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Plasmodium falciparum EPCR-binding
PfEMP1 expression increases with malaria
disease severity and is elevated in
retinopathy negative cerebral malaria
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Abstract

Background: Expression of group A and the A-like subset of group B Plasmodium falciparum erythrocyte membrane
protein 1 (PfEMP1) is associated with severe malaria (SM). The diversity of var sequences combined with the challenges
of distinct classification of patient pathologies has made studying the role of distinct PfEMP1 variants on malaria disease
severity challenging. The application of retinopathy in the recent years has provided a further method to clinically evaluate
children with cerebral malaria (CM). The question of whether children with clinical CM but no retinopathy represent a
completely different disease process or a subgroup within the spectrum of CM remains an important question in malaria.
In the current study, we use newly designed primer sets with the best coverage to date in a large cohort of children with
SM to determine the role of var genes in malaria disease severity and especially CM as discriminated by retinopathy.

Methods: We performed qRT-PCR targeting the different subsets of these var genes on samples from Ugandan children
with CM (n= 98, of whom 50 had malarial retinopathy [RP] and 47 did not [RN]), severe malarial anemia (SMA, n= 47), and
asymptomatic parasitemia (AP, n= 14). The primers used in this study were designed based on var sequences from 226
Illumina whole genome sequenced P. falciparum field isolates.

Results: Increasing severity of illness was associated with increasing levels of endothelial protein C receptor (EPCR)-binding
PfEMP1. EPCR-binding PfEMP1 transcript levels were highest in children with combined CM and SMA and then decreased
by level of disease severity: RP CM> RN CM> SMA>AP.

Conclusions: The study findings indicate that PfEMP1 binding to EPCR is important in the pathogenesis of SM, including
RN CM, and suggest that increased expression of EPCR-binding PfEMP1 is associated with progressively more severe
disease. Agents that block EPCR-binding of PfEMP1 could provide novel interventions to prevent or decrease disease
severity in malaria.
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Background
Cerebral malaria (CM) and severe malarial anemia
(SMA) are the main drivers of morbidity and mortality
due to Plasmodium falciparum. CM is characterized by
coma and has a mortality rate of 13–15% [1, 2]. In CM,
adhesion of infected erythrocytes (IEs) to other
uninfected erythrocytes (UEs) (rosette formation) and
sequestration of IEs, leukocytes, and platelets to the
blood-brain barrier (BBB) endothelium, combined with
an imbalanced immune response and endothelium acti-
vation are thought to lead to BBB dysfunction and
adverse clinical outcomes [3–7]. Within CM, malarial
retinopathy has been proposed to distinguish “true” CM
(retinopathy positive, RP) from coma due to other
causes, with incidental P. falciparum parasitemia (retin-
opathy negative, RN) [8]. However, it has been suggested
that RN CM may be part of the clinical spectrum of CM
[9]. Assessment of parasite gene expression could help
determine whether parasite virulence factors expressed
in RP CM are also associated with RN CM.
SMA is characterized by severe anemia and inflicts a

substantial burden in sub-Saharan Africa, causing 20% of
P. falciparum hospitalizations [10]. In settings where there
is easier access to blood transfusions, the mortality from
SMA is lower than that from CM (1–5%) [1, 11]. In SMA,
destruction of IEs and UEs, dyserythropoiesis, and sup-
pression of erythropoiesis are considered important con-
tributors to severe anemia. Little is known about how
parasite virulence factors contribute to the development
of these different clinical manifestations of severe malaria.
P. falciparum erythrocyte membrane protein 1

(PfEMP1) is considered a key virulence factor in malaria,
as it binds to various host receptors on the endothelium
or UEs (rosetting) to sequester infected erythrocytes
from circulation and destruction in the spleen [12–17].
PfEMP1 is a target of antibody-mediated immunity [18],
and in response, PfEMP1 molecules have diversified ex-
tensively. Despite this extensive sequence variation,
PfEMP1 function is conserved, and PfEMP1 molecules
have a highly ordered domain composition, kept in
check by highly ordered organization and mechanism of
recombination of the encoding var genes [19–21]. Thus,
each haploid parasite genome carries 50–60 poly-
morphic var genes [14, 22, 23], divided by chromosomal
location and direction of transcription into groups A, B,
and C. The extracellular portion of PfEMP1 varies in
organization and length but comprises a combination of
Duffy binding-like domains (DBLα-ζ) and cysteine-rich
interdomain regions (CIDRα-δ) [20, 21]. The N-terminal
domain composition of PfEMP1 is conserved and linked
to the genetic control of var groups. Group A var genes
encode PfEMP1 with CIDRα1 domains shown to bind
endothelial protein C receptor (EPCR) [24] or a set of
more diverse CIDRβ/γ/δ domains of unknown function,

but potentially associated with rosetting [16]. Groups B
and C var genes encode cluster of differentiation 36
(CD36)-binding PfEMP1 [25]. One exception to this rule
is the so-called conserved tandem arrangements known
as domain cassette 8 (DC8) PfEMP1 [21], which is a
group A-like EPCR-binding PfEMP1, recombined into a
group B var gene location.
Consensus from previous studies of var gene ex-

