebral haemorrhage
[40, 121], the occipital cortex being particularly vulner-
able [126]. Several environmental manipulations and
pharmacological studies that modify lifestyle factors have
been successfully implemented in canine models, with
some showing significant benefits to cognition [41].
Canines have also been used as a model for ischaemic
stroke. Both FLAIR and T2* (sensitive to hemosiderin)

imaging show significant white matter hyperintensities
[127]. Loss of white matter integrity may be a conse-
quence of CAA; for example, dogs aged from 1 to 20 years
exhibited a progressive loss of myelin basic protein, corre-
lated with age and with increasing CAA [128].
The canine brain displays substantial age-associated

morphological changes [129–131]. Gadolinium-enhanced
MRI revealed reduced blood–brain barrier function with
age, as well as reduced cerebrovascular volume [129].
Characterising cognitive function in aging dogs requires
many months, and treatment studies may take several
years. In comparison to rodent models, they require
significant veterinary care as they become older. Radio-
logical outcome measures that reflect in vivo CAA (e.g.,
SWI scans) have not yet been published.

Mouse models for monogenic small vessel disease
(CADASIL)
CADASIL (Cerebral Autosomal Dominant Arteriopathy
with Subcortical Infarcts and Leukoencephalopathy) is a
monogenic archetype for SVD, caused by cysteine-altering
missense mutations in NOTCH3. CADASIL patients
develop progressive white matter lesions from early adult-
hood, followed by cognitive decline and recurrent subcor-
tical infarctions [132]. Conventional transgenic murine
models expressing mutant human NOTCH3 from a cDNA
construct [133–135] recapitulate some aspects of the
CADASIL vascular phenotype (vascular Notch3 accumu-
lation and granular osmiophilic material on electron
microscopy) [12, 92]. In only one transgenic model, with
4-fold overexpression of mutant Notch3, the mice devel-
oped disturbed cerebrovascular reactivity (from 5 months
of age), reduced CBF (from 12 months) and white matter

Fig. 3 Structural MRI of canine brains. Coronal MRI scans (1.5 Tesla)
of 4-, 9-, and 15-year-old dogs, taken from locations at the level of
thalamus (upper row) and hippocampus (lower row). Older animals
show marked increase in ventricular volume (black arrows) and
cortical atrophy, with deep gyri and widened sulci (white arrows).
Three-dimensional images across the whole brain were acquired
using a spoiled gradient recall (SPGR) sequence to obtain detailed
anatomic images. Modified from [129] with permission
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damage (from 18 months) [27]. A novel transgenic mouse
strain containing genomic human NOTCH3 has recently
been developed [136]; these animals show early-onset vas-
cular Notch3 accumulation (from 6 weeks). A knock-in
model, made by introducing a mutation in endogenous
Notch3, developed a CADASIL clinical phenotype (at
20 months) [137]. Stroke lesions, microbleeds and motor
deficits were seen only in a minority of mutant mice
(5–12%). Despite the fact that cognition has not yet been
characterised in these murine models, they offer a valid
pathogenetic representation of human CADASIL and may
be an important pre-clinical model in which to test VCI
therapies for efficacy.

Discussion and conclusions
As noted previously [9–11, 14], no experimental model
replicates all pathologic and cognitive aspects of human
VCI (Table 1). Animal models are useful to reflect a
pathological process (e.g., white matter hypoxia, arterial
fibrosis, amyloid accumulation) rather than a human dis-
ease. Old dogs with canine cognitive dysfunction syn-
drome and aged primates (> 20 years of age) being
possible exceptions, none of the models discussed here
results in a ‘demented’ animal. That said, all the animal
models considered above reproduce at least one of the
pathological processes in human VCI. Because the se-
quence of events leading from experimental challenge to
brain pathology, and thus to VCI, can be characterised in
animal models (and interventions imposed), the models
may help to identify pathways that lead to VCI. As the
pathogenesis of SVD, the most common cause of VCI,
remains unknown, a valid model of SVD-dependent VCI
remains a challenge. Making these conceptual and bio-
logical limitations explicit will expedite the development
and appropriate use of translational models for VCI.
There are several general limitations in the extant

literature. Most animal studies involve short-term follow-
up (typically, less than 4 weeks). Male animals are gener-
ally used and females usually avoided due to influences of
the reproductive cycle. Few studies have correlated cogni-
tive changes with anatomical changes, as seen by path-
ology or MRI. Most of the available cognitive paradigms
are derived from AD models. Many experimental studies
are under-powered (i.e., use a small number of animals)
and few are replicated.
We have a number of recommendations for the VCI

research community. First, it would be advantageous to
increase our knowledge and experience in larger species
with more abundant white matter and gyrencephalic brain
anatomy. This is especially important given the central
role of white matter lesions in human VCI. Second, robust
neuropsychological methods for assessing VCI in experi-
mental animals (particularly larger species) would be
beneficial. Cognitive impairment (and recovery) are the

most complex aspects of human VCI, and will likely differ
between animals and humans (for example, experimental
species lack spoken language). Thus, aspiring to a precise
behavioural replication in an animal may not be possible.
Nevertheless, a core toolkit of validated, reproducible,
species-appropriate tests of a cognitive phenotype is
required. With respect to SVD, simple behavioural indica-
tors analogous to the key cognitive features of the
syndrome in humans (impaired processing speed, apathy
and executive dysfunction) should be welcome. Third,
progress on translational VCI models will be more rapid if
high standards of ‘Methodological quality’ [15] outlined in
ARRIVE guidelines [138] and in previous translational
consensus documents [139, 140] are followed. Specifically,
random allocation of animals to experimental groups and
blinded assessment of outcomes was quite rare in earlier
studies (prior to 2010) [10]. Future experimental studies
should adhere to available guidelines on experimental
design, regarding a priori statistical power calculation,
randomisation, blinding of observers, and confirmation by
at least two independent laboratories [15, 138–140]. It
appears likely that negative outcomes of animal studies
are rarely published. Fourth, as neuroimaging (particularly
MRI) has a central role in human VCI, future pre-clinical
studies will be enhanced by brain imaging data. Radio-
logical features (diffuse white matter lesions, lacunar in-
farcts) are the main clinical biomarkers of SVD. Hence,
correlative studies relating MRI to brain pathology in
animals will continue to be informative.
Experiments using gyrencephalic species may be costly

and long in duration to afford sufficient statistical power.
A possible solution is a step-wise approach that employs
rodents to study fundamental aspects of cerebrovascular
disease common to all species, and large animals to
study aspects of VCI that require a large gyrencephalic
brain. Extending studies across species will clarify
molecular, cellular and physiological events that lead
from vascular disease to neuronal injury and cognitive
dysfunction in humans, and improve the likelihood of
achieving new preventive and therapeutic interven-
tions in VCI.
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