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Abstract

Background: Cutaneous melanoma is the deadliest skin cancer, with an increasing incidence and mortality rate.
Currently, staging of patients with primary melanoma is performed using histological biomarkers such as tumor
thickness and ulceration. As disruption of the epigenomic landscape is recognized as a widespread feature inherent
in tumor development and progression, we aimed to identify novel biomarkers providing additional clinical
information over current factors using unbiased genome-wide DNA methylation analyses.

Methods: We performed a comprehensive DNA methylation analysis during all progression stages of melanoma
using Infinium HumanMethylation450 BeadChips on a discovery cohort of benign nevi (n = 14) and malignant
melanoma from both primary (n =33) and metastatic (n = 28) sites, integrating the DNA methylome with gene
expression data. We validated the discovered biomarkers in three independent validation cohorts by
pyrosequencing and immunohistochemistry.

Results: We identified and validated biomarkers for, and pathways involved in, melanoma development (e.g.,
HOXA9 DNA methylation) and tumor progression (e.g.,, TBC1D16 DNA methylation). In addition, we determined a
prognostic signature with potential clinical applicability and validated PON3 DNA methylation and OVOL1 protein
expression as biomarkers with prognostic information independent of tumor thickness and ulceration.

Conclusions: Our data underscores the importance of epigenomic regulation in triggering metastatic
dissemination through the inactivation of central cancer-related pathways. Inactivation of cell-adhesion and
differentiation unleashes dissemination, and subsequent activation of inflammatory and immune system programs
impairs anti-tumoral defense pathways. Moreover, we identify several markers of tumor development and
progression previously unrelated to melanoma, and determined a prognostic signature with potential clinical utility.
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Background

Disruption of the epigenomic landscape is recognized as
a widespread feature inherent in tumor development
and progression [1, 2]. In particular, aberrant patterns of
histone modifications and DNA methylation have been
extensively studied because of their relevance in altering
the chromatin structure and thereby also gene transcrip-
tion. Specifically, research on DNA methylation changes
in neoplasia has generated a multitude of biomarkers for
diagnosis, prognosis, and response to treatment with ap-
plication in the clinical management of several types of
cancer [3].

DNA methylation changes in cancer include a wave of
global DNA hypomethylation along with loci-specific
hypermethylation predominantly affecting CpG islands
in gene regulatory regions. Downstream transcriptional
alterations have been described at all stages of tumor
progression, affecting virtually all signaling pathways and
unleashing a profound transformation of the cellular
phenotype.

Cutaneous melanoma is the most life-threatening form
of skin cancer, and its incidence and mortality keeps on
rising, with the highest increase among men aged older
than 55 years and women of all ages [4]. Nonetheless,
clinical staging of patients with primary tumors relies
entirely on classical histological biomarkers such as
tumor thickness and ulceration [5]. This particular neo-
plasm exhibits a phenotypic plasticity that accounts for
the high degree of intrinsic and acquired resistance to
antineoplastic, targeted therapies, and immunotherapies
[6-10]. Large-scale studies of transcriptomic alterations,
along with the development of new molecular tools and
in vivo models, have helped elucidate molecular cues
contributing to metastasis, allowing a better understand-
ing of melanoma biology and setting the basis for new
treatment strategies [7, 11-14]. On the epigenomic side,
several studies have reported DNA methylation changes
in melanoma associated with inactivation of candidate
tumor suppressor genes (e.g., MAPK13) or abnormal re-
expression of oncogenes during tumor progression (e.g.,
TBC1D16), when examining pre-selected promoter re-
gions for the presence of DNA methylation, or by
genome-wide based approaches [15-23]. Importantly,
however, the vast majority of these studies are limited to
melanoma metastases and lack primary melanomas,
making it problematic to identify early events during
melanoma development and progression. In addition,
the absence of primary tumors makes it impossible to
determine DNA methylation biomarkers associated with
prognosis of the patient.

Here, we present a comprehensive analysis of DNA
methylation patterns during all progression stages of cu-
taneous melanoma. By using Infinium HumanMethyla-
tion450 BeadChips (Illumina) [24] and integrating the
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DNA methylome of benign nevi (n=14) and malig-
nant melanoma from both primary (n =33) and meta-
static (n=28) sites with gene expression data, we
identify, as well as validate in independent patient co-
horts, biomarkers for melanoma development (e.g.,
HOXA9 DNA methylation), tumor progression (e.g.,
TBC1D16 DNA methylation), and patient prognosis
(e.g, PON3 DNA methylation and OVOL1 protein
expression).

Methods

Patients in the discovery and validation cohorts
Fresh-frozen samples and clinical data used as the dis-
covery cohort (n=75) were collected at KU Leuven
(Table 1). Validation cohort I, consisting of 19 primary
melanomas and 23 metastases, was analyzed to validate
selected biomarkers along melanoma progression. Valid-
ation cohort II, consisting of primary melanomas with
clinical follow-up data provided by Lund University
(Sweden), was used for the validation of the prognostic
signature (Additional file 1: Table S1). A previously-
constructed tissue microarray (TMA) consisting of
formalin-fixed, paraffin-embedded (FFPE) primary mela-
nomas of 179 patients with clinical follow-up data from
the St. Vincent’s University Hospital (Dublin, Ireland)
was used to evaluate the prognostic value of protein bio-
markers (validation cohort III) [25].