pression in patients shows that expression of group A
and DC8 var genes is associated with severe malaria
[26–32]. Specifically, group A and DC8 PfEMP1 that
bind EPCR have been suggested to play a key role in
severe malaria, through their ability to support IE
binding to various microvasculature beds [33, 34] and
through reducing the production and cytoprotective
effects of activated protein C, due to functional
impairment of EPCR upon PfEMP1 engagement [35–37].
As a result, the extent of PfEMP1-EPCR binding
could determine the amount of sequestration, coagu-
lation defects, endothelial activation, and permeability,
which in turn could define the outcomes of severe
malaria. In line with this, EPCR-binding PfEMP1
transcript levels were recently associated with in-
creased disease severity, from asymptomatic infections
to both SMA and CM, in Tanzanian children [32].
More studies are needed to confirm these findings. In
particular, the importance of EPCR-binding PfEMP1
in RP vs. RN CM is not well understood.
In the current study, we used qRT-PCR primers with

coverage and high specificity [32] for group A and DC8
var genes to assess differential gene expression in
parasites from Ugandan children with CM vs. SMA, in
children with CM with vs. without retinopathy, and in
children with CM who died vs. those who survived. The
primers used in this study have been recently designed
[32] based on the analysis of 226 var genomes as com-
pared to only 7 used by the previous studies in the field
[31, 38]. As a result, these primers provide the best
coverage to date, and the current study presents the first
time they are used to study the association of var types
with CM discriminated by retinopathy.

Methods
Study design
This prospective cohort study with the overall goal of
understanding the effects of severe malaria on neurode-
velopment was conducted at Mulago National Referral
and Teaching Hospital in Kampala, Uganda in 2008–
2015 and enrolled children with CM, children with
SMA, and community children (CC). The study was
reviewed and approved by the Ugandan National Council
for Science and Technology (UNCST), the Makerere
University School of Medicine Research and Ethics
Committee, and the University of Minnesota Institutional
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Review Board. Written informed consent was obtained
from parents or guardians of study participants.
Children between 18 months and 12 years of age, meet-

ing the World Health Organization definition for CM or
SMA, were recruited from the Acute Care Unit at Mulago
Hospital as previously described [1]. CM was defined as
(1) coma (Blantyre coma score [BCS] ≤ 2), (2) P. falcip-
arum on blood smear, and (3) no other known cause of
coma. SMA was defined as presence of P. falciparum on
blood smear in children with hemoglobin < 5 g/dL. Exclu-
sion criteria for children with SMA included any impair-
ment of consciousness or having > 1 seizure. Children
with severe malaria were managed according to the
Ugandan Ministry of Health treatment guidelines at the
time, which included quinine treatment [1].
CC were recruited from the nuclear family, extended

family, or household compound area of children with
CM or SMA. Eligible CC were aged 18 months to
12 years and currently healthy. A blood smear was taken
from these children at the time of enrollment, and those
who had any density of P. falciparum on the smear are
indicated here as asymptomatic parasitemic (AP). Exclu-
sion criteria for all children included (1) known chronic
illness requiring medical care, (2) known developmental
delay, or (3) prior history of coma, head trauma, cerebral
palsy, or hospitalization for malnutrition. A total of 269
children with CM, 232 children with SMA, and 217 CC
were enrolled in the study. Of the 217 CC, 32 had
asymptomatic parasitemia.

Sample collection and RNA isolation
Whole blood was collected at enrollment in PAXgene
Blood RNA preservative solution (PreAnalytiX, Hom-
brechtikon, Switzerland) in a ratio of 2.76 mL of additive
per mL of blood. The samples were stored long term at
–80 °C. RNA was isolated using the PAXgene Blood
RNA Kit (PreAnalytiX, Hombrechtikon, Switzerland).

Primer design
Primers were designed and optimized and previously de-
scribed [32]. Briefly, the primers used in this study were
designed based on full-length DBL and CIDR domain
encoding sequences from seven P. falciparum genomes
and 226 Illumina whole genome sequenced P. falcip-
arum field isolates [32]. Primer sequences, coverage, and
specificity are depicted in Additional file 1: Figure S1.

Quantification of var transcript levels by qRT-PCR
Total RNA was treated with DNase I (Invitrogen,
Carlsbad, CA, USA). Complementary DNA (cDNA) was
synthesized using random hexamers and the SuperScript®
III First-Strand Synthesis System (Invitrogen, Carlsbad,
CA, USA) according to manufacturer’s instructions. qRT-
PCR was performed in 20-μL reactions using KiCqStart®

SYBR® Green qPCR ReadyMix™ (Sigma-Aldrich, St. Louis,
MO, USA) with the 7500 Real Time PCR System (Applied
Biosystems, Foster City, CA, USA). Amplification was per-
formed following the previously published conditions [31],
and data was collected at the final elongation step. No re-
verse transcriptase and no template controls for both
housekeeping genes were included in the plates to rule out
DNA contamination in the RNA samples and any nucleic
acid contamination in reagents, respectively. Gene
expression was normalized to the average of two house-
keeping genes: seryl-tRNA synthetase and fructose-bispho-
sphate aldolase (ΔCt var_primer =Ct var_primer−Ct average_control

primers). ΔCt var_primer was transformed into arbitrary tran-
script units using Tu = 2(5−ΔCt). Only samples that had a Ct

average_control below 25 were included in the analysis. Melting
temperature analysis was performed for each target, and
only samples with Tm within 1.7 °C of median Tm were ana-
lyzed. If only primer dimers or non-specific larger targets
were detected, Tu for that target was assigned as 1.

