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Abstract

Background: Knowledge of HIV-1 molecular transmission clusters (MTCs) is important, especially in large-scale
datasets, for designing prevention programmes and public health intervention strategies. We used a large-scale
HIV-1 sequence dataset from nine European HIV cohorts and one Canadian, to identify MTCs and investigate factors
associated with the probability of belonging to MTCs.

Methods: To identify MTCs, we applied maximum likelihood inferences on partial pol sequences from 8955 HIV-
positive individuals linked to demographic and clinical data. MTCs were defined using two different criteria: clusters
with bootstrap support >75% (phylogenetic confidence criterion) and clusters consisting of sequences from a
specific region at a proportion of >75% (geographic criterion) compared to the total number of sequences within
the network. Multivariable logistic regression analysis was used to assess factors associated with MTC clustering.

Results: Although 3700 (41%) sequences belonged to MTCs, proportions differed substantially by country and
subtype, ranging from 7% among UK subtype C sequences to 63% among German subtype B sequences. The
probability of belonging to an MTC was independently less likely for women than men (OR = 0.66; P < 0.001), older
individuals (OR = 0.79 per 10-year increase in age; P < 0.001) and people of non-white ethnicity (OR = 0.44; P < 0.
001 and OR = 0.70; P = 0.002 for black and ‘other’ versus white, respectively). It was also more likely among men
who have sex with men (MSM) than other risk groups (OR = 0.62; P < 0.001 and OR = 0.69; P = 0.002 for people
who inject drugs, and sex between men and women, respectively), subtype B (ORs 0.36–0.70 for A, C, CRF01 and
CRF02 versus B; all P < 0.05), having a well-estimated date of seroconversion (OR = 1.44; P < 0.001), a later calendar
year of sampling (ORs 2.01–2.61 for all post-2002 periods versus pre-2002; all P < 0.01), and being naïve to
antiretroviral therapy at sampling (OR = 1.19; P = 0.010).
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Conclusions: A high proportion (>40%) of individuals belonged to MTCs. Notably, the HIV epidemic dispersal
appears to be driven by subtype B viruses spread within MSM networks. Expansion of regional epidemics seems
mainly associated with recent MTCs, rather than the growth of older, established ones. This information is important for
designing prevention and public health intervention strategies.
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Background
HIV remains a major global public health issue with an
estimated 36.7 million people living with HIV (PLWH)
by the end of 2016 [1]. Since the late 1990s, the progres-
sive availability and success of combination antiretroviral
therapy has reduced the risk of opportunistic infections
and malignancies in PLWH, remarkably decreasing mor-
bidity and mortality [1]. Global efforts to strengthen
HIV treatment programmes have not only transformed
HIV to a manageable lifelong disease, but also constitute
the most effective strategy for preventing onward trans-
mission of infection and, thus, expansion of the epi-
demic [2, 3]. Nonetheless, the annual number of new
HIV infections remains high, with 1.8 million new infec-
tions in 2016, and the pace of decline is far too slow to
reach global targets [1, 4, 5]. Thus, global HIV preven-
tion and treatment programmes must be guided by in-
formation on the sources of new infections and factors
driving epidemic maintenance and growth.
The study of the HIV epidemic by molecular phyloge-

netics has been revolutionised by tools to assess the
structure and dispersal of mainly local or regional epi-
demics [6–8]. When viruses retain a high degree of gen-
etic similarity relative to others, one can assume that
their corresponding hosts are related by one or more re-
cent transmission events. HIV-1 is well suited for these
analyses because of its high nucleotide substitution rate,
which allows the observation of evolutionary changes
over a short time period [9, 10]. Clustered sequences
can infer putative transmission networks, and phylogen-
etic cluster analysis, combined with epidemiological and
demographic data, can help identify the factors under-
lying the growth of both regional and global epidemics
[11–13]. Therefore, large-scale analyses of HIV-1 phy-
logenies to extract meaningful epidemiological informa-
tion for evolutionary relationships and transmission
history are feasible [2, 3]. Such studies are important to
identify the transmission of drug-resistant variants and
to design prevention programmes and public health
intervention strategies [2, 3, 13–15].
In this study, we use a large HIV-1 sequence dataset of

HIV cohorts from nine European countries and one
from Canada to undertake molecular phylogenetic ana-
lyses to identify and characterise molecular transmission
clusters (MTCs). We also examine the likely impact of

clinical and demographic factors on regional phylogen-
etic clustering.

