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Abstract

The driving force behind the current global type 2 diabetes epidemic is insulin resistance in overweight and obese
individuals. Dietary factors, physical inactivity, and sedentary behaviors are the major modifiable risk factors for obesity.
Nevertheless, many overweight/obese people do not develop diabetes and lifestyle interventions focused on weight
loss and diabetes prevention are often ineffective. Traditionally, chronically elevated blood glucose concentrations have
been the hallmark of diabetes; however, many individuals will either remain ‘prediabetic’ or regress to normoglycemia.
Thus, there is a growing need for innovative strategies to tackle diabetes at scale. The emergence of biomarker technologies
has allowed more targeted therapeutic strategies for diabetes prevention (precision medicine), though largely confined to
pharmacotherapy. Unlike most drugs, lifestyle interventions often have systemic health-enhancing effects. Thus, the
pursuance of lifestyle precision medicine in diabetes seems rational. Herein, we review the literature on lifestyle interventions
and diabetes prevention, describing the biological systems that can be characterized at scale in human populations, linking
them to lifestyle in diabetes, and consider some of the challenges impeding the clinical translation of lifestyle precision
medicine.
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Background
Prediabetes, a state of chronically elevated but non-
diabetic blood glucose, is one of the greatest healthcare
challenges of our time, affecting more than 100 million
people in Europe alone [1]. The term ‘prediabetes’
implies a state of glucose dysregulation destined to
worsen, with various health agencies stressing that those
affected are at high-risk of developing type 2 diabetes
(T2D). However, annually, only 5–10% of people with
prediabetes will develop the disease, with 10% regressing
to normoglycemia [2]. Moreover, in those who remain
prediabetic, there is scant evidence that elevated, non-
diabetic blood glucose concentrations are causally
related with clinical endpoints, and therefore intensively
intervening solely on the basis of glycemia may not be
cost-effective [3]. Nevertheless, if the subgroup(s) of
people with prediabetes who progress to diabetes could

be distinguished with reasonable certainty, the case for
early intervention would be compelling given the largely in-
tractable nature of the disease, primarily due to the manner
in which the insulin secreting beta-cells deteriorate, the
absence of accessible beta-cell restorative therapy, and the
devastating consequences of diabetic complications.
T2D is primarily a disease of dysregulated carbohydrate

metabolism, influenced by lipid storage and metabolism
[4]. The disease occurs when the beta-cell insulin
secretory capacity falls below the body’s requirements for
insulin production, which are governed chiefly by the
quantity of glucose entering the blood from the gut (diet-
ary sources) or the liver (gluconeogenesis), and the rate at
which glucose is consumed and metabolized in tissues
and organs; this process is in turn governed by peripheral
insulin sensitivity (influenced by intra-cellular lipid
accumulation) and non-insulin-dependent glucose traf-
ficking (attributable to exercise). Thus, it is unsurprising
that the foundations of a westernized lifestyle (poor diet,
physical inactivity, and obesity) are the core modifiable
‘exposures’ believed to cause T2D and the targets of most
non-pharmacologic diabetes prevention programs [5].
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However, even the most successful lifestyle interventions
tend to delay (by roughly 3 years) rather than prevent the
disease from occurring [6]. Moreover, there appears to be
extensive between-individual variability in susceptibility to
lifestyle risk factors [7] and response to therapies [8]. Thus,
there is an unmet need for more effective lifestyle therapies.
The apparent inter-individual variability in susceptibility

and response to lifestyle factors in diabetes has motivated
the view that tailoring lifestyle interventions to a person’s
biological characteristics could help optimize diabetes
prevention and treatment. This appealing concept has
motivated a burgeoning direct-to-consumer industry that
promises to match diet and exercise products and services
to the customer’s personal genomic (and other omic)
characteristics. Indeed, the largest public-sector medical
research agencies (NIH and European Union) are also
investing heavily in research focused on this topic. Never-
theless, there is considerable skepticism about lifestyle
precision medicine, particularly when commercialized [9];
even where biomarkers have been conclusively linked to
susceptibility and response phenotypes, many barriers to
clinical translation persist.
Many healthcare agencies advocate a lifestyle charac-

