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Abstract

Background: Accumulating evidence suggests that individual circulating saturated fatty acids (SFAs) are
heterogeneous in their associations with cardio-metabolic diseases, but evidence about associations of SFAs with
metabolic markers of different pathogenic pathways is limited. We aimed to examine the associations between
plasma phospholipid SFAs and the metabolic markers of lipid, hepatic, glycaemic and inflammation pathways.

Methods: We measured nine individual plasma phospholipid SFAs and derived three SFA groups (odd-chain:
C15:0 + C17:0, even-chain: C14:0 + C16:0 + C18:0, and very-long-chain: C20:0 + C22:0 + C23:0 + C24:0) in individuals
from the subcohort of the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort
study across eight European countries. Using linear regression in 15,919 subcohort members, adjusted for potential
confounders and corrected for multiple testing, we examined cross-sectional associations of SFAs with 13 metabolic
markers. Multiplicative interactions of the three SFA groups with pre-specified factors, including body mass index (BMI)
and alcohol consumption, were tested.
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Results: Higher levels of odd-chain SFA group were associated with lower levels of major lipids (total cholesterol (TC),
triglycerides, apolipoprotein A-1 (ApoA1), apolipoprotein B (ApoB)) and hepatic markers (alanine transaminase (ALT),
aspartate transaminase (AST), gamma-glutamyl transferase (GGT)). Higher even-chain SFA group levels were associated
with higher levels of low-density lipoprotein cholesterol (LDL-C), TC/high-density lipoprotein cholesterol (HDL-C) ratio,
triglycerides, ApoB, ApoB/A1 ratio, ALT, AST, GGT and CRP, and lower levels of HDL-C and ApoA1. Very-long-chain SFA
group levels showed inverse associations with triglycerides, ApoA1 and GGT, and positive associations with TC, LDL-C,
TC/HDL-C, ApoB and ApoB/A1. Associations were generally stronger at higher levels of BMI or alcohol consumption.

Conclusions: Subtypes of SFAs are associated in a differential way with metabolic markers of lipid metabolism, liver
function and chronic inflammation, suggesting that odd-chain SFAs are associated with lower metabolic risk and
even-chain SFAs with adverse metabolic risk, whereas mixed findings were obtained for very-long-chain SFAs.
The clinical and biochemical implications of these findings may vary by adiposity and alcohol intake.

Keywords: Saturated fatty acids, Odd-chain, Even-chain, Very-long-chain, Metabolic markers, Lipids, Hepatic,
Glycaemic, Inflammation

Background
There has been ongoing interest in the association be-
tween circulating saturated fatty acids (SFAs) and
cardio-metabolic diseases such as cardiovascular diseases
and type 2 diabetes. Recent evidence has highlighted that
different individual circulating SFAs have discordant
associations with cardio-metabolic diseases [1–7]. For
example, we and others reported that circulating odd-
chain SFAs (C15:0 (pentadecanoic acid) and C17:0
(heptadecanoic acid)) and very-long-chain SFAs (C20:0
(arachidic acid), C22:0 (behenic acid), C23:0 (tricosa-
noic acid) and C24:0 (lignoceric acid)) were inversely
associated with incident type 2 diabetes, while circulating
even-chain SFAs (C14:0 (myristic acid), C16:0 (palmitic
acid) and C18:0 (stearic acid)) were positively associated
[1–4]. In a meta-analysis, circulating C17:0 was inversely
associated with coronary heart disease, while no associ-
ation was found for any of C14:0, C15:0, C16:0 or C18:0
[5]. Other studies showed that higher circulating C16:0
was associated with higher risk of atrial fibrillation and
heart failure, whereas other SFAs (C18:0, C20:0, C22:0 and
C24:0) showed inverse or non-significant associations with
these cardiac outcomes [6, 7].
The pathogenesis of cardio-metabolic diseases involves