Laboratory testing
Peripheral blood smears were assessed for Plasmodium
species by microscopy with Giemsa staining using stand-
ard protocols. Blood culture was performed with the Bac-
tec 9050 Blood Culture System (Becton Dickinson,
Franklin Lakes, NJ, USA). Blood culture samples negative
by this method were further cultured on blood agar or
chocolate agar to further rule out bacterial infection.
PfHRP-2 quantification was performed using the Malaria
Ag CELISA (Cellabs, Brookvale, Australia). Sequestered
parasite biomass was calculated as previously described
[39]. Plasma soluble intercellular adhesion molecule-1
(sICAM-1), vascular cellular adhesion molecule-1
(sVCAM-1), and soluble P-Selectin and E-Selectin were
measured by magnetic cytometric bead assay in plasma
diluted 1:300 (R&D Systems, Minneapolis, MN, USA) ac-
cording to manufacturer’s instructions with a BioPlex-200
system (Bio-Rad, Hercules, CA, USA). Plasma angiopoietin-
2 (Ang-2) and von Willebrand factor (VWF) levels were
quantified using the human angiopoietin-2 DuoSet ELISA
kit (R&D Systems, Minneapolis, MN, USA) and the
REAADS von Willebrand Factor activity ELISA kit
(Corgenix, Broomfield, CO), respectively. Soluble EPCR
levels in plasma were quantified using the Asserachrom®
sEPCR immunoassay (Stago Group, Gennevilliers, France)
according to manufacturer’s instructions.

Malarial retinopathy diagnosis
Children were assessed for malarial retinopathy by indir-
ect ophthalmoscopy. Ophthalmoscopy was done by med-
ical officers in all CM patients on admission, and repeated
every 24 h while they remained comatose. Before each
examination, the pupils were dilated with sequential instil-
lation of cyclopentolate 1% and tropicamide 1%. Using a
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binocular indirect ophthalmoscope, an eye exam was per-
formed 30–60 min later. The medical officers were trained
by an ophthalmologist experienced in the evaluation of
malarial retinopathy. The study investigators and ophthal-
mologist then continued training and assessing the study
medical officers for accuracy in this assessment and re-
cording of the ophthalmoscopic finding. Children with
retinopathy on any exam were classified as RP.

Statistical analysis
Data was analyzed using Stata/SE 12.1 (StataCorp, College
Station, TX, USA). Transcript abundance of var genes was
compared between disease groups using the Mann-
Whitney U test. Clinical and laboratory findings for
children in the different disease groups were compared
using the chi-squared test for categorical data and t tests
for continuous measures. Associations between var types
and parasite biomass, sequestered parasite load, and
markers of endothelial activation and anemia were deter-
mined by Spearman’s correlation and adjusted for multiple
comparisons by a Bonferroni correction. Tu for group
A-EPCR binders was determined as the sum of [CIDRa1.4,
CIDRa1.5a, CIDRa1.5b, CIDRa1.6b, and CIDRa1.7]Tu-4;
Tu for group B-EPCR binders was determined as the sum
of [CIDRa1.1, CIDRa1.8a, and CIDRa1.8b]Tu-2; Tu of
CIDRα1 EPCR binders was calculated as the sum of [CI-
DRa1.1-CIDRa1.8b]Tu-7.

Results
Characteristics of study population
We had RNA with sufficient volume and quality to
quantify P. falciparum var transcript levels from 159 pa-
tients (98 with CM, 47 with SMA, and 14 classified as
AP). Among the 98 children with CM, retinopathy

testing was performed on all but one child, with 50 chil-
dren malarial RP, and 47 RN. Twenty-one children with
CM also met criteria for SMA (hemoglobin ≤ 5 g/dL).
To analyze differences between children with CM and
SMA, we assessed findings in the children with CM only
(i.e., hemoglobin > 5 g/dL, n = 77) and compared these
findings to those in children with SMA only (n = 47, see
the following sections).
The median age of children in the study was 40.0 months

([25th percentile, 75th percentile], [28.7, 54.6]). Age and sex
did not significantly differ between disease groups (Table 1).
Parasite biomass, indicated by P. falciparum histidine-rich
protein-2 (PfHRP-2) levels differed between disease groups
(P < 0.0001, Table 1), being higher in CM than SMA than
AP. Sequestered biomass followed the same trend (P <
0.0001, Table 1), confirming that while sequestration occurs
commonly in P. falciparum infections, its magnitude differs
among various manifestations of malaria. Children with
CM who did not have RNA for var testing had lower
peripheral parasite density than the ones who did (P = 0.04,
Additional file 1: Table S1). In addition, a smaller propor-
tion of children with SMA who did not have enough RNA
for testing were male compared to those who did have suf-
ficient and adequate quality RNA for testing. There were
no other clinical differences between children who had vs.
those who did not have RNA for testing in each group
(Additional file 1: Table S1).

Children with asymptomatic P. falciparum parasitemia
had low levels of var transcripts encoding group A and
DC8 PfEMP1 variants
The primer sets used to quantify var transcripts encod-
ing different subsets of group A PfEMP1 [32] were
(Fig. 1, Additional file 1: Figure S1) “DBLa1ALL”,

Table 1 Study population characteristics

Cerebral malaria
(CM) (n = 98)

Severe malarial anemia
(SMA) (n = 47)

Asymptomatic P. falciparum
parasitemia (AP) (n = 14)

Pa

Age (months), median (IQR) 41.5 (30.9–54.6) 33.4 (24.9–52.4) 48.5 (31.0–71.0) 0.14

Sex (male), n (%) 59 (60.2) 35 (74.5) 7 (50.0) 0.14

Weight-for-age z-score, mean (SD) –1.11 (1.49) n = 97 –1.98 (1.39) –0.31 (1.17) 0.0001b

Hemoglobin (g/dL), mean (SD) 7.07 (2.30) 3.81 (0.74) 11.2 (2.15) <0.0001c

Parasite density (/μL), median (IQR) 67,010 (18,030–347,010)
n = 96

43,880 (11,940–156,040)
n = 46

2170 (520–11,880) <0.0001d

Parasite load (PfHRP-2, ng/mL),
median (IQR)