terized by daily physical activity, a healthy diet, moderate
alcohol consumption, maintenance of normal body
weight, sound psychological health, and non-smoking
[10, 11]. These recommendations are based on data
from large epidemiological studies and randomized
controlled trials (RCTs) indicating that these lifestyle
factors lower risk of, or help prevent, T2D at a popula-
tion level [11]. The most impactful risk factor and inter-
vention target is excess body weight, as being obese
(BMI 30–35 kg/m2) or very obese (BMI ≥ 35 kg/m2)
conveys a 20- to 40-fold increased relative risk of T2D
compared with being lean (BMI < 23 kg/m2) [12].
Herein, we review the concept of lifestyle precision

medicine in T2D. Specifically, we summarize the pub-
lished evidence on lifestyle risk factors and preventive
interventions in T2D, briefly discussing the limitations
of existing approaches focusing on lifestyle interventions
for T2D prevention, and explore how harnessing
biomarker technologies might help optimize these strat-
egies. Furthermore, we describe evidence of differential
response to lifestyle interventions based on unique
genetic traits, as well as functional evidence of the
biomolecular basis of these responses. Finally, we de-
scribe current omics technologies that can be applied to
identify and stratify populations based on an individual’s
unique genotype.

Methods
Literature search strategy
We reviewed the literature for evidence of modifiable
lifestyle exposures that either raise or lower the risk of

T2D. A detailed overview of each of the papers reviewed
is given in Additional file 1: Table S1. The findings are
summarized later in this review.
We searched the PubMed online database for papers

using the search terms “(Cohort Studies[MeSH] OR
Nested case cohort study[MeSH] OR Randomized
Control Trial[MeSH]) AND (Lifestyle[MeSH] OR
Environmental Exposures[MeSH]) AND (Blood glucose
[MeSH] OR HbA1c [MeSH] OR Impaired fasting
glucose OR Impaired glucose tolerance OR Dysglycemia
OR Type 2 diabetes[MeSH] OR Glucose Intolerance[-
MeSH]) NOT review”. The search was restricted to
human studies only and age 45 years and above without
restriction on the year of publication.
The search retrieved information for 676 papers. After

title scanning, 197 articles were selected as potentially
relevant and their abstracts were reviewed, with 65 of these
papers being relevant for full review. Additionally, further
papers were identified through ancestral searches of bibli-
ographies; therefore, a total of 75 papers [6, 12–85] were
used to compile the evidence summary reported below.