Methods
Patient data
As part of the EuroCoord collaboration [16], HIV-1 se-
quence data linked to epidemiological and clinical data
were available for 9265 of approximately 32,000 individ-
uals enrolled by September 2014 into one of 10 cohorts
from France, Germany, Greece, Italy, the Netherlands,
Norway, UK, Austria, Spain and Canada. A subset of
these data was from individuals with well-estimated HIV
seroconversion dates (thereafter termed ‘seroconverters’)
from the CASCADE (Concerted Action on SeroConver-
sion to AIDS and Death in Europe) collaboration
database.
All patients enrolled into the study gave their written

informed consent.

HIV-1 sequences dataset
A pooled initial dataset of 18,655 HIV-1 sequences were
available, including protease and partial reverse tran-
scriptase (RT) sequences, alone or combined, and some
integrase sequences. These were merged into a dataset
of 8955 partial pol sequences (i.e., protease and partial
RT). Duplicates were excluded using the online tool
ElimDupes [17], resulting in one sequence per individ-
ual. All study sequences were generated as part of rou-
tine clinical resistance testing at the participating sites
using standard (Sanger) sequencing procedures.

HIV-1 subtyping and reference datasets
Subtyping was performed using the online automated sub-
typing tools COMET (COntext-based Modeling for Ex-
peditious Typing) [18] and REGAv.2.0 [19]. Un-subtyped
and undetermined sequences were phylogenetically sub-
typed as previously described [20].
MTCs were identified using a large sample of

subtype-specific reference sequences from the Los Ala-
mos HIV-1 sequence database [21] in separate
subtype-specific alignments as explained below. Analyses
were conducted only for the most prevalent subtypes,
i.e. A–D, F and G, and the circulating recombinant
forms (CRF) CRF01_AE and CRF02_AG; other subtypes
with low proportions in the study dataset (< 0.6%) were
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not analysed further. Reference datasets for all non-B
subtypes, CRF01_AE and CRF02_AG included all pol se-
quences (protease and partial RT) that were publicly
available at the time of analysis. The number of refer-
ence sequences used per subtype was A, 3782; C, 6581;
D, 1216; F, 837; G, 1026; CRF01_AE, 2696; and
CRF02_AG, 2622. Given the large numbers of subtype B
in the HIV Los Alamos database, a final reference data-
set of 14,946 out of 42,470 (34.1%) available sequences
randomly resampled from different geographic areas and
sampling dates was used. All duplicate sequences were
excluded prior to analysis.
Study sequences and subtype-specific reference se-

quences for each subtype and CRF were aligned separ-
ately using the MUSCLE programme in subtype-specific
alignments [22]. Alignments were manually trimmed
using MEGA 6.0 [23] and mutation sites described in
the International Antiviral Society of the USA’s
(IAS-USA) 2017 published list of Drug Resistance Muta-
tions in HIV-1 [24] were excluded from all datasets prior
to any analyses.

Identification of molecular transmission clusters
A two-step analysis approach was followed. Initially, max-
imum likelihood (ML) phylogenetic inference and boot-
strap analysis, as implemented in the RAxML-HCP2 tool,
was performed [25]. ML phylogenies were estimated using
the general time-reversible substitution model with
gamma rate heterogeneity among sites. MTCs were de-
fined as those clusters with ≥ 2 sequences from the same
country having bootstrap support greater than 75%
(phylogenetic confidence criterion) and those consisting
of sequences from a specific area at a proportion greater
than 75% (geographic criterion) compared to the total
number of sequences within the cluster. Subsequently, an
additional confirmatory analysis was performed for the
clusters that initially received lower bootstrap support
values, namely those between 50% and 75%. Briefly, the
consensus sequence for each cluster was estimated, then,
using BLAST [26], the 100 most relevant sequences to the
consensus were downloaded and used for the confirma-
tory analysis. Phylogenetic analysis was performed using
the Bayesian method with the general time-reversible
substitution model with Γ-distributed rate, as imple-
mented in MrBayes 3.2.2 [27]. The confirmatory ana-
lysis was performed on a subset of clusters, namely
those comprising ≥ 5 sequences fulfilling the geo-
graphic criterion, receiving support between 50% and
75%. The Markov chain Monte Carlo method was
run for 2.2x106 generations (burnin was set to 2x105

generations; 10%), with four chains per run. This was
sampled every 1000 steps and was checked for con-
vergence, as previously described [28].