2648 (883–5150) 862 (288–2033) n = 46 88.8 (4.80–158) n = 13 <0.0001c

Sequestered biomass (x10^8),
median (IQR)e

17,928 (5323–39,891) n = 96 6249 (1303–15,839) n = 45 469 (0–1309) n = 13 <0.0001c

aAnalysis of variance (ANOVA), Tukey post hoc test adjustment for multiple comparisons with log10 transformed values for variables with no normal distribution.
Chi-squared test was used for sex, with P < 0.017 considered significant to control for multiple comparisons.
bIn post hoc testing, SMA differed from CM and AP
cIn post hoc testing, all groups differed from each other
dIn post hoc testing, CM and SMA differed from AP
eSee Methods section for calculation of sequestered parasite biomass
IQR interquartile range, SD standard deviation
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targeting loci common to all group A var genes;
“DBLa1.5/6/8”, targeting loci in the subset of group A
genes encoding DBLα1 domains typically linked to non-
EPCR-binding CIDRβ/γ/δ domains [40, 41]; and
“DBLa2/1.1/2/4/7”, targeting loci common to genes en-
coding DBLα1 domains typically linked to EPCR-binding
CIDRα1 in both groups A and B (i.e., DC8) PfEMP1.
Also, primer sets specific for genes encoding CIDRδ and
all EPCR-binding CIDRα1 subtypes were included, and
analyzed independently as well as grouped into group A-
EPCR binders (sum of [CIDRa1.4/6a, CIDRa1.5a,
CIDRa1.5b, CIDRa1.6b, and CIDRa1.7]Tu-4) and group B-
EPCR binders (sum of [CIDRa1.1, CIDRa1.8a, and
CIDRa1.8b]Tu-2) (Fig. 1, Additional file 1: Figure S1). To
provide an overall idea of the transcript levels of EPCR-
binding CIDRα1 domains, we also determined median
transcript levels of CIDRα1 EPCR-binding PfEMP1 (sum of
[CIDRa1.1-CIDRa1.8b]Tu-7).
With the exception of primer sets CIDRa1.5a,

CIDRa1.5b, CIDRa1.6b, and CIDRa1.8a, median tran-
script levels of all var genes quantified in this study were
higher in parasites infecting children with SM compared
to AP (P ≤ 0.05 for all, Table 2). Only the DBLa2/1.1/2/
4/7 primers reported a range of transcript abundance in
AP. The DBLa2/1.1/2/4/7 primers are predicted to have
a 72%/28% specificity of genes encoding EPCR/CD36-
binding PfEMP1 (Additional file 1: Figure S1). As the
specific primers for CIDRα1 domains showed mostly
basal levels of transcripts in AP, it is therefore possible
that the var transcripts detected in AP encoded CD36-
binding PfEMP1. All AP samples included in the analysis
had average Ct values for the two housekeeping genes
below 25, which fell within the linear portion of the
genomic DNA (gDNA) standard curves for both

housekeeping genes (Additional file 1: Figure S2), suggest-
ing that the observed basal expression for the rest of the
var genes was not due to lack of sensitivity.
Due to the low transcript levels reported by CIDRa1.5a,

CIDRa1.5b, CIDRa1.6b, CIDRa1.7, CIDRa1.8a, and
CIDRa1.8b primers in both SM and AP (Table 2), results
from these primers are presented as part of their lar-
ger groups (group A-, group B-, or CIDRα1-EPCR
binders) rather than individually in the rest of the
paper. Primers CIDRa1.1 and CIDRa1.4/6a will be
presented both separately and as part of their larger
subgroups (group A-, group B-, or CIDRα1-EPCR
binders).

Transcript levels of EPCR-binding PfEMP1 variants were
higher in children with CM compared to those with
SMA
P. falciparum parasites infecting children with CM and
no SMA (n = 77) had higher median levels of var tran-
scripts encoding EPCR-binding PfEMP1 (CIDRα1-EPCR,
group A-EPCR, group B-EPCR, CIDRα1.1, and DBLα2/
1.1/2/4/7; Fig. 2, P < 0.05 for all) compared to those for
children with SMA. Conversely, transcript levels
reported by primer sets targeting transcripts encoding
the non-EPCR-binding subset of group A PfEMP1
(DBLa1ALL [P = 0.11], DBLa1.5/6/8 types [P = 0.11], and
CIDR1d [P = 0.31]) did not differ between CM and
SMA. In independent regression models, a log base 10
increase in CIDRα1-EPCR, group A-EPCR, group B-
EPCR, and DBLa2/1.1/2/4/7 transcript levels were asso-
ciated with increased risk of CM vs. SMA, when
adjusted for PfHRP-2 levels, age, sex, and weight-for-age
z-score (odds ratio [OR] 2.27, 95% confidence interval
[CI] 1.21–4.27, P = 0.01; OR 2.64, 95% CI 1.26–5.53, P =

Fig. 1 Schematics of the extracellular PfEMP1 domains, whose transcript levels are quantified in the study, and their known binding phenotype.
CIDRα1-EPCR transcripts are estimated as the sum of [CIDRa1.1-CIDRa1.8b]Tu-7; group A-EPCR transcripts are estimated as the sum of [CIDRa1.4,
CIDRa1.5a, CIDRa1.5b, CIDRa1.6b, and CIDRa1.7]Tu-4; group B-EPCR transcript levels are estimated as the sum of [CIDRa1.1, CIDRa1.8a, and
CIDRa1.8b]Tu-2. Tu are transcript units
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Table 2 Transcript levels of var domains in children with severe malaria (SM, cerebral malaria and/or severe malarial anemia) and
community children who were asymptomatic (AP)