Review
Published evidence of lifestyle in T2D risk and prevention
The review highlighted several well-conducted RCTs
demonstrating the effect of lifestyle interventions in
reducing the risk of T2D. In the Diabetes Prevention
Program (DPP; n = 3234), an intensive lifestyle interven-
tion was superior to a pharmacological intervention of
metformin in reducing the incidence of diabetes over
2.8 years of follow-up compared to placebo [79]. The in-
cidence of T2D was reduced by 58% (95% CI 48–66%)
in the lifestyle group and by 31% (95% CI 17–43%) in
the metformin group compared to the placebo group.
Follow-up of the same cohort for a further 10 years
showed persistent beneficial effects from lifestyle inter-
ventions, with T2D onset being delayed by approxi-
mately 4 and 2 years in the lifestyle and metformin
groups, respectively, compared to placebo [6]. The
Finnish Diabetes Prevention Study (DPS; n = 522) imple-
mented a similar lifestyle protocol, which also conveyed
a 58% (95% CI 30–70%) reduction in diabetes incidence
[86]. Both protocols focused on overweight or obese
(BMI > 25 kg/m2) participants with impaired glucose
regulation, and promoted a 5–7% weight reduction, a
total and saturated fat intake reduction, an increase in
fiber intake, and regular exercise. Numerous other trials
focusing on lifestyle interventions in a range of ethnic
groups and study settings followed [20, 29, 58, 73],
reporting reductions in diabetes incidence of comparable
or lesser magnitude to the DPP and Finnish DPS trials.
Long-term follow-up indicates that benefits of intensive
lifestyle modification on diabetes incidence are sustained
for up to 20 years [68].
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Large prospective cohort studies have also reported
robust associations between lifestyle exposures and T2D
in diverse populations. For example, in the Kailuan pro-
spective study (n = 50,656) [15], changes from the ideal
cardiovascular health status score were inversely associ-
ated with risk of T2D over an average 3.8 years of
follow-up. In the Finnish Twins Study (n = 20,487) [55],
leisure-time physical activity reduced the risk of incident
T2D in both monozygotic and dizygotic twins who were
physically active compared to their sedentary siblings
(HR 0.6, 95% CI 0.43–0.84, P = 0.003), even after factor-
ing in familial risk and home environment. In the Strong
Heart Study [64], among American Indians (n = 1651)
followed for 10 years, high physical activity was associ-
ated with a reduced risk of T2D (OR 0.71, 95% CI 0.51–
0.99 in the highest quartile compared to those who
reported no physical activity), although the estimates
were attenuated and became non-significant after adjust-
ing for adiposity. A similar beneficial impact of physical
activity in T2D incidence was observed in a European
case-cohort study of nearly 30,000 adults [46], and in
68,000 female US health professionals [78].
Yates et al. [5] systematically reviewed the literature on

RCTs testing the efficacy of diet and/or exercise inter-
ventions in the prevention of T2D. Of the eight trials
reviewed, most involved a combined diet and exercise
intervention. Compared with standard of care, the
reduction in the risk of developing T2D attributed to the
lifestyle interventions averaged 50% during the trial’s
randomization phase. Long-term follow-up of the DPP
Outcomes Study [6], the Finnish DPS [87], and the
China Da Qing Diabetes Prevention Study [68], all indi-
cated that the reduced risk of diabetes attributable to
lifestyle intervention is sustainable for 10–20 years post-
randomization. Although attempts have been made to
parse out the relative contributions of diet and exercise
in diabetes prevention, most lifestyle trials have not been
designed for this purpose, and generally assess diet and
exercise using self-report methods prone to respondent
bias. However, Slentz et al. [88] recently reported that,
within an exercise-only intervention trial, high volume
moderate-intensity exercise (~18.2 km/week of walking)
alone substantially reduced glucose tolerance in people
at high risk of T2D, despite modest effects on body
weight reduction (~2 kg). Diet-only interventions, such
as that used in the PREDIMED trial focusing on
Mediterranean-style diets [89], have yielded reductions
in diabetes risk of approximately 50% compared with a
control intervention.
RCTs are often considered the gold-standard in the hier-

archy of causal evidence, as double-blind, placebo
controlled trials are generally robust to confounding and
reverse causality. However, in lifestyle intervention trials,
masking treatment allocation from the participant and

investigators is extremely challenging, which may result in
compensatory behaviors that introduce bias and con-
founding – a rarely discussed caveat that affects the valid-
ity of data from lifestyle RCTs. Nevertheless, abundant
epidemiological studies and clinical trials have implicated
multiple lifestyle factors in the development of T2D.
Poorer social environments, within which fewer resources

and opportunities exist to maintain healthy lifestyles, con-
vey an increased risk for many diseases, including obesity
and T2D [90]. Studies in twins suggest that the relationship
between socioeconomic status and obesity may be modified
by genetic variation [91]. Using data from the UK Biobank,
Tyrrell et al. [92] studied the interaction of 66 established
BMI-associated variants and 12 obesogenic lifestyle
exposures in obesity; the authors extended previous discov-
eries of genetic interactions with physical activity [93, 94]
and TV viewing [95], and identified a novel interaction with
the Townsend Deprivation Index [96].
Evidence on the association between environmental ex-

