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Abstract

Infectious diseases continue to pose a significant public health burden despite the great progress achieved in
their prevention and control over the last few decades. Our ability to disentangle the factors and mechanisms
driving their propagation in space and time has dramatically advanced in recent years. The current era is rich
in mathematical and computational tools and detailed geospatial information, including sociodemographic,
geographic, and environmental data, which are essential to elucidate key drivers of infectious disease
transmission from epidemiological and genetic data. Indeed, this paradigm shift was driven by dramatic
advances in complex systems approaches along with substantial improvements in data availability and
computational power. The burgeoning output of infectious disease spatial modeling suggests that we are
close to a fully integrated approach for early epidemic detection and intervention. This special collection in
BMC Medicine aims to bring together a broad range of quantitative investigations that improve our
understanding of the spatiotemporal transmission dynamics of infectious diseases in order to mitigate their
impact on the human population.

Keywords: Infectious diseases, Spatial methods, Cluster, Hotspot, Spatiotemporal modeling, Geospatial
information

Background
Infectious diseases, including respiratory (influenza,
pneumonia, respiratory syncytial virus), vector-borne
(malaria, dengue, chikungunya, and Zika), and sexually
transmitted diseases (HIV, syphilis), continue to pose a
significant public health burden despite the great pro-
gress made in their prevention and control over the last
few decades. Fortunately, our understanding of mecha-
nisms driving their propagation in space and time and
their control has radically evolved from shamanistic to
analytic. Modern quantitative computational tools and
highly resolved geospatial demographic, epidemio-
logical, and genomic data are enabling actionable in-
sights for public health in near real time. Indeed, the
rapid increase in data-driven spatial modeling output
over the last three decades is connected to significant
advances in complex system modeling approaches
along with substantial improvements in data availability
and computational capacity. For comparison, when the

1918–1919 influenza pandemic struck the globe, it was
not known until years later that the influenza virus was
responsible for the deaths of 20 to 100 million people.
Additionally, in most parts of the world, morbidity re-
cords were scarce and the majority of vital records were
archived in churches and cemeteries. Consequently, the
geographic point-of-origin and spatiotemporal patterns
of spread of this lethal virus remain poorly understood
[1]. In contrast, genetic sequence data from patient
samples during the 2009 A/H1N1 influenza pandemic
or the recent 2014–2016 Ebola epidemic in West Africa
allowed researchers to reconstruct geographic transmis-
sion patterns and monitor their spread with reasonable
precision [2–4].
This special collection in BMC Medicine aims to bring

together a broad range of quantitative investigations that
generate actionable results on the spatiotemporal trans-
mission dynamics of infectious diseases. These contribu-
tions will combine detailed spatial statistical methods
and spatial dynamic models together with spatially re-
solved sociodemographic, environmental, epidemio-
logical, and/or genetic data to disentangle the collective
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dynamics of infectious disease transmission to guide pub-
lic health policy [5, 6]. Additionally, it will examine the
spatial distribution of infectious disease burden, including
the identification of hotspots and case clustering [6–9],
calibrate dynamic models for forecasting the trajectory of
epidemics [5, 6, 9], and simulate scenario analyses to
evaluate the impact of different control strategies on epi-
demic control at various spatial scales [10].

Diverse spatial approaches for infectious disease
epidemiology research
Quantitative infectious disease investigations involving
spatiotemporal data rely on two broad classes of re-
search methods, namely spatial statistical modeling
methods [11–15] and spatial transmission dynamic mod-
eling approaches [16–21]. The application of these
methodological approaches for infectious disease re-
search has rapidly increased over the last two decades,
along with major advances in computational power and
an increasing amount and diversity of epidemiological
and genetic data with spatial and temporal information
(Fig. 1). For instance, spatial statistical methods are
frequently used to uncover relationships between spatio-
temporal infectious disease patterns and host or environ-
mental characteristics [11], generate detailed maps to
visualize the distribution of infectious disease morbidity or
mortality [22–24], and identify hotspots or clusters [12,
13].

In this collection, Warren et al. [7] employed hierarch-
ical Bayesian statistical modeling and epidemiological
and genetic data prospectively collected from neighbor-
hoods surrounding a prison in Lima, Peru, to assess
spillover of multi-drug resistant tuberculosis (MDR-TB)
strains into the surrounding community. Their findings
revealed a potential spillover of TB from the prison with
a radius estimated at 5.47 km and found that nine
MDR-TB samples from non-inmate patients had genetic
matches with genetic samples from inmate patients, sug-
gesting that interventions targeting the prison could
have benefits for the surrounding community. Moreover,
they found a total of eight spatially aggregated genetic
clusters of MDR-TB, of which four were within the
spillover region. In another contribution, Kang et al. [8]
conducted Bayesian spatiotemporal modeling to gener-
ate high-resolution maps of malaria prevalence in
Madagascar from 2011 to 2016. Their findings indicate
substantial changes in malaria activity over the study
period and underscore the importance of monitoring
spatiotemporal changes to guide control programs.
Using mathematical and statistical approaches to fore-

cast the course of epidemics at different spatial scales in
order to guide interventions is a challenging research area
that has received increasing attention over the last decade
[25–28]. In BMC Medicine, Chen et al. [9] developed a
statistical framework based on LASSO regression and
various spatiotemporal datasets, including weekly surveil-
lance epidemiological data, cell phone network data,
building characteristics, meteorological data, vegetation
index, and public transport history data, to forecast the
trajectory of dengue epidemics at the neighborhood level
from 2010 to 2016 in Singapore. Their relatively simple
statistical forecasting tool performed remarkably well at
generating short-term forecasts (5–12 weeks ahead) with
direct public health implications. An open question is
whether mechanistic (based on spatial dynamic transmis-
sion models) or hybrid approaches could outperform stat-
istical model-based forecasts such as theirs.
Applications of spatial transmission dynamic model-