Primers PfEMP1 group SM (n = 145) AP (n = 14) Pa

CIDRa1.1 BA 8.66 (1–39.2) 1 (1–1) 0.0001

CIDRa1.8a BA 1 (1–1.37) 1 (1–1) 0.18

CIDRa1.8b BA 1.07 (1–3.57) 1 (1–1) 0.006

Group B-EPCR binders 13.6 (2.73–44.2) 1 (1–1.23) <0.0001

CIDRa1.4/6a A 4.33 (1–13.0) 1 (1–1) 0.0001

CIDRa1.5a A 1 (1–2.10) 1 (1–1) 0.08

CIDRa1.5b A 1 (1–1) 1 (1–1) 0.09

CIDRa1.6b A 1 (1–1.53) 1 (1–1) 0.07

CIDRa1.7 A 2.42 (1–8.79) 1 (1–1) 0.004

Group A-EPCR binders 13.2 (3.94–34.7) 1 (1–1.06) <0.0001

CIDRα1-EPCR binders 34.7 (8.82–84.3) 1 (1–1.99) <0.0001

CIDR1d A 1 (1–3.65) 1(1–1) 0.005

DBLa1ALL A 40.2 (8.22–77.1) n = 144 1(1–1) <0.0001

DBLa1.5/6/8 types A 9.77 (3.28–21.2) n = 135 1(1–1) n = 10 <0.0001

DBLa2/1.1/2/4/7 types A 35.6 (20.8–60.1) n = 134 12.9 (6.18–19.3) n = 10 0.006
aMedian transcript levels were compared using Mann-Whitney U test

Fig. 2 Transcript levels of EPCR-binding PfEMP1 are higher in parasites from children with cerebral malaria without severe malarial anemia than
from children with severe malarial anemia. Transcript units for CIDRα1-EPCR (sum of [CIDRa1.1-CIDRa1.8b]Tu-7), group A-EPCR (sum of [CIDRa1.4,
CIDRa1.5a, CIDRa1.5b, CIDRa1.6b, and CIDRa1.7]Tu-4), group B-EPCR (sum of [CIDRa1.1, CIDRa1.8a, and CIDRa1.8b]Tu-2), CIDRα1.1, CIDRa1.4/6a, DBLa1ALL
(all group A PfEMP1), DBLa1.5/6/8 types (group A PfEMP1 typically non-EPCR-binding), CIDRd (group A PfEMP1, non-EPCR-binding), and DBLa2/1.1/2/
4/7 (group A PfEMP1, typically EPCR-binding). Transcript units of expression are shown on a logarithmic scale. The horizontal lines in red represent me-
dian values. Medians are compared by Mann-Whitney test. Cerebral malaria (CM, hemoglobin > 5 g/dL, n = 77), severe malarial anemia (SMA, n = 47)
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0.01; OR 1.94, 95% CI 1.08–3.49, P = 0.03; and OR 5.45,
95% CI 1.77–16.78, P = 0.003, respectively).
Twenty-one of the 98 children with CM (21.4%) had both

cerebral malaria and severe malarial anemia (CM/SMA).
These children were not included in the analysis above, but
were compared separately to the children with CM
only (n = 77) to assess if they differed from this pri-
mary group. Children with CM plus SMA had higher group
A-EPCR transcript levels (n = 21, median, arbitrary units
[25th percentile, 75th percentile], 33.8 [10.4–69.5]) than chil-
dren with CM only (n = 77, 14.5 [5.18–34.1], P = 0.01,
Additional file 1: Table S2), and more specifically, had
higher CIDRa1.4/6a transcript levels (n = 21, 11.1 [2.85,
20.3]) than children with CM only (n = 77, 4.16 [1, 11.7], P
= 0.02, Additional file 1: Table S2). All other transcript
levels were similar between children with CM only and
children with CM plus SMA (Additional file 1: Table S2).

PfEMP1 transcript levels in retinopathy negative CM were
intermediate between retinopathy positive CM and SMA
Next, we compared var transcript abundances between
RP and RN CM, as well as between RN CM and SMA.
In these patients, parasite biomass, as indicated by
PfHRP-2 levels, as well as sequestered parasite biomass
trended lower in RN CM compared to RP CM (Table 3)
when a post hoc adjustment was performed due to the
three-way comparison with SMA. When compared side
by side, PfHRP-2 levels and sequestered biomass me-
dians are significantly higher in RP than RN (P = 0.02
and P = 0.04, respectively), as seen in the full cohort
published elsewhere [9]. Transcript levels of CIDRα1-
EPCR, group A-EPCR, group B-EPCR, CIDRα1.1, CI-
DRa1.4/6a, DBLa1ALL, DBLa1.5/6/8, and DBLa2/1.1/2/
4/7 were all significantly higher in RP CM vs. SMA (P <