various metabolic pathways and intermediate metabolic
markers, including markers of lipid metabolism, liver
function, chronic inflammation and glycaemic homeo-
stasis [8]. Clarifying the associations of individual circu-
lating SFAs with these metabolic markers in different
pathways will help in the understanding of the roles of
individual SFAs in disease aetiology. Previous studies of
circulating SFAs with intermediate metabolic markers
were inconsistent or not comprehensive and analysed using
different lipid fractions (phospholipid fraction, erythrocyte
membrane, etc.) [9–17]. For instance, odd-chain SFAs
C15:0 and C17:0 from erythrocyte membranes were posi-
tively associated with low-density lipoprotein cholesterol

(LDL-C) and C17:0 was inversely associated with high-
density lipoprotein cholesterol (HDL-C) in men, while
C15:0 was positively associated with HDL-C in women in a
European study [11]. Both circulating odd-chain and
even-chain SFAs showed heterogeneous associations
with glycaemic markers, which were studied in differ-
ent lipid fractions [3, 14, 15, 17–19]. Circulating very-
long-chain SFAs (C20:0, C22:0 and C24:0) had mixed
associations with different metabolic markers, including
a positive association with LDL-C, an inverse associ-
ation with triglycerides (TG) and an inverse association
(C24:0 only) with C-reactive protein (CRP) and insulin
resistance [2]. The inconsistency in the existing literature
may reflect the heterogeneity of sample sizes, ranging
from 38 [20] to 3004 participants [3]. Furthermore, fatty
acids were measured using different methods in different
lipid fractions across different studies, which might con-
tribute to the inconsistent results in the existent literature.
This adds to the rationale for measuring fatty acids in one
single lipid fraction (such as circulating phospholipids) in
a large multicentre study with diverse population charac-
teristics to characterise robust associations of fatty acids
with metabolic markers.
Therefore, evaluating fatty acid profiles in populations

in eight European countries, we aimed to examine the
associations of individual circulating plasma phospho-
lipid SFAs and corresponding SFA groups with several
metabolic markers of lipid metabolism, liver function,
chronic inflammation and glycaemic control.

Methods
Study design and population
These analyses used data from the subcohort of the
European Prospective Investigation into Cancer and
Nutrition (EPIC)-InterAct study. EPIC-InterAct is a
case-cohort study of type 2 diabetes nested within eight
countries of the EPIC cohort study, namely France,
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Italy, Spain, UK, the Netherlands, Germany, Sweden
and Denmark [21]. Briefly, from the entire cohort of
340,234 participants with blood samples (baseline years,
1991–1998) in the eight countries, we ascertained incident
diabetes cases and selected a random subcohort of 16,835
participants. Participants with prevalent diabetes at base-
line were excluded (n = 681) [21]. A further 235 partici-
pants with no available fatty acid data were also excluded.
Thus, a total of 15,919 participants were included in this
study. All participants provided written informed consent
and the study was approved by the local ethics committee
in the participating centres and the Internal Review Board
of the International Agency for Research on Cancer.

Laboratory measurements
Plasma phospholipid fatty acids were measured between
2010 and 2012 at the Medical Research Council Human
Nutrition Research (Cambridge, UK) from non-fasting
plasma samples stored at baseline (1993–1998) at –196 °C
(–150 °C in Denmark). We considered plasma phospho-
lipid fatty acid compositions as stable because stability has
been confirmed at –80 °C or below over long-term storage
[22]. The laboratory staff were blind to any information
about the participants. The assay method and quality con-
trol of the fatty acid measurement have been described
elsewhere [23]. A total of 37 fatty acids were identified by
comparing their retention time with those of commercial
standards. All the fatty acids were expressed as percentage
of total phospholipid fatty acid (mol%). Nine SFAs had a
relative concentration higher than 0.05%. Data quality was
assessed using quality control samples across all of the
batches, which showed that the SFAs and their coefficients
of variation were C14:0 (9.4%), C15:0 (11.9%), C16:0
(1.6%), C17:0 (4.2%), C18:0 (2.0%), C20:0 (15.3%), C22:0
(10.3%), C23:0 (18.9%) and C24:0 (14.7%).
Serum metabolic markers were measured at Stichting