posures (e.g., to particulate matter and persistent organic
pollutants) and T2D has yielded mixed results: some
studies showed a statistically significant relationship
between long-term exposure and risk of T2D [18], with
higher risk attributed to traffic-specific pollution [33, 47],
whereas others found no association [21]. Furthermore,
one study reported an association of traffic-specific pollu-
tion exposure with T2D risk in women [51]. Exposure to
arsenic [24, 81] and persistent organic pollutants was also
significantly associated with T2D [19, 61], but no such
association was seen for cadmium exposure [35, 44].
Coffee consumption has been associated with lower

risk of dysglycemia in observational studies [48], yet
recent Mendelian randomization analyses do not sup-
port a causal relationship [97, 98]. In the Adventist
Health Studies [65] and the Women’s Health Study [75],
consumption of red and processed meats was signifi-
cantly associated with increased T2D risk. Intake of
dairy products was not consistently related to T2D, car-
diovascular disease, or all-cause mortality [38]. In the
EPIC InterAct Study [99], dietary fiber consumption was
associated with lower T2D incidence, though this was
partially explained by body weight. While psychosocial
health is an important risk factor, especially in the
elderly [13], the relationship between depressive symp-
toms and dysglycemia may be mediated by other factors
such as lifestyle [14]. Working overtime was significantly
associated with risk of T2D among nurses [70] and
among Japanese men working more than 50-hours over-
time per month [83].
Although the literature on specific lifestyle exposures

and T2D risk is extensive, all studies used to inform
guidelines are based on the average estimated effects in
the studied population, which would be acceptable if
susceptibility to risk factors and response to preventive
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interventions were homogeneous. However, there is tre-
mendous between-person variability in susceptibility and
response to lifestyle exposures, which undermines the
value of uniform recommendations. Indeed, it is esti-
mated that the majority of people undergoing exercise
interventions do not show an adequate response [8].
There are various reasons why there may be a lack of re-
sponse to lifestyle interventions, many of which are ir-
relevant to individual biology; these factors are listed in
Table 1. Ignoring these factors when estimating the likely
impact of lifestyle precision medicine in T2D would
substantially overestimate its value [100]. Nevertheless,
harnessing genotypes and other omic variants to
optimize lifestyle interventions for population subgroups
may significantly impact individual and population-scale
diabetes trajectories. Such approaches are especially
appealing in prediabetes, where measures of glycemia
alone are inadequate, and additional biomarkers are
likely needed to predict or prevent progression to full-
blown disease.
Most contemporary studies of the interplay between

genetic and lifestyle factors have focused on gene variants
and lifestyle exposures previously associated with the
disease of interest. Few of the exposures mentioned above
have been studied in the context of gene–lifestyle interac-
tions. A systematic search of the PubMed database (con-
ducted on July 19, 2017; see Additional file 1: S1 for the
search string) identified 30 original research articles and
13 review articles or commentaries. Of these, only seven

publications focused on T2D as the outcome; additional
ten relevant papers were identified through ancestral
searches some of which are RCTs [101–106]. Others
reported on prospective observational studies examining
gene variant interactions with different diet components
[107–110] and with physical activity [107, 111].

Types of biomarkers
Genotypes
Two contrasting approaches have been used most in
studies of genetics and lifestyle in complex disease traits.
The dominant strategy has been the use of genome-wide
association studies (GWAS), which leverage massively
parallel genotyping technologies to interrogate variation
across the genome, in a way that is agnostic to prior
knowledge about genes, lifestyle, or disease. The second
strategy involves studies focused on animal or human
biology, through which genes and pathways have
emerged as subsequent targets of epidemiological studies
and/or clinical trials. The published findings from the
latter are generally far less reproducible than those from
studies using GWAS-based approaches.