Genome-wide DNA methylation analysis

Whole-genome DNA methylation was analyzed in the
14 normal nevi, 33 primary melanomas, and 28 melan-
oma metastases samples using the Illumina Infinium
HumanMethylation450Beadchips. DNA was extracted
from tissues by the phenol:chloroform method (only le-
sions with at least 75% of tumor cells were used). All
DNA samples were assessed for integrity, quantity and
purity by electrophoresis in a 1.3% agarose gel, Pico-
Green quantification, and NanoDrop measurement. All
samples were randomly distributed into 96-well plates.
Bisulfite conversion of 500 ng of genomic DNA was per-
formed using an EZ DNA methylation kit (Zymo Research)
following the manufacturer’s instructions. Bisulfite con-
verted DNA (200 ng) was used for hybridization on the
HumanMethylation450 BeadChip (Illumina). Briefly, sam-
ples were whole-genome amplified followed by enzymatic
end-point fragmentation, precipitation, and resuspension.
The resuspended samples were hybridized onto the
beadchip for 16 h at 48 °C and washed. Single nucleotide
extension with labeled dideoxy-nucleotides was performed
and repeated rounds of staining were carried out with
a combination of labeled antibodies differentiating
between biotin and dinitrophenyl. Dinitrophenyl and
biotin staining, hybridization, target removal, exten-
sion, bisulfite conversion G/T mismatch, and negative
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Table 1 Characteristics of the patients included in the discovery

cohort

Characteristics

No. of patients

%

All clinical samples
Type
Benign
Primary
Metastatic
Nevi
Sex
Male
Female
Mean age (range), years
<50
250
Location
Head and neck
Trunk
Upper limbs
Lower limbs
Primary melanoma
Sex
Male
Female
Mean age (range), years
<50
250
Breslow thickness, mm
0.01-1.0
1.01-2.0
201-4.0
>40
Clark level
Sl
V=V
Ulceration
Absent
Present
Histological subtype

Superficial spreading
malignant melanoma

Location
Head and neck
Trunk
Upper limb

Lower limb

33
28

17
16
62.1 (34-84)
10
23

33

186
44.0
373

64.2
357

85.7
14.3

214
57.1
14.3

515
485

303
69.7

15.2
242
303
303

90.9

576
424

100.0

15.6
344
6.3

43.8
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Table 1 Characteristics of the patients included in the discovery
cohort (Continued)

Event recurrence
Yes 14 438
No 18 56.3
Died of melanoma
Yes 10 313
No 22 68.8

Metastatic melanoma

Sex
Male 9 37.5
Female 15 62.5
Mean age (range), years 60.8 (31-89)
<50 8 333
250 16 66.7
Breslow thickness, mm
0.01-1.0 0 0
1.01-2.0 6 316
201-4.0 9 47 4
>4.0 4 211
Clark level
=1l 2 9.5
V-V 19 90.5
Ulceration
Absent 8 47.1
Present 9 529
Histological subtype
Superficial spreading 28 100.0
malignant melanoma
Location
Head and neck 2 105
Trunk 4 210
Upper limb 0 0
Lower limb 13 684

and non-polymorphic control probe intensities were
inspected as recommended by Illumina.

Data analysis

Infinium 450 K DNA methylation data

Raw fluorescence intensity values were normalized using
the minfi package in R using “preprocesslllumina” with
background correction (GSE86355). Normalized inten-
sities were then used to calculate DNA methylation
levels (beta values). Likewise, data points with statisti-
cally low power (as reported by detection values of P >
0.01) were designated as NA and excluded from the ana-
lysis. Genotyping probes present on the chip, as well as
DNA methylation probes overlapping with known
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single-nucleotide polymorphisms (SNPs), were also re-
moved. Probes were considered to be in a promoter
CpG island if they were located within a CpG island
(UCSC database) and less than 2000 bp away from a
transcription start site.

A first set of 4882 differentially methylated probes be-
tween benign nevi (n = 14), primary tumor (n =33), and
metastasis (n =28) samples was found employing an
ANOVA test. Probes were selected on the basis of show-
ing a difference in methylation of 20.33 in at least two
groups with a confidence of 0.99. Clustering in Fig. la
was performed using the Ward method.

Epigenomic changes specific to melanomagenesis and
tumor progression were detected; indeed, benign nevi,
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primary tumors, and metastases were separated into
groups and the median of DNA methylation was com-
puted for each probe within each group. Firstly, differ-
ences between group methylation medians (DGMB)
were calculated keeping only probes with large changes
(DGMB = 0.25). Then, a probe-wise Mann—Whitney test
was applied to further refine selected hits keeping only
the statistically significant DNA methylation changes.
Raw P values were adjusted for multiple testing using
the Benjamini—Hochberg method with adjusted P values
<0.05 considered as significant. Hit lists from “benign
nevi vs. primary melanoma” and “benign nevi vs. meta-
static melanoma” comparisons were crossed to find
probes that show consistent changes of DNA methylation
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Fig. 1 Description of DNA methylation dynamics across melanoma progression. a Two-dimensional clustering analysis was performed on all samples
(n=75). Probes are in rows; samples (green, nevi; yellow, primary melanomas; blue, metastases) in columns. Note that both gains and losses of DNA
methylation changes occur across stages. b Distribution of tumor-specific DNA methylation changes in all genomic compartments: promoter, bodly,
3'UTR, and gene-body, and in varying CpG content and neighborhood context classified in island, shore, shelf, and open-sea. ¢ Distribution
of metastasis-specific DNA methylation changes in all genomic compartments: promoter, body, 3'UTR, and gene-body and in varying CpG
content and neighborhood context classified in island, shore, shelf, and open-sea. d DAVID functional annotation of the most significant
biological process categories within the hyper- (right panel) and hypomethylated (left panel) genes showing a negative correlation between DNA
methylation and gene expression values (primary primary tumors, meta metastases; P < 0.01)
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between benign samples and tumor samples (early phase
changes). Clustering of benign nevi and primary tumors
(Fig. 3a left panel) was produced using the Ward method
with the beta values of the DM ANOVA set (4822).

When comparing primary melanomas from patients
with long (>48 months) and short survival (<48 months),
the 734 differentially methylated probes were obtained
by performing a non-parametric Wilcoxon—Mann—
Whitney test, selecting the probes with a mean differ-
ence of>0.2 and with a corrected P value of<0.01
(Fig. 3a right panel).