Ingenhousz Laboratory (Etten-Leur, Netherlands), from
samples stored at –196 °C (–80 °C in Umeå). These
metabolic markers included lipid markers (total choles-
terol (TC), HDL-C TG, apolipoprotein A-1 (ApoA1) and
apolipoprotein B (ApoB)), liver function markers (ala-
nine transaminase (ALT), aspartate transaminase (AST),
gamma glutamyl transferase (GGT)), and an inflamma-
tory marker (C-reactive protein (CRP)). All assays were
performed using a Cobas® (Roche Diagnostics, Mann-
heim, Germany) assay on a Roche Hitachi Modular P
analyser. Several other lipid markers were calculated
based on the measured lipids, namely LDL-C based on
the Friedewald formula [24], TC/HDL-C (a ratio of TC
to HDL-C) and ApoB/A1 (a ratio of ApoB to ApoA1). A
marker of glycaemic control, haemoglobin A1c (HbA1c),
was measured at Stichting Ingenhousz Laboratory in
the erythrocyte fraction from samples stored at –196 °C
(–80 °C in Umeå) using the Tosoh-G8 analyser (Tosoh

Bioscience, Japan). The assay detection ranges for the
metabolic marker measurements were TC (0.08–
20.7 mmol/L), HDL-C (0.08–3.1 mmol/L), TG (0.05–
11.3 mmol/L), ApoA1 (7.14–143 μmol/L), ApoB
(0.39–7.8 μmol/L), ALT (4–600 U/L), AST (4–800 U/L),
GGT (3–1200 U/L), HbA1c (20–140 mmol/mol) and CRP
(0.1–20 mg/L). Quality control was based on the West-
gard rules [25]. All the metabolic markers were winsorised
based on the 0.1 and 99.9th percentiles to minimise influ-
ence of potential outliers.

Diet and lifestyle measurements
The assessment of habitual diet during the past
12 months was undertaken using self- or interviewer-
administered, country-specific validated dietary ques-
tionnaires [26]. Based on the standardised EPIC Nutrient
Database [27], total energy and nutrient intake were cal-
culated. At baseline, we used standardised health and
lifestyle questionnaires to assess demographics, smoking
status, medical history and educational level. Physical ac-
tivity was assessed using a brief questionnaire at base-
line, which divided participants into four physical
activity groups, namely inactive, moderately inactive,
moderately active or active [21].

Statistical analysis
We used Stata version 14 for all analyses. We analysed
nine individual SFAs (C14:0, C15:0, C16:0, C17:0, C18:0,
C20:0, C22:0, C23:0, C24:0) and three SFA groups –
odd-chain SFA (sum of 15:0 and 17:0), even-chain SFA
(sum of 14:0, 16:0 and 18:0) and very-long-chain SFA
(sum of C20:0, C22:0, C23:0, C24:0). The groupings of
the SFAs were based on those used in a previous analysis
of EPIC-InterAct [1]. Spearman correlation coefficients
between the individual SFAs were calculated. As
dependent variables, we evaluated eight lipid markers
(TC, HDL-C, TC/HDL-C, LDL-C, TG, ApoB, ApoA1,
ApoB/A1), three liver function markers (ALT, AST and
GGT), one glycaemic marker (HbA1c) and one inflam-
matory marker (CRP). Variables with skewed distribu-
tion were log-transformed before analysis (TC/HDL-C,
TG, ALT, AST, GGT and CRP). In the primary analysis
(based on complete case analysis), we used linear regres-
sion to estimate country-specific associations per 1 stand-
ard deviation (SD, calculated in the overall subcohort) of
each SFA with each of the 13 metabolic markers, and
combined the estimated associations across countries
using random effects meta-analysis. Associations were
expressed as the difference in metabolic marker (in SD
units) per 1 SD difference in each fatty acid. A P value
threshold for significance of 0.00068 was defined based on
the number of tests performed, accounting for correla-
tions among exposures and outcomes, calculated using
the method of Li and Ji [28]. Confidence intervals (CI)
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were also estimated, which were consistent with this P
value threshold.
Using linear regression, we adjusted for the potential

