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Abstract

Spatial epidemiology is a rapidly advancing field, pushing our abilities to measure, monitor and map pathogens at
increasingly finer spatiotemporal scales. However, these scales often do not align with the abilities of control
programmes to act at them, building a disconnect between academia and implementation. Efforts are being made
to feed innovations into government, build spatial data skills, and strengthen links between disease control
programmes and universities, yet work remains to be done if goals for disease control, elimination and ‘leaving no
one behind’ are to be met.
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Background
The past couple of decades has seen spatial epidemi-
ology become a major area of activity [1]. Driven by fac-
tors such as the increasing use of global positioning
systems in disease prevalence surveys, health facility
mapping and the collection of genetic data, spatially pre-
cise epidemiological data are now becoming more wide-
spread. Additionally, spatial epidemiology continues to
be a rapidly growing field, with the mapping of health
data, the rising availability of epidemiologically relevant
variables from satellites and the continued development
of statistical methods. Furthermore, the development of
rapid diagnostic tests, the use of mobile phone-based
reporting, and the advancement of genome sequencing
technology add a new dimension in terms of increases in
the frequency and speed of data collection. A feature of
the above advancements has been a rising trend within
the academic world in the ability to map and understand
disease patterns and dynamics at increasingly finer
spatial and temporal scales, launching new terms such
as ‘precision public health’ [2]. Where once ‘subnational
disease mapping’ meant moving from national to provin-
cial scales, we can now rapidly uncover household-level
patterns in the genetic makeup of pathogens [3] and pre-
dict, with some accuracy, the distributions of diseases

and their vectors at a resolution of kilometres across the
globe [4].
Every time we sharpen the lens of data collection and

analyses to increasingly finer scales we see substantial
heterogeneity. For example, in the case of malaria, the
number of annual cases may be counted at district level,
with some areas having a far greater number of cases
than others. Taking a closer look at the district with the
most cases, certain settlements within it are seen to con-
tribute most of the cases [5]. Subsequent mapping
within these settlements highlights neighbourhoods with
a greater number of cases [6] and, within these, neigh-
bouring households with significantly different case
loads [7]. Thus, the message put forward in many spatial
epidemiology studies is that through our improved un-
derstanding, mapping and analysis at increasingly finer
scales, highlighting ‘hotspots’ [8] or ‘coldspots’ [9], we
can highlight communities left behind, pinpoint cases,
measure risks and map transmission in a much more ef-
fective, efficient and cost-saving way, facilitating the im-
proved targeting of limited resources.
The potential of these new data streams and methods

is substantial, providing tools and insights to tackle dis-
eases across types, endemicity spectra and spatiotempo-
ral scales, and tailoring approaches to needs, whether to
stratify risk for endemic diseases or to track down the
last few cases to eliminate a pathogen. However, this all
needs to be balanced against the ability of
over-burdened and under-resourced disease control
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programmes to adopt new methods and act at such fine
scales. A national disease control programme that plans,
operates and implements at district levels faces major
challenges in using and acting on finer scale insights.
Additionally, research is often lacking on what scales in-
crease noise, obscure patterns and become
cost-prohibitive for action. Geographical Information
Systems are becoming increasingly widespread tools for
monitoring, mapping and analysing disease data; how-
ever, the costs of licenses and training can be prohibitive
in some settings. Moreover, while academia races ahead
in developing new methods, insights and outputs, these
can be slow to filter through to those tasked with con-
trolling and eliminating the diseases. The low uptake
and use of risk maps, modelling and ‘big data’ in national
decision-making is evidence of this [10, 11]. Such a lag
has and always will exist; yet, if ambitious global and na-
tional goals for disease control, elimination and ‘leaving
no one behind’ are to be met, there is a need to start
closing the gap.
The disconnect between academia and health minis-

tries is often a limiting factor in the uptake of new
methods, yet disconnects between academic fields and
within government can also present obstacles. Valuable
research and investments in precise diagnostics, vaccin-
ation tracking and surveillance systems can be under-
mined by a lack of similar efforts in measuring and
mapping populations to provide the important context
of denominators at small spatial scales – are the 100
cases of disease ‘X’ identified coming from a population
of 1000 or 10,000? The phenomenon of vaccination
coverage rates of greater than 100% is common through
the use of outdated census counts as denominators [12,
13], while national disease surveys struggle to be repre-
sentative if reliant on sample frames that are many years
old in countries with rapidly changing populations [14].

Conclusions
The lags in government adoption of scientific innova-
tions in spatial epidemiology as well as disconnects be-
tween academia and disease control programmes are
being tackled, with many positive examples that point
towards recipes for bridging gaps. Links between minis-
tries of health and local universities are being strength-
ened, training in Geographical Information Systems is
becoming more widespread together with the adoption
of open-source or tailored systems and dashboards [15],
and organisations and funding programmes are focus-
sing on feeding innovations into health systems and na-
tional statistics offices, sometimes requiring that
modellers be embedded in ministries of health. Further,
major funders and implementing partners are increas-
ingly building explicitly applied public health goals into
funding proposals; these require ministries of health to

be involved and success is judged on uptake and imple-
mentation of new methods (e.g. [16]). The problems of
inaccurate or missing denominators are being addressed
through the integration of survey, satellite and mobile
phone data, feeding into dashboards and tracking sys-
tems used by ministries of health [17]. While these ef-
forts are gaining traction, they are not quite yet the
norm, with academics often still rewarded more for
quick-win publications in top journals than for the
slower and more political process of engagement in the
development of new insights and methods with national
programmes to ensure sustained adoption and impact.
On the implementation side, workloads and financial
constraints often leave no time for learning about new
findings and approaches.
These are exciting times for spatial epidemiology re-

search, as the integration of multiple types of spatially
referenced data within powerful new methods pushes us
to new frontiers of spatial and temporal precision with
great potential for impact. However, unless these are
built considering the needs, limitations and capacity of
those tasked with designing strategies and acting upon
them, and unless appropriate incentives exist to facilitate
this, the danger is that such work remains as pretty
maps in scientific journals, circulating only in academic
bubbles.
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