Re-analysis of public melanoma gene expression datasets
Melanoma gene expression datasets, together with raw
chip data, were downloaded from the GEO database
(GSE7553, GSE8401, GSE12391) [13, 26, 27]. Quality
check on experiments that used Affymetrix one-channel
chips were carried out with the Bioconductor package
“affyQCReport”. Chips were RMA-normalized using the
“affy” package and the list of differential gene expression
was calculated using the package “limma”. Raw P values
were adjusted for multiple testing according to the
Benjamini—-Hochberg method. Probes showing at least
twofold change in gene expression with a q value smaller
than 0.05 were considered significant. Dataset published
by Scatolini et al. [13] used dual-color chips from Agi-
lent combined with dye swap experiment design. Bio-
conductor package “limma” was used to import and
normalize chips. Positive and negative control probe in-
tensities were visualized and inspected in both channels.
In addition, dye-swap chip pairs were plotted against
each other and checked visually. Differential gene ex-
pression analysis was carried out using the “limma”
package. Raw P values were adjusted according to the
Benjamini-Hochberg method. Probes with at least two-
fold change in gene expression and a q value smaller
than 0.05 were considered significant.

Gene ontology and gene interaction network analysis
Gene ontology analyses were performed using the web-
based Database for Annotation, Visualization and Inte-
grated Discovery (DAVID, version 6.7; david.ncifcrf.gov)
[28]. Gene Set Enrichment Analysis (GSEA, version
2.04) was used to identify overrepresentation of gene
sets from the online database available at the GSEA
website (www.broadinstitute.org/gsea/) [29].

Pyrosequencing

DNA methylation in clinical samples of the validation
cohorts was studied by pyrosequencing, which was per-
formed on bisulfite-treated DNA extracted from FFPE
samples. Pyrosequencing reactions and quantification of
DNA methylation were performed in a PyroMark Q96
System version 2.0.6 (QIAGEN) including appropriate
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controls. Specific primers were designed using the
MethylExpress® program (Applied Biosystems) for bisul-
fite sequencing and PyroMark Assay Design Software
(QIAGEN-version 2.0.01.15) for pyrosequencing to
examine the methylation status of particular CG sites
covering the promoter regions of the candidate genes
(see Additional file 1: Table S2 for primer sequences).

Immunohistochemistry (IHC)

First, primary antibodies were validated according to a
previously established protocol (Additional file 2: Figures
S1-S5) [30]. Briefly, antibodies obtained for each marker
were checked for their specificity to the target protein
by Western blotting on positive and negative control cell
lines. Next, automated immunohistochemistry (IHC)
using FFPE pellets of identical control cell lines was op-
timized to ensure specificity and to maximize differenti-
ation between positive and negative controls (i.e., the
dynamic range). Finally, IHC on whole tissue FFPE
sections for the target marker and appropriate tech-
nical controls (no primary antibody and IgG from
serum) were reviewed by an experienced pathologist
(see Additional file 2: Figures S6, S7 for additional
examples of IHC on nevi, primary melanomas, and
metastases).

TMA sections were deparaffinized in xylene and rehy-
drated in descending gradient alcohols before heat-
induced antigen retrieval in a Pre-Treatment Module
(DAKO) according to the manufacturer’s instructions in
citrate buffer (pH 6) or in EDTA-Tris buffer (pH 9) at
95 °C for 15 min (see Additional file 1: Table S3 for
staining conditions for each primary antibody). Subse-
quently, immunohistochemistry was performed in a
DAKO Autostainer Link 48 wusing an alkaline
phosphatase-based EnVision G|2 System/AP Rabbit/
Mouse visualization kit and Permanent Red substrate
(both DAKO), resulting in a pink/red immunoreactivity.
Control cell lines and conditions (see previous para-
graph) were processed identically alongside the TMA.

Automated scoring

The Aperio ScanScope XT slide scanner (Aperio Tech-
nologies) system was used to acquire whole-slide high-
resolution digitized images of tissue sections with a 20x
objective. Digital images were managed using Spectrum
software (Aperio Technologies). The IHC-Mark image
analysis software (OncoMark Ltd., Dublin, Ireland), pre-
viously validated [31, 32], was used to quantify the ex-
pression of individual markers, combining the
percentage of cells stained and the intensity of the stain-
ing (H Score; see Additional file 2: Figure S8 for over-
view of image analysis output). Unless otherwise stated,
the median H Score was used as a cutoff point to define
subgroups of high or low expressing melanomas with
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respect to immunohistochemical markers. Melanoma-
specific and progression-free survival were calculated as
the interval between diagnosis of the primary tumor and
melanoma-specific death or progression of the disease,
respectively. Kaplan—Meier analysis and the Log-Rank
statistic were generated using Graphpad Prism Version
5.02. Multivariate Cox regression analysis was performed
using Statistica Version 7.

Results

Exploration of global methylation profiles within the
discovery cohort

Genome-scale DNA methylation profiling was performed
on primary (n=33) and metastatic (n=28) melanomas,
including three paired cases, along with benign nevi (n =
14) from healthy individuals, using a previously validated
DNA methylation array. The cohort consisted of melano-
mas with a balanced distribution among Breslow thick-
ness, ulceration and sex, and were accompanied by
detailed clinical annotation (summarized in Table 1). Im-
portantly, to minimize intrinsic variability, only pri-
mary tumors and metastases from the most
frequently occurring melanoma subtype (superficial
spreading malignant melanoma; SSMM) were selected.
To explore global DNA methylation profiles, cluster-
ing was performed, indicating that DNA methylation
patterns clearly differentiated benign nevi from malig-
nant melanomas into separate branches, with the ex-
ception of three primary melanomas (Fig. 1a). Two of
these were thin, early-stage melanomas associated
with an adjacent benign nevus (Breslow thickness <
1 mm), and the third was an in situ melanoma. The
two other sample clusters were enriched in primary
and metastatic samples, respectively, underscoring the
power of DNA methylation profiles to characterize
different progression stages of the disease.