0.05 for all, Fig. 3). However, only CIDRa1.4/6a tran-
scripts were higher in RP (n = 50, 8.74 [2.33, 18.6]) vs.
RN CM (n = 47, 3.28 [1, 8.88], P = 0.02, Fig. 3), and var
transcript levels were not statistically different between
RN CM and SMA (P > 0.05 for all), placing RN CM var
transcript levels consistently between those of children
with RP CM and children with SMA (Fig. 3).
Due to the difficulties and the expertise needed for

indirect ophthalmoscopy, PfHRP-2 levels have been
identified as a good predictor of malarial retinopathy. It
has previously been shown that PfHRP-2 levels >
1700 ng/mL at enrollment had a 90% sensitivity and
87% specificity in predicting malarial retinopathy [42].
This cutoff yielded a sensitivity for RP vs. RN CM of
72.7% and a specificity of 44.2%. We used this cutoff to
redefine two groups within CM: PfHRP-2-high
(>1700 pg/mL, n = 62) and PfHRP-2-low (≤1700 pg/mL,
n = 35). Transcript levels of the var genes considered in
this study did not differ significantly between the
PfHRP-2-high and PfHRP-2-low groups (Additional file
1: Table S3). A cutoff of 1392 ng/mL maximized sensi-
tivity and specificity for RP CM compared to RN CM in
our study (sensitivity 78.3% and specificity 41.9%). Even
when considering our cutoff of 1392 ng/mL, we did not
see a difference in var transcript levels between PfHRP-
2-high and PfHRP-2-low when this cutoff was applied
(data not shown). To further assess var gene expression
in children with RN CM, we compared var transcript levels
in children with RN CM with PfHRP-2 levels in the lowest
quartile to those in children with SMA or AP. PfEMP1 var
transcripts did not differ significantly between RN children
with the lowest quartile of PfHRP-2 levels and children with
SMA, another form of severe malaria. Moreover, with the
exception of CIDRα1.4 and DBLα2, var transcript levels

Table 3 Clinical characteristics of children with retinopathy positive (RP) or retinopathy negative (RN) cerebral malaria (CM) and
children with severe malarial anemia (SMA)

RP (n = 50) RN (n = 47) SMA (n = 47) Pa

Age (months), median (IQR) 40.1 (29.6–50.2) 42.0 (31.7–59.4) 33.4 (24.9–52.4) 0.23

Sex (male), n (%) 29 (58.0) 29 (61.7) 35 (74.5) 0.21

Weight-for-age z-score, mean (SD) –1.30 (1.26) n = 49 –0.92 (1.71) –1.98 (1.39) 0.002b

Hemoglobin (g/dL), mean (SD) 6.34 (2.17) 7.80 (2.21) 3.81 (0.74) <0.0001c

Parasite density (/μL), median (IQR) 100,260 (21,830–415,920)
n = 48

50,690 (10,780–273,100) 43,880 (11,940–156,040)
n = 46

0.17

Parasite load (PfHRP-2, ng/mL), median (IQR) 3190 (1418–5222) 2491 (446–3900) 862 (288–2033) n = 46 <0.0001d

Sequestered biomass (x10^8), median (IQR) 20,880 (11,037–44,350) n = 48 15,766 (2450–31,276) 6249 (1303–15,839) n = 45 0.0005e

aAnalysis of variance (ANOVA), Tukey post hoc test adjustment for multiple comparisons with log10 transformed values for variables with no normal distribution.
Chi-squared test was used for sex, with P < 0.017 considered significant to control for multiple comparisons.
bIn post hoc testing, SMA differed from RN
cIn post hoc testing, all groups differed from each other
dIn post hoc testing, SMA differed from RP and RN. For RP vs. RN, P = 0.07
eIn post hoc testing, RP differed from SMA. For RP vs. RN, P = 0.08
IQR interquartile range, SD standard deviation
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remained significantly higher in RN than in children with
AP (Additional file 1: Table S4). Together, these data sug-
gest that P. falciparum contributed to disease severity
through increased var gene expression in almost all of the
children with RN CM.

P. falciparum parasites infecting CM children who died
had lower transcript levels for var genes encoding group
A and CIDRα1 domains compared to those for children
who survived
Transcript levels reported by the DBLa1ALL primers and
the summarized levels from primer sets specific to genes
encoding CIDRα1 domains were lower in children who
died vs. those who survived (P ≤ 0.05, Fig. 4). This differ-
ence persisted when considering only RP CM children
(Additional file 1: Figure S3, trended for group A-EPCR),
suggesting that the lower transcript abundance in children
with CM who died is not due primarily to misclassifica-
tion from an additional or different cause of mortality in
children with RN CM. Differences also did not appear to
be related to bacteremia, because mortality did not differ
significantly among the children who had bacteremia vs.
those who did not (1/7, 14.3%, for children with

bacteremia vs. 8/85, 8.5% for children without bacteremia,
P = 0.68). Moreover, group A and CIDRa1 var transcript
levels did not differ between children with vs. without
bacteremia (P > 0.4 for all, data not shown).

var transcript levels and associations with parasite
biomass, sequestered parasite load, or endothelial
activation in severe malaria
In all children with severe malaria (children with CM,
SMA, or CM/SMA), there was no correlation of tran-
script levels of any var gene group with parasite biomass
or sequestered parasite biomass (Table 4).
Among endothelial activation markers, the only

comparison that reached close to significance was the
association between transcript levels reported by the
DBLa2/1.1/2/4/7 primers and sVCAM-1 levels in severe
malaria (P = 0.054, when adjusted for multiple compari-
sons, Table 4).