Examples of GWAS-based studies connecting lifestyle and T2D
The use of large cohort collections within which genetic
variation, self-reported measures of macronutrient
intake, and other relevant factors are included have facili-
tated the discovery of variants associated with protein and
carbohydrate intake. The CHARGE consortium reported

Table 1 Factors influencing response to lifestyle interventions

Factor Definition

Behavioral compensation In most cases, assignment to lifestyle interventions in clinical trials cannot be masked from the
participants or investigators. This may prompt changes in behavior that are not the main objective
of the trial and which differ by treatment arm, or may cause investigators to treat participants in the
lifestyle and control arms differently. These sources of bias may underlie what appears to be variability
in treatment response.

Regression to the mean Trials that include only one outcome assessment, and which assess change in the outcome as the
difference between the baseline and follow-up measure, are likely to be prone to regression
dilution bias (or regression to the mean). This phenomenon occurs because most assessments are
made with some degree of error, meaning that, in some participants, the change in the outcome
will be underestimated and in others it will be overestimated. Where the outcome is assessed
using a physical stress test (such as on a treadmill or bicycle ergometer), differences in effort at
the beginning and end of the trial will also contribute to the apparent variability in treatment
response. This problem could in principle be overcome in a randomized controlled trial by
conditioning treatment response on response to the control intervention, although this is not
conventionally done in studies of responders and non-responders, which generally focus only on
intervention groups.

Adherence Variability in the extent to which participants follow protocols in clinical trials (adherence) is
likely to play a significant role in determining the extent to which an intervention appears to
work. Although adherence is usually monitored in trials, monitoring adherence to lifestyle
interventions is challenging, as the accurate and precise assessment of diet and exercise is
notoriously difficult. The use of self-reported diet and/or exercise instruments to monitor
adherence is likely to be insufficient in lifestyle trials, as participants in the active intervention
arm may feel pressured to provide confirmatory responses to lifestyle questions.

Background heterogeneity in behaviors Lifestyle interventions are often comprised of around 150 mins/week contact time, accounting for
approximately 2% of all waking time. During the 98% non-contact time, participants’ behaviors
are likely to vary considerably, influencing the extent to which the trial’s outcomes change.
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robust associations between FTO variants and dietary pro-
tein intake in 177,000 adults [112], whereby each copy of
the rs9939609 ‘A’ allele was associated with a mean of
0.08% (95% CI 0.06–0.10%, P = 2.4 × 10–16) higher protein
intake; weak associations between the ‘A’ allele and lower
total energy intake and lower dietary carbohydrate intake
were also reported. The latter contradicts data from
studies in children using objective measures of total en-
ergy intake, where the ‘A’ allele was associated with higher
total energy intake [113].
There is compelling evidence that the hepatokine

fibroblast growth factor 21, and variation at the gene
that encodes it (FGF21), helps regulate energy homeo-
stasis [114] and influences macronutrient and alcohol
preference in animals and humans [115–118]. The
FGF21 hormone is induced by metabolic stress, includ-
ing ketogenesis and dietary carbohydrate consumption.
FGF21 was initially suggested as a therapeutic agent for
diabetes [114] by the pharmaceutical giant Eli Lilly and
Co. Exogenous FGF21 infusion lowers blood glucose and
triglyceride concentrations and improves pancreatic
beta-cell function in db/db mice [119], yet endogenous
FGF21 concentrations are positively associated with a
range of dysmetabolic biomarkers, including blood glu-
cose, insulin, and c-peptide concentrations in humans
[120], which may reflect FGF21 resistance or other
metabolic feedback processes. Nevertheless, despite its
therapeutic potential, the FGF21 protein has rapid renal
clearance [121], although the development of FGF21 an-
alogues have helped circumvent this problem [122]. A
phase I placebo-controlled clinical trial testing the ef-
fects of one such analogue (LY2405319) improved blood
lipids and reduced body weight and fasting insulin, but
showed no marked impact on blood glucose concentra-
tions [123]. An alternative therapeutic approach might
focus on dietary interventions designed to limit sugar-
sweetened foods and beverages in carriers of susceptibil-
ity variants at FGF21. However, the extent to which each
risk allele is associated with increased sugar consump-
tion is negligible at an individual level [115], and is un-
likely to be of any value for targeted dietary
interventions in clinical practice.
There are many studies exploring interactions between