Identification of genes altered during melanoma
development and progression

We next carried out a differential DNA methylation ana-
lysis to identify genes altered in melanoma development
and progression. Benign nevi, primary tumors, and metas-
tases were separated into groups and the median of DNA
methylation was computed for every probe within each
group. DGMB were calculated keeping only probes with
large changes (DGMB > 0.25), and probe-wise Mann—
Whitney tests were applied to recognize statistically sig-
nificant DNA methylation changes (Benjamini—Hochberg
adjusted P < 0.05). Using these criteria, we identified 5808
probes (1533 genes) that were significantly hypermethy-
lated in melanoma samples (primary tumors and metasta-
ses) versus benign nevi and that preferentially targeted
CpG islands (primary tumors vs. nevi: 68.9% of all hyper-
methylated CpGs; metastases vs. nevi: 54.2%), and 4151
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probes significantly hypomethylated (1722 genes) with no
significant association with CpG islands (primary tumors
vs. nevi: 25.8% of all hypomethylated CpGs; metastases vs.
nevi: 8.4%) (two-tailed Fischer’s exact test; P < 0.0001) but
occurring mostly in isolated CpGs in the genome (so-
called ‘open sea’ CpGs; Fig. 1b and Additional file 1: Tables
S4-S9 with gene lists). DNA hypermethylation affected
457 genes (77.7% of all hypermethylated genes during
melanoma development and tumor progression) during
melanoma development (i.e., when comparing benign nevi
and primary tumors). In addition, hypermethylation
prevalently affected promoter regions of genes (TSS1500,
TSS200, 5UTR, 1stExon), thereby identifying 255 unique
genes (55.8%) undergoing promoter hypermethylation
during melanoma development (Fig. 1c, left panels). In
terms of tumor progression (i.e., from primary tumors to
metastases), we identified 131 differentially hypermethy-
lated genes (22.3% of all hypermethylated genes during
melanoma development and tumor progression), of which
86 (65.7%) exhibited hypermethylation at the gene pro-
moter (Fig. 1c, left panels). There was little overlap be-
tween hypermethylated genes in primary tumors versus
nevi and in metastases versus primary tumors (37 com-
mon genes), indicating that there are DNA methylation
changes specific to melanoma development on the one
hand and metastasis-specific DNA methylation changes
linked to melanoma progression on the other. Regarding
gene hypomethylation, most of the changes associated
with melanoma development occurred outside gene pro-
moters and mainly affected gene bodies, as has been pre-
viously observed in other cancer types (Fig. 1lc, right
panels) [33-35]. In contrast to DNA hypermethylation,
loss of DNA methylation occurred at higher frequency
during tumor progression (383 genes) than in melanoma
development (63 genes), yet always affecting the same
genomic compartments, ie., open sea CpGs and gene
bodies (Fig. 1c, right panels).

Functional implication of DNA methylation changes in
melanoma

To identify those DNA methylation changes associated
with changes in gene expression, we performed an inte-
grative analysis with gene expression profiles from
benign nevi and primary and metastatic melanomas
[13, 26, 27] from the GEO database (GSE7553, GSE8401,
GSE12391; see Additional file 1: Tables S10-S17 for gene
expression results). When comparing nevi with primary
tumors and metastases, and primary tumors with metasta-
ses, we were able to examine the expression of 918 out of
the 3323 unique differentially methylated genes (1536
genes hypermethylated; 1787 hypomethylated; Additional
file 1: Tables S4—S9). A significant negative correlation be-
tween DNA methylation and gene expression levels was
observed for 207 (22.5%) of the 918 genes at least in one
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of the databases analyzed. Of these, 130 genes were signifi-
cantly hypermethylated and downregulated (62.8%), while
77 genes (37.2%) were similarly hypomethylated and up-
regulated, highlighting the importance of DNA methyla-
tion in modulating gene expression patterns (Additional
file 1: Tables S18). To investigate the categories of genes
exhibiting altered DNA methylation, we performed a DA-
VID functional annotation analysis [28]. Importantly,
functional classification of the hypermethylated/downreg-
ulated genes revealed a significant involvement of several
melanoma- and metastasis-related pathways, including
cell/tissue polarity (GO:0009952; GO:0003002;
G0:0007389) and cell-cell adhesion (GO:0005916;
GO0:0014704; GO:0007155; GO:0022610; GO:0005911;
Fig. 1d, left panel and Additional file 1: Table S19),
whereas hypomethylation-associated overexpression was
enriched in GO terms involving immune system and in-
flammatory processes (P<0.01) (GO:0006955;
GO:0006952; GO:0006954; GO:0002684; GO:0045321;
GO0:0002253; Fig. 1d, right panel and Additional file 1:
Table S20). We next used GSEA [29] to investigate which
well-defined sets of genes showed significant overlap with
these differentially methylated and expressed genes,
and hence which sets of genes might be affected by the
aberrant DNA methylation (Additional file 1: Table S21
and S22; FDR q<0.05). Importantly, the top gene set
that was found enriched in the hypermethylated/down-
regulated genes was JAEGER_METASTASIS_DN (30/
130 genes or 23.1%), a collection of genes with down-
regulated expression in melanoma metastases com-
pared to the primary tumor [36]. The next two most
enriched gene sets in the hypermethylated/downregu-
lated genes were both polycomb repressor complex 2
(PRC2) targets in human embryonic stem cells [37],
corroborating previous research [38]. In addition,
hypermethylated/downregulated genes typically affected
genes that are downregulated in melanoma patients
with a reported distant metastasis within 4 years [11]
and for hypermethylated genes in lung cancer [39]. The
top gene set that was found enriched in the differen-
tially hypomethylated genes, on the other hand, was
SCHUETZ_BREAST CANCER_DUCTAL_INVASIVE_UP
(13/76 genes or 17.1%), a collection of genes with up-
regulated expression in invasive breast cancer com-
pared to non-invasive tumors [40]. In addition,
differentially hypomethylated genes were enriched for
genes that have upregulated expression in high versus
low risk uveal melanomas [41].