Discussion
In the present study, we show that children with severe
malaria have higher levels of both EPCR-binding group
A and DC8 PfEMP1 transcripts than children with

Fig. 3 PfEMP1 transcript levels in retinopathy negative CM are intermediate between retinopathy positive CM and SMA, with only CIDRa1.4/6a
being higher in retinopathy positive as compared to retinopathy negative CM. Transcript units for CIDRα1-EPCR (sum of [CIDRa1.1-CIDRa1.8b]Tu-7), group
A-EPCR (sum of [CIDRa1.4, CIDRa1.5a, CIDRa1.5b, CIDRa1.6b, and CIDRa1.7]Tu-4), group B-EPCR (sum of [CIDRa1.1, CIDRa1.8a, and CIDRa1.8b]Tu-2), CIDRα1.1,
CIDRa1.4/6a, DBLa1ALL (all group A PfEMP1), DBLa1.5/6/8 types (group A PfEMP1 typically non-EPCR-binding), CIDRd (group A PfEMP1, non-EPCR-binding),
and DBLa2/1.1/2/4/7 (group A PfEMP1, typically EPCR-binding). Transcript units of expression are shown on a logarithmic scale. The horizontal lines in red
represent median values. P values are estimated by analysis of variance (ANOVA) on log10 transformed arbitrary units followed by Tukey adjustment for
multiple comparisons. Retinopathy positive CM (RP CM, n= 50), retinopathy negative CM (RN CM, n= 47), severe malarial anemia (SMA, n= 47)
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asymptomatic parasitemia, that transcript levels of
EPCR-binding PfEMP1 are higher in children with CM
than SMA, that children with both CM and SMA have
higher levels of EPCR-binding group A PfEMP1 tran-
scripts than children with CM alone, and that PfEMP1
transcript levels in RN or PfHRP-2-low CM fall between
those in RP CM and those in SMA. Together the find-
ings suggest that not only the presence, but more
importantly, the transcript level and therefore the extent
of EPCR binding by PfEMP1 may be important in deter-
mining the clinical manifestation of SM. A particularly
important and novel finding in the current study is the
progressive increase in EPCR-binding PfEMP1 expres-
sion through the stages of malaria infection and disease,
from asymptomatic parasitemia, in which there is very
little expression, through SMA to RN CM and RP CM.
The finding that EPCR-binding PfEMP1 expression in
RN CM falls between that of SMA and RP CM, and far
above that in AP, suggests that P. falciparum plays a role
in the disease process of many children with RN CM,
and that RN CM represents a milder disease, a finding
consistent with a recent study of clinical manifestations
of RP vs. RN CM in this cohort [9].

The findings regarding EPCR-binding PfEMP1 ex-
pression are largely consistent with conclusions drawn
from two recent studies in Tanzania, showing that CI-
DRα1 was the only common domain encoded by
most prominently expressed var transcripts in CM
and SMA patients [43], and that higher levels of
EPCR-binding PfEMP1 transcripts were associated
with increasing symptoms of severity in patients suf-
fering uncomplicated malaria vs. SMA or CM [32].
However, in contrast to the present study, the latter
study [32] found no difference in transcript levels of
EPCR-binding PfEMP1 between Tanzanian children
with CM and SMA, despite application of the same
primer set in both studies. The current study had a
larger CM group with higher mortality than in the
Tanzanian study, and it did not have any mortality in
the SMA group. The larger sample size and greater
disease severity and mortality in children with CM
than SMA in the present study as compared to the
Tanzanian study may explain why higher PfEMP1
transcript levels in children with CM as compared to
SMA were seen in the present study but not the
Tanzanian study [32]. Likewise, expression of other

Fig. 4 EPCR-binding PfEMP1 transcripts are lower in parasites from patients with cerebral malaria who died. Transcript units for CIDRα1-EPCR
(sum of [CIDRa1.1-CIDRa1.8b]Tu-7), group A-EPCR (sum of [CIDRa1.4, CIDRa1.5a, CIDRa1.5b, CIDRa1.6b, and CIDRa1.7]Tu-4), group B-EPCR (sum of
[CIDRa1.1, CIDRa1.8a, and CIDRa1.8b]Tu-2), CIDRα1.1, CIDRa1.4/6a, DBLa1ALL (all group A PfEMP1), DBLa1.5/6/8 types (group A PfEMP1 typically
non-EPCR-binding), CIDRd (group A PfEMP1, non-EPCR-binding), and DBLa2/1.1/2/4/7 (group A PfEMP1, typically EPCR-binding). Transcript units of
expression are shown on a logarithmic scale. The horizontal lines in red represent median values. Medians are compared by Mann-Whitney test.
Survived (n = 87) and died (n = 11)
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PfEMP1 traits or variants may also account for differ-
ences observed between the two populations. In this
study, we did not quantify CD36-binding PfEMP1;
thus, we cannot infer on the total expression levels of
all vars, or the proportion of transcripts encoding
EPCR-binding PfEMP1 between CM and SMA.
We have found only one other study to date that ex-

amines PfEMP1 transcript levels in RP vs. RN CM. In
this cohort of Kenyan children, the authors did not find
any significant difference in group A, DC8, and CI-
DRα1.4 transcript levels between RP and RN CM [38],
although a higher proportional expression of group A
and DC8 compared to group B and C var genes was
found in patients with RP compared to those with RN
[38]. The present study, which uses primers with a better
coverage, found only higher levels reported by the CI-
DRa1.4/6a primers in RP compared to RN CM (Fig. 3).
The subset of group A var genes targeted by these
primers include the so-called domain cassette 13
PfEMP1, which has been shown to often bind both
EPCR and ICAM1 [44, 45] and to provide higher bind-
ing levels to endothelial cells [44]. Moreover, this
PfEMP1 subset has been shown to be more frequently
expressed, albeit at lower levels, in patients with CM
compared to those with SMA [32, 45]. It is therefore
possible that dual EPCR- and ICAM1-binding PfEMP1
account for the higher transcript levels reported by the
CIDRa1.4/6a primers in the present study between CM/
SMA vs. CM, and RP vs. RN CM patients. Further stud-
ies are required to elucidate this hypothesis. We did not
assess proportional expression, because transcript levels
are not absolute values, and no study captures 100% of
var diversity in a patient, so proportional values can be
strongly influenced by outlier values.
The present study provides two important additional