confounders as follows: Model 1 – age, sex and centre;
Model 2 – as Model 1 plus body mass index (BMI);
Model 3 – as Model 2 plus physical activity (inactive,
moderately inactive, moderately active or active), smok-
ing status (never, former or current), alcohol drinking
(never, 0 to < 6, 6 to < 12, 12 to < 24, and ≥ 24 g/day),
educational level (none, primary school, technical or
professional school, secondary school, or higher educa-
tion) and total energy intake (kcal/day). Model 3 was ex-
tended to test the potential interaction of the three SFA
groups (even-chain, odd-chain and very-long-chain SFAs)
with age, sex, BMI, alcohol drinking and physical activity.
For these pre-specified interaction tests on the multiplica-
tive scale to investigate potential biological variation, a P
value threshold of 0.0004 was used, calculated using the
same method as above [28].
We performed sensitivity analyses based on Model 3,

where (3a) included a variety of dietary factors as covari-
ates (dietary intakes of carbohydrates, dairy, red and
processed meat, fruits and vegetables, olive oil and vege-
table oil); (3b) excluded participants with HbA1c ≥ 6.5%;
(3c) included self-reported heart disease, stroke and can-
cer as covariates; (3d) excluded participants with self-
reported heart disease, stroke or cancer; (3e) excluded
people with hyperlipidaemia (self-reported hyperlipid-
aemia or treatment for hyperlipidaemia); (3f ) included
hyperlipidaemia status as a covariate; (3g) was a mutual
adjustment for the other SFA groups; (3h) excluded
participants with very heavy alcohol drinking (>95th
percentile of the present population (>50.2 g/d)); (3i)
excluded participants with CRP ≥ 95.2 nmol/L (equivalent
to 10 mg/L); and (3j) replaced BMI with waist circumfer-
ence as a marker of adiposity.

Results
Population characteristics
The mean age of the InterAct subcohort participants
was 52.3 years (SD 9.2 years, range 20–77 years). Partici-
pants who were men, older or with higher BMI had rela-
tively higher concentrations of even-chain SFAs. Women
or those with lower BMI had higher odd-chain and very-
long-chain SFA levels (Table 1). In addition, women had
a more favourable metabolic profile than men, such as
higher levels of HDL-C and lower levels of TC/HDL-C,
TG and liver function markers. Older participants and
those with a higher BMI had higher levels of TC, LDL-
C, TC/HDL-C, TG, ApoB, ApoB/A1, ALT, AST, GGT,
HbA1c and CRP. The distributions of these metabolic
markers varied across different participating countries
and across different SFA groups (Additional file 1: Table
S1, Table S2). The odd-chain SFA group was negatively

correlated with the even-chain SFA group, while being
positively correlated with a very-long-chain SFA group
(Additional file 1: Table S3). The correlations of the
three SFA groups with various food sources in InterAct
have been reported previously [1].

Association of plasma phospholipid SFAs with metabolic
markers
Odd-chain SFAs
Both C15:0 and C17:0 were inversely associated with
several lipid (TC, TG, ApoA1, ApoB) and liver function
markers (ALT, AST and GGT). In addition, C17:0 was
inversely associated with TC/HDL-C and CRP (Figs. 1, 2,
3, 4 and 5, Additional file 1: Table S4). The odd-chain
SFA group (C15:0 + C17:0) was inversely associated with
most metabolic markers; there was no evidence of an asso-
ciation with HDL-C, LDL-C, ApoB/A1 or HbA1c (Fig. 5).