ing approaches to investigate infectious disease trans-
mission and control has increased over the last two
decades, with a research production of less than five ar-
ticles per year in 1997 to more than 120 articles per
year (Fig. 1). System dynamic models have been most
useful in generating scenario analyses of the potential
course and severity of infectious disease epidemics [16–
18, 21, 28–30], characterizing and forecasting the spa-
tiotemporal transmission patterns of epidemic out-
breaks, or assessing the effectiveness of interventions
and the feasibility of achieving elimination targets. In
these models, researchers artfully integrate key epi-
demiological characteristics of the disease and strive to
capture relevant mechanisms of disease transmission,

Fig. 1 Growth in spatial modeling, 1990–2017 (Web of Science).
Search keywords for spatial modeling publications: (spatial model AND
infectious diseases) OR (spatial method AND infectious diseases) OR
(agent-based model AND infectious diseases) OR (individual-based
model AND infectious diseases) OR (metapopulation model AND
infectious diseases) OR (microsimulation model AND infectious
diseases). Spatial dynamic transmission modeling publications:
(microsimulation model AND infectious diseases) OR (agent-based
model AND infectious diseases) OR (agent-based modeling AND
infectious diseases) OR (individual-based model AND infectious
diseases) OR (metapopulation model AND infectious diseases) OR
(metapopulation modeling AND infectious diseases)
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including the potential influence of environmental fac-
tors. In metapopulation models, a particular type of
spatial dynamic model, the population is divided in a
set of interacting population groups defined according
to spatial or demographic information [16, 17, 31–33].
In comparison, agent-based or microsimulation models
consider discrete individuals and model specific
individual-level interactions and daily activity patterns,
allowing substantial heterogeneity to be included in the
population (e.g., vaccination status, healthcare worker
status) [34–36].
Also in this special collection, two studies employed

spatial dynamic modeling frameworks at different spatial
scales to investigate the spatiotemporal dynamics and con-
trol of two mosquito-borne infectious diseases of major
international concern. O’Reilly et al. [6] developed a deter-
ministic metapopulation model where city-level popula-
tions interact according to several scenarios based on
gravity and radiation mobility models and flight data to as-
sess the spread of Zika across 90 major cities in Latin
America. Their model was calibrated using epidemiological
time-series data to estimate transmission parameters and
project incidence in 2018. Their findings suggest that popu-
lation herd immunity has been achieved, with low inci-
dence expected in 2018. This is in line with prior
simulations of Zika incidence in the Americas through
February 2017 that used an agent-based model to
characterize transmission based on temperature, socioeco-
nomic and vector density [36]. Moore et al. [5] adapted an
agent-based model of dengue transmission dynamics to ex-
plore the role of spatial scale ‘mismatching’ in the dynamics
of the 2014–2015 chikungunya epidemic in Colombia. By
calibrating models with increasingly higher spatial reso-
lution (national, department, municipality) to national and
department-level incidence data, the study demonstrates
the importance of designing models that incorporate
spatially resolved patterns in mosquito abundance modu-
lated by climatic factors, population density, and movement
patterns. This work echoes the spatial dynamics of other

infectious diseases such as influenza in the United States
[37], the Western African Ebola epidemic [28], and Zika in
the Americas [36], and underscores the impact of spatial
structure (metapopulation, static vs. dynamic network-
based models) on disease dynamics.

Conclusions
These contributions, exemplars of the burgeoning out-
put of data-driven spatial modeling, suggest that we are
close to a fully integrated approach for early epidemic
detection and intervention (Fig. 2). Recent events, such
as MERS, SARS, Ebola, and influenza, have highlighted
the need for coordinated, interactive, multidisciplinary
methods that permit rapid, real-time evaluation and
public health action. Virtually all of the elements are in
place, although at different stages of development.
Digital surveillance is in its infancy, yet it is a rapidly de-
veloping research area [38, 39], and field epidemiology
and analytical tools are well developed. Mathematical
modeling, as evidenced by the contributions in this col-
lection, as well as genomic analysis are rapidly expand-
ing [40]. With the aid of high capacity/high speed
computers, accessible from anywhere, these elements
speak a mutually comprehensible language. Consider a
future disease, X, whose first cases, reported by high
speed communication, evoke a coordinated effort from
the host country and contributors, immediate on-the--
ground epidemiologic characterization, analysis to deter-
mine routes of spread, incubation periods, and
infectivity, specimens to characterize the infecting agent
at the molecular level (immediate vaccine development
in a separate path), and models to predict spatial spread.
One can envision intervention plans and implementation
within (possibly) a matter of days. This description is
not far from the actuality of recent events, albeit ignor-
ing the confusion and uncertainty that would be gener-
ated by a new, as yet unexplained event, which is critical
to achieving a timely and effective intervention. Those
first few hours and days are crucial for political

Fig. 2 On the cusp of intervention. We are close to a fully integrated approach for early epidemic detection and intervention as evidenced by
the burgeoning output of data-driven spatial modeling. Recent events, such as MERS, SARS, Ebola, and influenza, have highlighted the need for
coordinated, interactive, and multidisciplinary methods and permit rapid and real-time evaluation and action
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interaction and social organization to enhance or under-
mine the effort. Unfortunately, the latter is often the
case, with issues of resource allocation and agency au-
thority hindering rapid action. Smooth political and so-
cial coordination are every bit as important as key
technical tools such as genomic technology.
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