gene variants and diet or exercise in T2D (see [124]), yet
most are relatively small, some are cross-sectional, and
few findings have been replicated. The largest, most
comprehensive epidemiological analysis was performed
by the InterAct consortium [107], where interactions
between 58 established T2D variants and lifestyle factors
were assessed in a nested case-cohort comprised of
12,403 incident cases of diabetes and 16,154 non-
diabetics. In analyses focused on a gene-score, no statisti-
cally significant interactions were observed with physical
activity or dietary habits assessed by a Mediterranean diet

score; although several individual variants showed nom-
inal evidence of gene–lifestyle interactions, none was
significant after correction for multiple-testing. The lar-
gest and most comprehensive clinical trial analysis was
performed in the DPP (n = 2843), which focused on a
genetic risk score and its interactions with lifestyle inter-
vention (vs. standard of care) [104]. There was no evi-
dence of a gene–lifestyle interaction in diabetes incidence,
but there was nominal evidence of an interaction in re-
gression from impaired to normal glucose regulation.
Follow-up analyses in the DPP trial, focusing on gene
variants previously associated with insulin resistance,
found that these did not influence the effects of lifestyle
on insulin sensitivity after 1 year of intervention [125].
Overall, there is little robust evidence from epidemio-
logical studies or clinical trials showing that variants previ-
ously associated with T2D or insulin resistance modify the
effects of lifestyle in diabetes incidence.

Variation in the Tre-2/BUB2/cdc 1 domain family (TBC1D)
genes as examples of biologic candidate genes connecting
lifestyle and T2D
TBC1D1 and 4 encode Rab-GTPase-activating proteins
that regulate muscle glucose transport and fatty acid oxi-
dation in response to insulin and exercise (see [126]).
Abundant animal data implicate coding variation at
Tbc1d1 in exercise-related modulation of muscle glucose
uptake and weight change, and in vitro perturbation of
TBC1D1-transfected mouse myocytes by AICAR (an
exercise mimetic) was shown to impact palmitate oxida-
tion [127]; however, it remains unknown whether coding
variation at TBC1D1 in humans influences glucose and
lipid metabolism. Evidence in humans of how TBC1D4
variation impacts diabetes risk is more concrete. Homo-
zygote carriers of the nonsense p.Arg684ter allele at
TBC1D4, common within the Greenlandic Inuit but rare
elsewhere, have a roughly 10-fold increased odds of T2D
[128]. An exaggerated early insulin response was re-
ported elsewhere in family members with acanthosis
nigricans who carried a heterozygous substitution of thy-
mine for cytosine at nucleotide position 1087 in exon 3,
resulting in the substitution of a premature stop codon
(TGA) for arginine (CGA) at codon 363 [129]. The
mechanism appears to involve muscle-selective loss of
the long isoform of TBC1D4, leading to a much reduced
GLUT4-mediated insulin-stimulated glucose uptake into
muscle and marked postprandial (but not fasting) hyper-
glycemia. What remains unknown is whether exercise-
induced AS160 phosphorylation (the protein encoded by
TCB1D4) and GLUT4 translocation (a key feature of
insulin-dependent and non-insulin-dependent glucose
transportation regulated by AS160 phosphorylation) also
differ by TBC1D4 genotypes in outbred populations and,
if so, whether exercise might be sufficient to offset the
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impairments in GLUT4 sequestration attributable to
TBC1D4 isoform restriction.