Even-chain SFAs
Circulating C14:0 was positively associated with circulat-
ing levels of TG, ApoA1 and ALT, but there was no as-
sociation with the other metabolic markers. Circulating
C16:0 was inversely associated with HDL-C, and posi-
tively associated with TG and CRP. C18:0 was inversely
associated with HDL-C and ApoA1, and positively asso-
ciated with LDL-C, TC/HDL-C, TG, ApoB, ApoB/A1,
ALT, AST, GGT and HbA1c. The even-chain SFA group
was significantly positively associated with 9 of the 13
metabolic markers (Figs. 1, 2, 3, 4 and 5, Additional file 1:
Table S5).

Very-long-chain SFAs
Circulating C20:0 was inversely associated with TG,
ApoA1 and GGT; while C22:0, C23:0 and C24:0 showed
consistently positive associations with TC, LDL-C, TC/
HDL-C, ApoB and ApoB/A1, and inverse associations
with TG, ApoA1 and GGT (Figs. 1, 2, 3, 4 and 5, Additional
file 1: Table S6). C23:0 was also positively associated with
HbA1c (Fig. 4). As a group, very-long-chain SFAs had the
strongest inverse association with TG, while other associa-
tions were similar to those of C24:0 (Fig. 5).

Sensitivity and interaction analyses
Most of the sensitivity analyses did not substantially
affect the results (Additional file 1: Table S7). There was
heterogeneity between countries in some of the SFAs
and metabolic marker associations, such as LDL-C, TG
and GGT, although the directions of the associations
were generally consistent across countries (Additional
file 1: Figure S1).
Results of interaction analyses showed that, in non-

alcohol drinkers, there was no evidence of an association
of the odd-chain SFA group with TC, ApoA1, ALT or
AST, while in the higher alcohol consumption group,
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there was an inverse association of the odd-chain SFA
group with TC, ApoA1, ALT, AST and GGT (Additional
file 1: Figure S2). Similarly, a stronger inverse association
of the very-long-chain SFA group with HDL-C and
ApoA1 was found among high alcohol drinkers, with no
significant association among non-drinkers. There was a
suggestion that the association of each SFA group with
each metabolic marker was stronger in those with higher
BMI. In addition, the association of odd-chain SFAs with
some metabolic markers (TC, AST, ALT and GGT) ap-
peared to be stronger in men than in women.

Discussion
In a large cohort of European adults, we identified dis-
tinct patterns of association between different SFAs
and metabolic markers. Briefly, odd-chain SFAs had
favourable associations, while even-chain SFAs had ad-
verse associations with most metabolic markers; there
were mixed patterns of association with very-long-chain
SFAs. We found that both odd-chain SFAs (C15:0 and
C17:0) had consistent inverse associations with lipid
markers (TC, TG, ApoA1 and ApoB) and liver function
markers (ALT, AST and GGT). The odd-chain SFA C17:0
was additionally inversely associated with another lipid
marker (TC/HDL-C ratio) and with the chronic inflamma-
tory marker (CRP). In contrast, there were positive associ-
ations between the even-chain SFA group (sum of C14:0,
C16:0 and C18:0) and several lipids (LDL-C, TC/HDL-C,

TG, ApoB, ApoB/A1), liver function markers (ALT, AST,
GGT) and CRP, and inverse associations with HDL-C and
ApoA1. These associations were mainly driven by C18:0,
except for CRP (only associated with C16:0). C14:0 and
C16:0 showed heterogeneous associations with different
markers. For very-long-chain SFAs (C20:0, C22:0, C23:0
and C24:0), there were heterogeneous findings – the
group was inversely associated with two lipid markers
(TG, ApoA1) and one liver function marker (GGT), but
positively associated with other lipid markers (TC, LDL-C,
TC/HDL-C, ApoB and ApoB/A1).
Eight of the 13 metabolic markers included in the ana-