DNA methylation biomarkers associated with progression
of melanoma

We next searched for genes whose alteration in DNA
methylation could be linked to melanoma progression in
our sample cohort. Selected candidate genes exhibited
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(1) large differences in DNA methylation between
primary melanomas and metastases (DGMB = 0.25;
Additional file 1: Tables S6 and S9), and (2) were sup-
ported by gene expression or DNA methylation data
available within publicly available databases. Technical
validation was performed aiming to compare the results
provided by the original array-based epigenomic profil-
ing and pyrosequencing. Correlation analyses showed
the reliability of the screening platform used, and con-
firmed the suitability of pyrosequencing for validation
purposes. Correlation indices between array data and
pyrosequencing for the evaluated hypermethylated
candidates were as follows: EPHX3 (r=0.81; P<
0.0001), G/B2 (r=0.71; P<0.0001), HOXA9 (r=0.79;
P <0.0001), MEOX2 (r=0.70; P<0.0001), RBPI (r=
0.84; P<0.0001), TFAP2B (r=0.68; P<0.0001), and
TWISTI (r=0.70; P<0.0001); and for the hypomethy-
lated genes AKT3 (r =0.74; P <0.0001), SERPINE2 (r =
0.72; P<0.0001), and TBCI1ID16 (r=0.72; P<0.0001;
Additional file 2: Figure S9). All of them reached stat-
istical significance in the discovery sample set (Fig. 2a).
We then conducted a validation phase by pyrose-
quencing of candidate epigenomically modified genes
in an independent cohort of 19 primary tumors and
23 metastases (validation cohort I). DNA methylation
changes linked to melanoma progression on the exam-
ined candidates retained significance in the independ-
ent validation cohort (Fig. 2b; EPHX3 was not tested
in this validation cohort).

DNA methylation profiles identify two groups with
differential melanoma-specific survival outcomes

We next investigated whether DNA methylation could
be used to predict the prognosis of patients with melan-
oma. We observed that the beta values of the selected
4822 probes were able to differentiate benign nevi from
primary melanomas by hierarchical clustering. Among
the latter, two groups of primary tumors were distin-
guished that clustered together according to Breslow
thickness and patient survival (Fig. 3a, left panel). One
group had a mean Breslow thickness of 1.96 mm and
median distant metastasis-free survival of 31 months,
whereas the other had significantly higher thickness and
shorter survival (6.30 mm, P =0.0039; 11 months, P=
0.0460) (no significant differences were observed for ul-
ceration, tumor-infiltrating lymphocytes or mitotic rate;
however, all primary melanomas with brisk infiltrate
were clustered in group B). Given that Breslow thickness
is the strongest prognostic factor in melanoma, we
investigated whether the most significant, differentially
methylated CpG sites could classify patients with
different survival. Two DNA methylation signatures
associated with 4-year survival were clearly identifiable
in this respect (Fig. 3a, right panel). More than 734
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Fig. 2 Identification of DNA methylation markers in the progression of malignant melanoma. Box-plots represent pyrosequencing results in (a)
the discovery cohort and (b) the independent validation cohort |, consisting of 19 primary melanomas and 23 metastases. The selected candidates
display large differences in DNA methylation between primary melanomas and metastases (DGMB 2 0.25), and were supported by gene expression or
DNA methylation data available within publicly available databases (Additional file 1: Tables S18; primary primary tumors, meta metastases;
Student’s t-test: *P < 0.05; **P < 0.01; ***P < 0.001; ***P < 0.0001).

probes showing significant differences in median DNA
methylation values higher than 20% (P < 0.01) were iden-
tified when comparing the DNA methylation profiles of
long survivors (>48 months) versus patients dying within
this period (<48 months). The prognostic power of the
markers was evaluated in an independent validation co-
hort containing primary melanomas (n = 85) with a bal-
anced distribution among Breslow thickness (Additional
file 1: Table S1; validation cohort II). Each of the con-
ventional prognostic biomarkers (except age) had signifi-
cant prognostic information on overall survival in this
validation cohort (Additional file 1: Table S23). Differen-
tially methylated genes included three non-melanoma
related genes (MEOX2, OLIG3, PON3), but previously

associated with DNA methylation and cancer prognosis in
other pathologies [42—44]. The DNA methylation levels of
the three candidates were validated by pyrosequencing in
validation cohort II and survival analyses confirmed their
power as indicators of overall and progression-free sur-
vival (P < 0.05; Fig. 3b and Additional file 2: Figure S10A,
respectively). Importantly, for PON3 DNA methylation,
survival prediction was independent of the two most
frequently used prognostic markers, i.e., tumor thickness
according to Breslow and ulceration (P < 0.05; Fig. 3c and
Additional file 2: Figure S10B); in addition, PON3 DNA
methylation survival prediction for progression-free
survival, but not overall survival, was independent of the
presence of tumor-infiltrating lymphocytes. DNA
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Fig. 3 DNA methylation biomarkers with prognostic value. a Two groups of primary melanomas were observed in the discovery cohort when
comparing primary melanomas and benign nevi, with significantly different Breslow thickness and distant metastasis-free survival (left panel); 734
probes displayed significant differences in median DNA methylation values higher than 20% when comparing the DNA methylation profiles of
long survivors (>48 months) versus patients dying within this period (<48 months; right panel; primary primary tumor). Note that the vast majority
correspond to gain-of-methylation events. b Kaplan—Meier survival curves for pyrosequencing results of three selected markers (PON3, OLIG3, and
MEOX2) in validation cohort Il (Additional file 1: Table S1) corroborating their prognostic power on overall survival (and progression-free survival,
see Additional file 2: Figure S10; UM unmethylated; M methylated; Log-Rank test: P < 0.05). ¢ Kaplan-Meier survival curves for PON3 pyrosequencing
results in validation cohort Il grouped according Breslow thickness and ulceration status (left and middle panel, respectively; HB high Breslow, LB low
Breslow, NU no ulceration, U ulceration; Log-Rank test: P < 0.05). Multivariate analysis for PON3 establishes its value for survival prediction independent
of these two prognostic markers (right panel; Cox regression analysis)

methylation of MEOX2 and OLIG3 did not retain signifi- melanoma [45] (Additional file 2: Figure S11). Altogether,
cance in multivariate analysis. Moreover, DNA methyla- these data constitute DNA methylation of MEOX2,
tion of PON3 was predictive for overall survival in The = OLIG3, and PON3 as prognostic indicators potentially
Cancer Genome Atlas cohort of 223 patients with useful in the clinic.
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Validation of prognostic value of protein expression of
differentially-methylated genes