Transcripts, proteins, and epigenetic marks
The nuclear genome encodes biological processes that are
necessary to maintain normal physiological function. The
transcription and translation of genetic code can be
perturbed by extrinsic and intrinsic environmental stimuli,
and by chemical modifications of DNA (broadly termed
‘epigenetics’). In some instances, it may be that diet and
exercise interact with epigenetic features, such that the
physiological consequences of a lifestyle exposure are
determined in part by the presence or absence of an epi-
genetic mark; in other cases, it may be that diet and exer-
cise causes an epigenetic mark to emerge or disappear.
There is extensive literature on the effects of exercise

or diet interventions on biomarkers of gene transcription
and translation. The transcription (mRNA production)
and translation (protein synthesis) of metabolic regulator
genes, particularly those involved in mitochondrial bio-
genesis and mitochondrial function (e.g., PPARGC1A,
AMPK, and SIRT1), have long been the focus of diet and
exercise studies, particularly in the context of energy
flux and substrate metabolism (see [130]). Although
there are many intervention studies designed to test
whether perturbation by diet or exercise affects molecu-
lar processes, most are not RCTs; this is an important
limitation, as the absence of a control arm makes it im-
possible to determine that the intervention’s effects are
not confounded by other unmeasured variables. This
problem was highlighted in a study where many genes
thought to be ‘exercise-induced’ were shown to change
in both control and intervention arms, i.e., effects were
not specific to exercise [131].
Most evidence linking lifestyle with changes in gene ex-

pression and epigenetic marks originates from cross-
sectional cohorts. By contrast, RCTs focused on these is-
sues are exceptionally rare. One of the few RCTs within
which the effects of diet on metabolites and methylation
marks have been studied is the LIPOGAIN trial [132]. In
this double-blind, randomized, parallel-arm intervention
trial, young adults (21–38 years; n = 41) were randomized
to receive one of two types of high-energy content muf-
fins, supplemental to their habitual diet, for 7 weeks; muf-
fins contained either refined palm oil (rich in the major
SFA palmitic acid (16:0)) or refined sunflower oil (rich in
the major PUFA linoleic acid (18:2 n–6)). Abdominal sub-
cutaneous adipose tissue was biopsied before and after the
dietary intervention, liver fat was assessed using magnetic
resonance imaging, and DNA and RNA were extracted for
genome-wide methylation and mRNA analyses, respect-
ively. Analysis of 37 of the 41 randomized participants ex-
plored changes in gene expression. Three genes, carbonic
anhydrase 3, connective tissue growth factor, and aldehyde

dehydrogenase 1 family member A1, were determined to
be differentially expressed over time and between inter-
vention arms. In a second report from a subset of the
LIPOGAIN study (n = 31) [133], multiple changes in DNA
methylation of individual genes and CpG sites were re-
ported when focusing on both intervention arms com-
bined or separately within intervention arms. In the
within-arm analyses controlling for changes in cell com-
position and multiple testing, methylation levels changed
at 309 sites within the SFA-rich muffin arm and at 4662
sites in the PUFA-rich muffin arm. However, whether ex-
pression and methylation were of greater or lesser magni-
tude between intervention arms was not reported, and
there was no control arm.

Metabolites
Metabolites are intermediary compounds produced by
naturally occurring enzyme-catalyzed reactions within
cells, bearing the parent compound’s characteristics until
fully degraded, and generated to control the rate of
energy turnover and to perform other functions within
cells. The measurement of metabolites in the body (usu-
ally in blood or urine) provides a read-out of specific
metabolic processes. Examples of metabolites include
amino acids within proteins, glucose molecules in
glycogen, fatty acids within membrane lipids, and nucle-
otides in DNA [134].
Metabolomic profiling of diet and exercise signatures

has yielded potentially useful tools to objectively assess
these traits. For example, differential metabolomic
profiles were determined using nuclear magnetic reson-
ance spectroscopy in an observational study of twins
discordant for physical activity, such that one twin of
each pair reported no structured leisure-time physical
activity, whereas the other reported more than 5 years
regular leisure-time physical activity [135]. Twins who
reported being physically active had lower serum
concentrations of isoleucine, α1-acid glycoprotein, and
glucose; moreover, the fatty acid profile was less satu-
rated. In the INTERMAP UK cohort [136], ‘diet discrim-
inative’ metabolomic profiles were generated within a
randomized cross-over diet intervention trial by profiling
urine samples taken following each 72-h diet interven-
tion using proton nuclear magnetic resonance spectros-
copy. In both studies, physical activity and diet profiles
were validated by demonstrating associations between
metabolomic signatures and disease outcomes known to
be associated with diet and physical inactivity.