lysis were lipid markers. Higher LDL-C and TG and
lower HDL-C are known risk factors for cardiovascular
diseases [29–31]. ApoA1 is abundant in anti-atherogenic
HDL particles, while ApoB is part of the atherogenic
non-HDL particles (e.g., LDL). Both ApoB/A1 and TC/
HDL-C represent a balance of the anti-atherogenic and
atherogenic lipoprotein particles, and are considered
better predictors of the future cardiovascular disease risk
than the individual lipids [32, 33]. Previous literature has
reported heterogeneous findings on the association of
SFAs with these lipid markers [2, 3, 11–14, 17]. We did
not find an association between odd-chain SFAs and
the ratios of ApoB/A1 or TC/HDL-C (after adjustment
for the other SFA groups), suggesting that odd-chain
SFAs might not be independently associated with anti-
atherogenic properties. Instead, they may reflect the

Fig. 1 Associations of plasma phospholipid saturated fatty acids (SFAs) with total and types of cholesterol: EPIC-InterAct study. Standardised
difference is the difference (in SD units of the metabolic marker) per 1 SD of each SFA. The error bars represent confidence intervals, corrected
for multiple testing based on a familywise error rate of 5%. * Indicates that the P value for the association was < 0.00068. Estimates were based
on random effects meta-analysis of country-specific estimates from a linear regression adjusted for age, sex, centre, BMI, physical activity,
smoking status, alcohol drinking, educational level and total energy intake. TC/HDL-C was log-transformed. TC total cholesterol, HDL-C high-density
lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol
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Fig. 2 Associations of plasma phospholipid saturated fatty acids (SFAs) with triglycerides and apolipoproteins: EPIC-InterAct study. Standardised
difference is the difference (in SD unit of the metabolic marker) per 1 SD of each SFA. The error bars represent confidence intervals, corrected for
multiple testing based on a family-wise error rate of 5%. * Indicates that the P value for the association was < 0.00068. Estimates were based on
random effects meta-analysis of country-specific estimates from a linear regression adjusted for age, sex, centre, BMI, physical activity, smoking
status, alcohol drinking, educational level and total energy intake. ApoA1 apolipoprotein A-1, ApoB apolipoprotein B

Fig. 3 Associations of plasma phospholipid saturated fatty acids (SFAs) with circulating liver enzymes: EPIC-InterAct study. Standardised difference
is the difference (in SD unit of the metabolic marker) per 1 SD of each SFA. The error bars represent confidence intervals, corrected for multiple
testing based on a family-wise error rate of 5%. * Indicates that the P value for the association was < 0.00068. Estimates were based on random
effects meta-analysis of country-specific estimates from a linear regression adjusted for age, sex, centre, BMI, physical activity, smoking status,
alcohol drinking, educational level and total energy intake. All the ALT, AST and GGT were log-transformed. ALT alanine transaminase, AST aspartate
transaminase, GGT gamma glutamyl transferase
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associations of the other SFA groups, as both even-
chain and very-long-chain SFAs were positively associ-
ated with ApoB/A1 and TC/HDL-C in the present
study and the three groups were correlated. There was
a strong inverse association between very-long-chain
SFAs and TG, which was consistent with the inverse
association between very-long-chain SFAs and type 2
diabetes and cardiovascular diseases [1, 7]. The findings
that very-long-chain SFAs had positive associations
with atherogenic lipid markers (e.g. LDL-C, TC/HDL-C
and ApoB/A1) were consistent with previous studies on
LDL-C levels [2, 34]. In addition, very-long-chain SFAs
in erythrocytes were inversely associated with LDL par-
ticle size [34], and smaller LDL particles are considered
more atherogenic than larger LDL particles [35].