Next, we aimed to explore the possibility that the ex-
pression levels of the differentially methylated genes,
linked to melanoma progression and/or prognosis,
would provide prognostic information at the protein
level in an independent melanoma patient cohort via
IHC (validation cohort III). Candidate markers were se-
lected applying the following criteria: (1) methylation of
the promoter regions, (2) genes where initial methylation
levels of nevi were low (or high), (3) consecutive increase
(or decrease) of methylation during the subsequent
stages of melanoma progression, and (4) availability of a
high-quality antibody. Five candidate markers were se-
lected, ie, AKT3, EPHX3, OLIG3, OVOLI1, and
TFAP2B. Antibodies were validated for specificity ac-
cording to a rigorous protocol [30]. In order to evaluate
the prognostic value of these five markers, we performed
IHC on a previously-constructed TMA consisting of
archival paraffin patient samples from the St. Vincent’s
University Hospital (see Additional file 2: Figure S12 for
representative examples of IHC stained TMA cores with
low and high expression; validation cohort III; Dublin,
Ireland) [25]. Each of the conventional prognostic bio-
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melanoma-specific survival in this TMA cohort (Add-
itional file 1: Table S24). Image analysis software (IHC-
Mark; OncoMark Ltd., Dublin, Ireland) was used to
quantify the TMA stainings, combining the percentage
of melanoma cells stained and the intensity of the stain-
ing (H Score). Consistent with DNA methylation data,
patients with high OVOLL1 expression (H Score > median
H Score) in the primary tumor had significantly better
prognosis than those with low expression (H Score < me-
dian H Score), displaying both extended melanoma-
specific and progression-free survival (Fig. 4a, b). In
addition, patients with very high AKT3 expression (H
Score > third quartile H Score) in the primary tumor
presented significantly worse melanoma-specific and
progression-free survival than the other patients (low to
moderate expression; Fig. 4a, b). Finally, patients with
very low TFAP2B expression (H Score < first quartile H
Score) did not have significantly different melanoma-
specific survival but presented significantly shorter
progression-free survival (Fig. 4a, b). EPHX3 and OLIG3
protein expression did not show any significant prognostic
value in terms of survival (Additional file 2: Figure S13A,
B). Importantly, multivariate Cox regression analysis vali-
dated the power of OVOLL as an indicator of melanoma-

markers had significant prognostic information on  specific survival, independent of tumor thickness
p
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Fig. 4 Epigenomically-regulated protein biomarkers with prognostic value. Kaplan-Meier survival curves for immunohistochemical (IHC) results of
three (out of five) selected markers with differential DNA methylation (OVOL1, AKT3, and TFAP2B; results for the other two markers can be found
in Additional file 2: Figure S13A, B) in the independent validation tissue microarray cohort Ill. The selected candidates display methylation of the
promoter regions, low (or high) initial methylation levels of nevi, and a consecutive increase (or decrease) of methylation during the subsequent
stages of melanoma progression. Primary antibodies were validated prior to performing IHC (Additional file 2: Figures S1-55). Image analysis
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according Breslow and age (P < 0.05; Fig. 4a, b; expression
of AKT3 and TFAP2B did not retain significance in multi-
variate analysis). Ulceration did not retain significant
prognostic value when assessed via multivariate analysis,
presumably because of less standardized scoring criteria
for ulceration at the time of tissue collection (from 1994
to 2007), whereas standardized scoring criteria for ulcer-
ation were only described in Europe in 2003 [46].
Altogether, these data constitute AKT3, OVOLI1, and
TFAP2B protein expression as prognostic indicators po-
tentially useful in the clinic.

Discussion

To enable the discovery of novel biomarkers and the
development of more efficient therapies for melan-
oma, our understanding of the molecular features
underlying its aggressive phenotype, and how these
traits are regulated by constant modifications of its
transcriptome, need to be enhanced. In this study, we
aimed to profile, in an unbiased manner, DNA methy-
lation changes occurring along the evolution of mel-
anoma development and progression. Moreover, DNA
methylation biomarkers represent a valuable tool for
the clinical management of several cancer types [3].
Despite several DNA methylation changes identified
in melanoma [21-23, 47], there is a lack of unbiased
comprehensive analysis of clinical specimens that de-
scribes the molecular pathways targeted by epige-
nomic changes, and provide biomarkers that can be
readily used as markers for the diagnosis and evalu-
ation of melanoma aggressiveness. To overcome this,
our study represents the most comprehensive epige-
nomic profiling assessment of well-annotated human
melanomas. In more detail, we (1) performed
genome-wide DNA methylation profiling of clinical
specimens covering various stages of development
and progression of SSMM; (2) integrated the observed
changes with gene expression data, in order to gain
insights of potential functional relevance; (3) proved
the robustness of our findings through extensive val-
idation in multiple independent cohorts; and (4) fi-
nally translated our results to potentially valuable
protein biomarkers.

The present study illustrates the DNA methylation
dynamics during melanoma development and progres-
sion. Aberrant DNA hypermethylation occurs pre-
dominantly in CpG island-associated promoters in
melanoma cells, as compared with benign nevi. This
has been described for several tumor types, and rep-
resents a common hallmark of neoplastic transform-
ation. DNA hypomethylation, by contrast, was more
frequently found at later stages of progression and
predominantly associated with gene bodies, although
some loci-specific changes were observed. A previous
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study suggested that DNA methylation alterations in
melanoma could be partly attributable to the dramatic
loss of 5-hydroxymethylcytosine observed during ma-
lignant progression, caused by mutation of the TET2
enzyme coding gene [48]. Altogether, a large number
of DNA methylation changes were identified in rela-
tion to different stages of the disease. We were able
to confirm several hypermethylated genes (see Add-
itional file 1: Tables S4—S6 for gene lists) reported in
previous studies, including transcription factor AP2
(TFAP2) genes [49], which play essential roles in the
development of the epidermis and migratory cells of
the neural crest, HLA-class I members [50], SOCS-1
and -2, and members of the tumor necrosis factor re-
ceptor superfamily (TNFRSF) TNFRSFIOC and
TNFRSFI10D [18], as well as MAPKI3 and PLEKHG6
[21], and HOX family genes such as HOXD9 [22].
We did not detect DNA methylation differences in
any of the MAGE genes, but observed frequent hypo-
methylation in TBCDID16 [47] and in several mem-
bers of the SERPINB gene cluster also involved in
tumorigenesis (see Additional file 1: Tables S7-S9 for
gene lists) [51].