Statistical analysis
Demographic and clinical data are summarised using
median and interquartile ranges (for continuous vari-
ables), or absolute and relative frequencies (for categor-
ical variables). Simple comparisons of the relevant
distributions across different levels of other categorical
variables are based on chi-square tests for categorical
variables, or non-parametric (Mann–Whitney, Kruskal–
Wallis) tests. Associations of the probability of belonging
to an MTC with various demographic and clinical char-
acteristics (sex, age, mode of transmission, sampling
date, subtype, ethnic group, antiretroviral therapy (ART)
experience, country, known seroconversion) were inves-
tigated using logistic regression models. All variables
were used as categorical variable, except for age, which
was used as a continuous variable because its effects did
not deviate significantly from linearity. As a sensitivity
analysis, the final multivariable logistic regression model
was also fitted to subsets of the full dataset, excluding
data from each of the three smallest cohorts (the
Netherlands, Greece, and France), or all of them
simultaneously.

Results
Study population
Overall, 8955 of 9265 (96.7%) individuals with HIV-1
protease/partial RT sequences and matched demo-
graphic and clinical data were enrolled in the study. In-
cluded individuals were predominantly male (6959/8959;
77.7%) and from the ‘men who have sex with men’
(MSM) risk group (4980/8955; 55.6%). The majority of
included sequences originated from Spain (n = 1978),
followed by the UK (n = 1559) and Germany (n = 1542);
more than 50% of the data in the study dataset came
from these three countries (see Additional file 1: Table
S1). Almost one-third (n = 3050; 34.1%) of the study
population had well-estimated seroconversion dates.
Demographic and clinical characteristics of the corre-
sponding individuals are presented in Table 1.

Subtype analysis
Almost 85% of sequences were of the B subtype (7545;
84.3%), followed by subtypes C (433; 4.8%) and A (260;
2.9%). Among the recombinants, the most frequent were
CRF02_AG (313; 3.5%) and CRF01_AE (192; 2.1%) (see
Additional file 1: Table S1). All other subtypes (F, D and
G) and other CRFs were much less common at 1% or
below (data not shown). Notably, the distribution of sub-
types differed significantly by country. In the study data-
set, the proportion of subtype B sequences ranged from
60% in Greece to 100% in the Netherlands. Greek se-
quences in the study dataset had the highest proportion
(34.3%; 12/35) of subtype A sequences. High proportions
of subtype C were found in the sequences from Canada
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(16.9%; 159/941) and Norway (17.0%; 106/625), while
the highest proportion of CRF02_AG (27.3%; 6/23) was
in the French data. The distribution of subtypes, accord-
ing to cohort country and risk group, are shown in
Additional file 1: Table S1.

Identification of MTCs
After the first analysis step (ML phylogenetic inference),
we identified 1125 putative MTCs comprising sequences
from the same country. Of these, 156 (13.9%), 93 (8.3%)
and 876 (77.9%) had bootstrap support of 50–65%, 66–
75% and >75%, respectively. Therefore, 77.9% of all clus-
ters fulfilled both criteria for MTCs in the first step (see
Additional file 2: Table S2). Each of the 1125 MTCs con-
sisted of 2–37 sequences from unique individuals, al-
though most (58%; n = 653) were small networks of two
individuals each. The largest MTC was for subtype B
and included 37 sequences from Austria. Large MTCs
consisting of ≥ 12 sequences were also identified for sub-
types C, G, F and CRF02. Finally, the biggest nationally
mixed MTC included 25 subtype B sequences from
Norway (n = 22) and Germany (n = 3) (Fig. 1).
Many subtype B clusters (n = 230) fulfilled the geo-