Several studies [12, 36, 37] examined the associations
of SFAs with liver function markers, with mixed findings.
Even-chain SFAs were positively associated with hepatic
markers in one study [12], but not associated in several
other studies [36, 37], with no evidence that odd-chain or
very-long-chain SFAs were associated with these markers.
In our study, odd-chain SFAs were inversely associated,
C18:0 was positively associated with the three hepatic
markers included, and very-long-chain SFAs were in-
versely associated with GGT. These findings were con-
sistent with the direction of the association found for
cardio-metabolic disease endpoints, including type 2
diabetes and cardiovascular diseases [1–4, 7, 13, 38].
The associations of SFAs with HbA1c and CRP were

modest. Only C18:0 and C23:0 had weak positive

Fig. 4 Associations of plasma phospholipid saturated fatty acids (SFAs) with haemoglobin A1c and C-reactive protein: EPIC-InterAct study.
Standardised difference is the difference (in SD unit of the metabolic marker) per 1 SD of each SFA. The error bars represent confidence
intervals, corrected for multiple testing based on a family-wise error rate of 5%. * Indicates that the P value for the association was < 0.00068. Estimates
were based on random effects meta-analysis of country-specific estimates from a linear regression adjusted for age, sex, centre, BMI, physical
activity, smoking status, alcohol drinking, educational level and total energy intake. CRP was log-transformed. TG triglycerides, HbA1c
haemoglobin A1c

Fig. 5 Summary of the associations of plasma phospholipid saturated fatty acids (SFAs) with metabolic markers: EPIC-InterAct study. Value in each
cell represented standardised difference (in SD unit) of metabolic markers per 1 SD difference in each variable of plasma phospholipid SFAs.
Values in bold (with *) indicate that the P value for the association was < 0.00068. All the values are expressed in red scale for different levels of
positive associations and blue scale for different levels of negative associations

Zheng et al. BMC Medicine  (2017) 15:203 Page 8 of 12



associations with HbA1c. The positive association between
C23:0 and HbA1c was contradictory to the inverse associ-
ation of C23:0 with incident type 2 diabetes previously
found in this population [1]. However, the relative concen-
tration of C23:0 was lowest among the nine SFAs, and the
current cross-sectional association with HbA1c may not
be comparable to results from association with subsequent
incident disease. One odd-chain SFA (C17:0) and one
even-chain SFA (C16:0) were, respectively, inversely and
positively associated with CRP, an inflammatory marker
and risk factor of cardio-metabolic diseases [39]. The find-
ings for CRP were consistent with several prior US studies
in which none of C14:0, C15:0 or C18:0 were associated
with CRP, while C16:0 was positively associated [3, 13].
Of note, previous studies only reported associations for
a maximum of three of the individual SFAs with CRP
[3, 13], while the present study provided a more com-
prehensive analysis across nine individual SFAs.
No studies have previously reported the interaction

between alcohol or BMI and SFAs on metabolic out-
comes. We observed consistent patterns of interaction
for alcohol intake and BMI with SFA groups for the
metabolic markers, with stronger SFAs and metabolic
marker associations in groups with higher reported alco-
hol consumption or higher BMI. The mechanism behind
these interactions is not clear. It may be that higher al-
cohol intake (which stimulates de novo lipogenesis) [40]
or higher BMI is associated with higher absolute circu-
lating SFA concentrations. Therefore, associations per
SD SFA relative concentration might be larger among
higher alcohol intake or BMI groups (with higher absolute
SFA levels). Nevertheless, these interactions suggested that
dietary exposure and adiposity should be taken into ac-
count in evaluating the relationship between individual
SFAs and metabolic risk factors.
Results of the present study may have important bio-

logical implications linking SFAs and metabolic diseases.
First, we found that odd-chain SFAs were favourably
associated with markers of lipids (with exceptions for
HDL-C and ApoA1), liver function and chronic inflam-
mation, which we postulated might contribute to the
inverse association of odd-chain SFA with cardio-
metabolic diseases [1, 5]. It was recently shown that
C15:0 and C17:0 may have different origins [41] and
that C15:0 is a marker of exogenous origin dairy fat
intake, while C17:0 is substantially biosynthesised en-
dogenously. Another study suggested that both C15:0
and C17:0 are also biomarkers of dietary fibre intake
[42]. These results suggest that the observed associations
in this study indirectly reflect the impact of dietary dairy
product and fibre intake on cardio-metabolic disease. Sec-
ond, total even-chain SFA levels were positively associated
with cardio-metabolic diseases potentially through all the
tested pathways in this study, while individual even-chain