By crossing our dataset with available gene expres-
sion databases, we gained insight into the potential
functional relevance of DNA methylation in altering
the phenotype of melanoma cells. Promoter hyperme-
thylation of genes involved in cell adhesion, such as
ANXA9, CLDNS5, GJAI, GJB2, or LAMA3, was
enriched as determined by gene ontology and GSEA
analysis (Additional file 1: Tables S19 and S21), in
line with previous reports (see Additional file 1: Table
S18 for gene list) [52, 53]. The deregulation of cell
adhesion has been recognized in other neoplasms as
a characteristic event facilitating escape of the pri-
mary niche, and has been confirmed in our study by
comparison with available methylation and expression
databases. Loss of terminal differentiation traits, as
observed by inactivation of ESR1, PTPRS, or the me-
tastasis suppressor gene GATA3, may reflect the in-
trinsic capacity of melanoma cells to gain plasticity,
and to progressively acquire changes that trigger
metastatic dissemination [54, 55]. In line with this,
GSEA indicated considerable and significant overlap
between genes with downregulated expression in mel-
anoma metastases compared to the primary tumor
[36] and our set of differentially hypermethylated
genes, and between genes with upregulated expression
in invasive breast cancer compared to non-invasive
tumors [40] and our differentially hypomethylated
genes. The regulation of gene expression patterns by DNA
methylation changes at different stages seems to reflect the
phenotype switch concept that emerged from transcrip-
tomic studies of melanomas [56—58]. Moreover, a series of
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studies have observed a stem-cell phenotype increasing
during melanoma progression, which was strongly sus-
tained by a tumor-promoting microenvironment [59-62].
Pathways activated by DNA hypomethylation were mostly
linked to inflammation and innate or adaptive immunity
processes (Additional file 1: Tables S20 and S22). Of note,
although the effect of tumor-associated immune and
stromal cells was minimized (by only including le-
sions with at least 75% of tumor cells; see Methods),
some of the observed changes in DNA methylation
are likely to originate from both tumor cells and nor-
mal cells. It has been hypothesized that expression of
these immune and inflammatory factors in advanced
melanomas interacts with the tumor microenviron-
ment and creates a milieu supportive of tumor pro-
gression [63]. Specifically, overexpression of TLR4 and
CCR7 in advanced melanomas as a result of loss of
promoter DNA methylation fosters tumor progression
by hijacking immune responses (see Additional file 1:
Table S18 for gene list) [64, 65]. Further, DNA repair
processes are also empowered by hypomethylation of
PARP1 (Additional file 1: Tables S8 and S18), a
chromatin-associated enzyme involved in base-
excision repair [66, 67]. In agreement with our data,
upregulation of DNA repair pathways concomitant
with a loss of cell-cell adhesion has also been re-
ported in vertical-growth phase and metastatic mela-
nomas in relation to regulation of NF-kappaB
signaling and inhibition of apoptosis [13, 67-69].

Overall, our data support a central role for DNA
methylation in modulating the transcriptome of
melanoma cells, thereby changing their phenotype
to promote tumor progression. At initial steps,
prominent epigenomic inactivation induces loss of
cell-cell contacts and truncates differentiation pro-
grams, increasing plasticity of tumor cells to acquire
invasive capacities. In this line, epigenomic regula-
tion underlies previous observations reporting
downregulation of cell adhesion molecules in the
most aggressive vertical-growth phase melanomas
[13, 70]. Subsequently, as melanoma gains depth
and invades the dermis, a transcriptional switch oc-
curs through modulation of DNA methylation pat-
terns leading to the epigenome displayed in the
metastatic sites. DNA hypomethylation seems to be
predominant at this point, and reactivation of im-
mune and inflammation processes is evident. Upreg-
ulation of inflammation and immune response
pathways in tumor cells seem to co-opt to turn the
microenvironment into a tumor-promoting milieu
[71, 72], and has been associated with shortened
relapse-free survival [73].

Within the large panel of genes that were identified
to be transcriptionally altered during melanoma
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progression, we selected a series of markers (AKT3,
EPHX3, GJB2, HOXA9, MEOX2, PON3, RBPI, SER-
PINE2, TBC1D16, TFAP2B, and TWIST1) for further
validation. The robustness of our findings was con-
firmed following pyrosequencing of the genes in an
independent patient cohort, pointing at these alter-
ations as widespread attributes of melanoma progres-
sion and worth further characterization. In support of
this, one of the members of our gene signature,
TBC1D16, has recently been shown to be involved in
the metastatic cascade of melanoma [47].

A melanoma survival signature could also be in-
ferred from this integrative study. Through a super-
vised correlation of the DNA methylation profiles
with clinical parameters, we were able to refine a
DNA methylation panel predictive of melanoma-
specific survival. In line with this, significant overlap
was observed, by GSEA, between our differentially
hypermethylated genes and downregulated genes in
melanoma patients with a reported distant metastasis
within 4 years [11], and our differentially hypomethy-
lated genes and upregulated genes in high versus low
risk uveal melanomas [41]. Nowadays, prognosis for
patients with clinically localized primary cutaneous
melanoma relies mostly on histological parameters as
tumor thickness, ulceration, and mitotic rate in the
invasive component. Here, we identified, and validated
in an independent validation cohort, three genes
(MEOX2, OLIG3, and PON3) for which the degree of
DNA methylation can predict the prognosis of melan-
oma patients. Importantly, PON3 DNA methylation
was independent of classical prognostic parameters
and could, therefore, be of added value when imple-
mented in the pathological staging procedure. In
addition, we validated by IHC the prognostic usefulness of
protein biomarkers (AKT3, OVOLL, and TFAP2B) that
were discovered by our DNA methylation analyses,
thereby verifying DNA methylomics as a valid screening
tool to identify potential protein biomarkers. Furthermore,
in the current era of “liquid biopsies”, the observed
changes in methylation might be targets for the study of
cell-free DNA in the serum of melanoma patients. Once
these findings are corroborated, it could be of great utility
for its clinical implementation to improve the manage-
ment of melanoma patients.