Microbiota
The human microbiota is comprised of four micro-
organisms (bacteria, fungi, archaea, and viruses) that live
in or on the body and serve multiple essential functions
[137]. The ‘microbiome’ is the genetic material derived
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from all four micro-organisms taken from a given micro-
bial ecosystem.
In a study of 800 young adults, Zeevi et al. [138]

assessed glycemic responses to almost 50,000 meals. They
found high between-participant variability in response
and, using machine learning methods, they were able to
derive and validate a prediction algorithm that harnessed
data on the intestinal microbiome; they later designed per-
sonalized diet interventions and showed that these could
be used to regulate glycemic excursions following meals
and robust changes in the configuration of gut microbiota.

Conclusions
Precision medicine research generally seeks to (1) eluci-
date the biology for the development of therapeutic
targets or (2) identify biomarkers that can be used to in-
form health decisions and/or design new therapeutic
strategies. In the latter, there are multiple contexts of
use where biomarkers might play a key role in optimiz-
ing the design, timing, or delivery of lifestyle interven-
tions (see [100]).
Determining whether discoveries in lifestyle precision

medicine are likely to be of eventual clinical value first
requires that the translational avenue be identified. In
the development of anti-diabetic drugs, genetics has
proven extremely valuable for the discovery of novel
targets, reducing costs and improving drug development
pipelines [139]. There are excellent examples where
genetic screening is routinely undertaken for rare genetic
disorders, such as phenylketonuria, where mutation
carriers are prescribed special diets, or where genetics
can provide insight into allergies or intolerances to spe-
cific foods or nutrients [140]. However, in T2D, genetics
or other omic biomarkers are yet to meaningfully impact
the optimization of lifestyle therapies, although two re-
cent studies that used machine learning algorithms to
interrogate complex data structures to predict individual
response to foods [138, 141] highlight the possibilities
ahead. There are numerous promising biomarkers that
might eventually prove useful in this regard, as dis-
cussed above, but this requires the careful qualifica-
tion of the biomarker in its proposed context of use.
For example, to predict the rate of T2D diagnosis, a

biomarker’s predictive accuracy will need to be assessed,
i.e., it should improve the accuracy of current prediction
algorithms or enhance the reclassification of incident
disease prediction. If the biomarker is to predict treat-
ment response or side-effects, the assessment should be
made in the context of an appropriately designed
intervention study. The cost-effectiveness of lifestyle
precision medicine strategies will also need to be
demonstrated, as will the safety and scalability of such
approaches. To date, no comprehensive attempts to do

so in relation to biomarkers, lifestyle, and T2D have
been described.
Curbing the global diabetes epidemic requires innova-

tive approaches for its prevention. With the rapid
development of biomarker technologies to characterize
the etiology and pathogenesis of diabetes at scale, there
are many ways in which lifestyle interventions could be
optimized to help prevent T2D. However, major barriers
to this vision include the assimilation and analysis of
relevant, multi-omic biomarker data in specially
designed lifestyle intervention trials. The analytical as-
pects alone are enormously challenging, as human biol-
ogy is both complex and dynamic, but solutions are
emerging [142]. The design and conduct of lifestyle trials
for precision medicine also require innovative
approaches to overcome the sources of bias and
confounding that are difficult to circumvent when inter-
ventions cannot be masked. Nevertheless, recent
advances in wearable technologies may help address
these longstanding problems.
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