SFAs appeared to have differential roles in these pathways.
For example, only C16:0 was associated with the chronic
inflammatory marker, CRP, in agreement with several in
vitro studies [43–45]. The observed associations of even-
chain SFAs with metabolic markers might partly reflect
the effect of deregulation of de novo lipogenesis [46], as all
of the three even-chain SFAs are within the de novo lipo-
genesis pathway, and these fatty acids were positively asso-
ciated with risk of metabolic disorders [3, 12]. Third, very-
long-chain SFAs were favourably associated with markers
of lipids and liver function, which may be part of the
mechanisms behind the inverse association of this group
of SFAs with cardio-metabolic diseases, such as type 2 dia-
betes [1]. These observations are plausible as previous ani-
mal and cell culture studies [47] have suggested that
ceramides containing very-long-chain SFAs show
favourable effects on biological pathways (e.g. hepatocyte
physiology and pathophysiology), compared with cera-
mides containing C16:0. In contrast, very-long-chain SFAs
were positively associated with atherogenic lipid markers.
Therefore, a TG or TG-related pathway may be a more re-
liable indicator linking plasma phospholipid very-long-
chain SFAs and cardio-metabolic diseases compared to
other lipid markers.
The strengths of our study include its large sample

size of nearly 16,000 participants from eight European
countries with different dietary/lifestyle backgrounds,
and objective measurement of nine individual plasma
phospholipid SFAs. The main limitation of this study is
that the associations are cross-sectional, and therefore
temporality of the associations is unclear and reverse
causation cannot be ruled out. Additionally, as is com-
mon with all observational research, despite our at-
tempts to adjust for a comprehensive range of potential
confounders, residual confounding cannot be excluded.
Future longitudinal studies relating changes in SFAs to
change in metabolic markers as well as to the metabo-
lome will be informative, and use of genetic Mendelian
randomisation analysis and pharmacological or dietary
interventions altering fatty acid profiles will help with
causal inference. Another limitation is the possibility of
false positive results among the large number of analyses
performed, although we used a conservative approach to
correct for multiple testing to minimise this possibility.
Furthermore, potential measurement errors may have
occurred because of the long-term storage of our plasma
samples and may have biased our findings toward the
null. Results from the phospholipid fatty acids may not
be able to represent those from other lipid fractions,
such as cholesterol and TG, and potential heterogeneity
may exist across different lipid fractions. Finally, only
one marker of inflammation (CRP) was available in our
study, and future studies on this topic would benefit
from an expanded panel of inflammatory cytokines,
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acute phase reactants and adipokines to further advance
our understanding.

Conclusions
Our analyses suggest that odd-chain SFAs are inversely
associated with several metabolic markers in pathways of
lipid metabolism, liver function and chronic inflammation,
thereby potentially contributing to their inverse associa-
tions with cardio-metabolic diseases. Further, even-chain
SFAs are unfavourably associated with metabolic markers
in all the tested pathways, including lipid metabolism, liver
function, glycaemic control and chronic inflammation,
with inconsistent associations for different individual
even-chain SFAs. Very-long-chain SFAs are inversely asso-
ciated with TG and markers of liver function, which po-
tentially contributes to their inverse associations with
cardio-metabolic diseases, while their positive associations
with atherogenic lipid markers warrants further study. Of
note, associations of the three SFA groups with metabolic
markers may vary by dietary alcohol intake and adiposity.
The cross-sectional findings of the present study warrant
further investigations in a prospective study. Taken to-
gether, these findings help to further our understanding
for the role of SFAs in metabolic pathways and disease
aetiology.
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