Conclusions

Our results underline the prominence of epigenomic
gene regulation in eliciting metastatic spreading
through the inactivation of central cancer-related
pathways. Additionally, we found a panel of markers
of tumor development and progression previously un-
related with melanoma, and established a prognostic
signature with potential clinical utility.
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Additional files

Additional file 1: Table S1. Characteristics of patients included in
validation cohort II. Table S2. Primers for pyrosequencing. Table S3.
Conditions for immunohistochemical stainings. Table S4. Genes with
differential hypermethylation in primary tumors compared to nevi. Table S5.
Genes with differential hypermethylation in metastases compared to nevi.
Table S6. Genes with differential hypermethylation in metastases compared
to primary tumors. Table S7. Genes with differential hypomethylation in
primary tumors compared to nevi. Table S8. Genes with differential
hypomethylation in metastases compared to nevi. Table $9. Genes with
differential hypomethylation in metastases compared to primary tumors.
Table S10. Differential gene expression results of the comparison between
nevi and radial growth phase primary melanoma (GSE12391, 0.05 and fold
change > 2). Positive logFC means higher expression in radial growth phase
primary melanoma. Table S11. Differential gene expression results of the
comparison between nevi and vertical growth phase primary melanoma
(GSE12391, 0.05 and fold change > 2). Positive logFC means higher
expression in vertical growth phase primary melanoma. Table S12.
Differential gene expression results of the comparison between nevi and
metastases (GSE12391, 0.05 and fold change > 2). Positive logFC means
higher expression in nevi. Table S13. Differential gene expression results of
the comparison between metastases and radial growth phase primary
melanoma (GSE12391, 0.05 and fold change > 2). Positive logFC means
higher expression in metastases. Table S14. Differential gene expression
results of the comparison between metastases and vertical growth phase
primary melanoma (GSE12391, 0.05 and fold change > 2). Positive logFC
means higher expression in metastases. Table S15. Differential gene
expression results of the comparison between primary melanomas and
metastases (GSE7753, 0.05 and fold change > 2). Positive logFC means higher
expression in metastases. Table S16. Differential gene expression results
of the comparison between primary tumors and metastases
(GSE8401, 0.05 and fold change > 2). Positive logFC means higher
expression in metastases. Table S17. Gene lists of differentially
methylated and expressed genes. Table S18. Gene list of
hypermethylated/downregulated and hypomethylated/upregulated
genes. Table $S19. DAVID functional annotation analysis of
differentially hypermethylated and expressed genes. Table S20.
DAVID functional annotation analysis of differentially hypomethylated
and expressed genes. Table S21. Gene Set Enrichment Analysis of
differentially hypermethylated and expressed genes. Table S22. Gene
Set Enrichment Analysis of differentially hypomethylated and expressed
genes. Table $23. Results for univariate analyses of conventional prognostic
biomarkers in validation cohort II. Table $24. Results for univariate analyses of
conventional prognostic biomarkers in validation cohort lll. (XLS 10860 kb)

Additional file 2: Figures S1-S5. Validation of primary antibodies
against AKT3, EPHX3, OLIG3, OVOL1, and TFAP2B, respectively, according
a previously established protocol (Gillian O'Hurley, Molecular Oncology,
2014). First, antibodies obtained for each marker were checked for their
specificity to the target protein by western blot on positive and negative
control cell lines. Next, automated immunohistochemistry (IHC) using
formalin-fixed, paraffin-embedded (FFPE) pellets of identical control cell
lines was optimized to ensure specificity and to maximize differentiation
between positive and negative controls (i.e, the dynamic range). Finally,
IHC on whole tissue FFPE sections for the target marker and appropriate
technical controls (no primary antibody and IgG from serum) were
reviewed by an experienced pathologist. Figure S6, S7. Representative
examples of IHC on nevi, primary melanomas and metastases. Figure S8.
(A) Examples of original tissue microarray (TMA) core and mark-up image
for varying, indicated H Scores as output from IHC-Mark image analysis
software. (B) Overview graphs indicating the density plots of IHC-Mark
image analysis H Score for each protein marker. Figure S9. Correlation
plots and indices of the technical validation comparing the original array-
based epigenomic profiling and pyrosequencing. Figure S10. (A)
Kaplan—-Meier survival curves for pyrosequencing results of three selected
markers (PON3, OLIG3, and MEOX2) in validation cohort Il (Additional file 1:
Table S1) corroborating their prognostic power on progression-free survival
(and overall survival, see Fig. 3; UM, unmethylated; M, methylated; Log-Rank
test: P < 0.05). (B) Kaplan-Meier survival curves for PON3 pyrosequencing
results grouped according Breslow thickness and ulceration status (left and
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middle panel, respectively; HB, high Breslow; LB, low Breslow; NU, no
ulceration; U, ulceration; No, no tumor-infiltrating lymphocytes (TILs)
present; TILs, TILs present; Log-Rank test: P < 0.05). Multivariate analysis for
PON3 establishes its value for survival prediction independent of these two
prognostic markers (right panel; Cox regression analysis). Figure S11.
Kaplan-Meier survival curve for the DNA methylation of PON3 as a predictor
for 2-year overall survival in The Cancer Genome Atlas cohort of 223 patients
with melanoma (UM, unmethylated; M, methylated; Log-Rank test: P < 0.05).
Figure S12. Representative examples of immunohistochemically stained
TMA cores with low and high expression for each biomarker. Figure S13.
Kaplan—-Meier survival curves for IHC results of four (out of five) selected
markers with differential DNA methylation (AKT3, EPHX3, OLIG3, and
TFAP2B; results for the other two markers can be found in Fig. 4a, b)
in the independent validation tissue microarray cohort Ill. The selected
candidates display methylation of the promoter regions, low (or high) initial
methylation levels of nevi, a consecutive increase (or decrease) of
methylation during the subsequent stages of melanoma progression.
Primary antibodies were validated prior to performing IHC (Additional
file 2: Figures S1-S5). Image analysis software (IHC-Mark) was used to
obtain H Scores for each biomarker, combining the percentage of
melanoma cells stained and the intensity of the staining. Kaplan-
Meier curves display the analysis of their prognostic power on (A)
melanoma-specific and (B) progression-free survival (P < 0.05). For all
markers, the median H Score was used as a cutoff point to define
subgroups high or low expressing melanomas. (PDF 67139 kb)
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