pieces of information: RN CM transcript levels fall be-
tween those of two forms of severe malaria, RP CM and
SMA, and transcript levels are similar in children above
and below a proposed PfHRP-2 cutoff level that would
indicate “true” CM. Together the findings provide evi-
dence suggesting that P. falciparum sequestration via
PfEMP1 plays a role in the development of RN CM. The
finding that PfEMP1 expression did not differ between
those with levels above and below a suggested cutoff for
PfHRP-2 levels to define “true” CM [42] also suggests
that PfHRP-2 levels may be less useful than hoped in
distinguishing “true” CM from coma due to other causes
with incidental parasitemia. Assessment of var transcript
levels in the field is unlikely to ever be a practical diag-
nostic tool, but it could be very useful in future research
studies of CM for attributing coma to P. falciparum or
another cause. Retinopathy could also be occurring at
levels not detectable by standard funduscopic exam, and
our study medical officers may have occasionally missed

retinal findings that would be seen by an ophthalmolo-
gist, but having received training and validation of
testing mid-study from highly experienced ophthalmologists,
they likely represent a “gold standard” for field ophthalmos-
copy testing. Newer technologies for assessing retinopathy
with camera and/or radiologic imaging may provide better
understanding of the extent to which “subclinical” retinop-
athy is occurring, but these methods are also likely to remain
limited to research.
Interestingly, transcript levels reported by the

DBLa1ALL primers and the summarized levels from pri-
mer sets specific to genes encoding CIDRα1 domains
were lower in children who died, despite their having
higher PfHRP-2 levels as compared to survivors. This
remained true when analysis was restricted to RP CM,
confirming that death was most likely caused by P.
falciparum infection. A similar trend towards lower var
transcript abundance in children with CM who died was
observed in one previous study [31] but not in a more
recent study [32]. These inconsistencies may reflect the
complexities of the disease at the end of life complicated
by the limited number of samples for children who died.
DBLα1ALL and CIDRα1 transcript levels were particu-
larly low for around half of the children who died. In
these children, a transcript level above baseline was
picked up by the DBLa2/1.1/2/4/7 primers, suggesting
that either rare group A or CD36-binding PfEMP1 was
expressed, and possibly associated with death in these
children. Possible biological reasons for an altered var
profile compared to that for surviving SM patients
include that a particularly adverse host response to in-
fection, unrelated to or even allowing diverse PfEMP1
phenotypes, led to death. Even though we found the
same results for RP children, it cannot be completely
ruled out that another co-infection that increases the
risk of mortality in SM, such as bacteremia [46], could
be contributing to death in those children with CM who
have low group A and CIDRa1 transcript levels. How-
ever, in the present study we did not find an association
between PfEMP1 transcript levels and the presence of
bacteremia in children with CM. Deeper characterization
of the var transcripts in these patients, as well as thor-
ough testing for other co-infections, may offer clues as
to the reason for the unexpected finding of lower group
A and DC8 var transcript levels in children with CM
who died.
The present study does not provide clear information

on the clinical relevance of rosetting. While most roset-
ting PfEMP1 types are group A and carry DBLα1.5/6/8
domains [40, 41], it is still unclear if such domains, or a
specific subset of these, consistently confer rosetting. In
future studies, we plan to assess transcript levels of
groups B and C CD36-binding PfEMP1, which have
shown to be similar [28] or higher [47] in AP as
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compared to uncomplicated malaria or SM in prior
studies. We did not enroll children with uncomplicated
malaria in this study, and assessment of PfEMP1 tran-
script levels in this group, who represent another im-
portant comparison group of malaria without severe
manifestations, will be important for future studies.
However, the AP group in this study had no history of
prior SM, and only one experienced SM over the 2 years
of follow-up, despite presumably similar malaria expos-
ure (since they lived in the same extended households as
children with SM). As a result, AP represents an import-
ant comparison group, since parasites from patients with
uncomplicated malaria could still express some of the
domains associated with SM, even though the children
present with uncomplicated malaria, because they are
protected from development of SM by early treatment.
Only results reported by DBLa2/1.1/2/4/7 primers were

weakly but not significantly associated with endothelial ac-
tivation (specifically increased sVCAM-1 levels) in SM.
This suggests that at this stage of the disease, pathways
that lead to sequestered parasite load and endothelial acti-
vation are more complex than simply PfEMP1 binding to
host receptors. In the current study, none of the EPCR-
binding PfEMP1 transcript levels were associated with
plasma levels of sEPCR, suggesting that binding of
PfEMP1 to EPCR might prevent shedding of EPCR in an
inflammatory context. This potential mechanism would
be interesting to explore in vitro with parasite strains that
bind specifically to EPCR.

Conclusions
The present study suggests that EPCR-binding PfEMP1
expression is important in the development of severe
malaria, and that increased EPCR-binding PfEMP1 ex-
pression is associated with progressively more severe
disease. The presence of high levels of EPCR-binding
PfEMP1 transcripts in RN and/or PfHRP-2-low CM fur-
ther suggests that P. falciparum is playing a role in RN
CM. The study provides the strongest evidence to date
that P. falciparum, via PfEMP1, is involved in the patho-
genesis of both RP and RN/PfHRP-2-low CM, and thus
provides further support for PfEMP1, and in particular
EPCR-binding PfEMP1, as a target for interventions to
prevent severe malaria.
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