graphic criterion for MTCs, but had bootstrap support
below the threshold of 75% (see Additional file 2: Table
S2). Fifty-eight of those with ≥ 5 sequences underwent
the confirmatory analysis. This showed that initial clus-
tering was robust in all 58 subtype B MTCs; 40/148
(27.0%) with bootstrap support of 50–65% and 18/82
(22.0%) with bootstrap support of 66–75% always receiv-
ing a posterior probability support greater than 0.95.
After initial and confirmatory analyses, we identified

that 3700/8955 (41.3%) sequences belonged to MTCs.
Specifically, for subtype B, the sequences clustered in
MTCs ranged from 12% in the Netherlands to 63% in
Germany, while for subtype C, the proportion in-
cluded in MTCs ranged between 7% for the UK and

Table 1 Demographic and clinical characteristics of the study
population according to whether or not they belong to a
molecular transmission cluster

Non-clustered
n=5,255

Clustered
n=3,700

Overall
N=8,955

N (%) N (%) N (%) P-value

Sex < 0.001

Male 3805 (72) 3154 (85) 6959 (78)

Female 1120 (21) 331 (9) 1451 (16)

Unknown 330 (6) 215 (6) 545 (6)

Risk group < 0.001

MSM 2423 (46) 2557 (69) 4980 (56)

PWID 692 (13) 246 (7) 938 (11)

MSW 1510 (29) 577 (16) 2087 (23)

Haemophiliacs 10 (<1) 2 (<1) 12 (<1)

Other – unknown 620 (12) 318 (9) 938 (11)

Ethnicity < 0.001

White 2434 (46) 1419 (38) 3853 (43)

Black 377 (7) 72 (2) 449 (5)

Other 377 (7) 160 (4) 537 (6)

Unknown 2067 (39) 2049 (55) 4116 (46)

Country < 0.001

Canada 558 (11) 383 (10) 941 (11)

France 18 (<1) 5 (<1) 23 (<1)

Germany 641 (12) 901 (24) 1542 (17)

Greece 28 (<1) 7 (<1) 35 (<1)

Italy 909 (17) 188 (5) 1097 (12)

Netherlands 51 (1) 7 (<1) 58 (<1)

Norway 399 (8) 226 (6) 625 (7)

UK 975 (19) 584 (16) 1559 (17)

Austria 687 (13) 410 (11) 1097 (12)

Spain 989 (19) 989 (27) 1978 (22)

Subtype < 0.001

B 4195 (80) 3350 (91) 7545 (84)

C 352 (7) 81 (2) 433 (5)

A 192 (4) 68 (2) 260 (3)

CRF01_AE 156 (3) 36 (1) 192 (2)

CRF02_AG 224 (4) 89 (2) 313 (4)

D 42 (<1) 11 (0) 53 (<1)

G 45 (<1) 24 (0) 69 (<1)

F 49 (<1) 41 (1) 90 (1)

Sampling date < 0.001

1987–2002 1484 (28) 451 (12) 1935 (22)

2003–2006 1254 (24) 984 (27) 2238 (25)

2007–2008 1135 (22) 1062 (29) 2197 (25)

2009–2011 1004 (19) 956 (26) 1960 (22)

Not available 378 (7) 247 (7) 625 (7)

Table 1 Demographic and clinical characteristics of the study
population according to whether or not they belong to a
molecular transmission cluster (Continued)

Non-clustered
n=5,255

Clustered
n=3,700

Overall
N=8,955

N (%) N (%) N (%) P-value

Seroconversion date < 0.001

1981–1996 607 (12) 160 (4) 767 (9)

1997–2003 497 (10) 373 (10) 870 (10)

2004–2006 261 (5) 410 (11) 671 (8)

2007–2011 299 (6) 443 (12) 742 (8)

Not known 3591 (68) 2314 (63) 5905 (66)

Abbreviations: MSM men who have sex with men, PWID people who inject
drugs, MSW men who have sex with men and women
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44% for Spain (Table 2). In Spain, we identified that
the highest proportion of clustered sequences
belonged to CRF02_AG (38/89, 42.7%) and A (18/33,
54.6%) (Fig. 2). Canadian sequences, with respect to
their low numbers, represented the highest percentage
of clustered sequences for CRF01_AE (4/11, 36.4%)
and subtype D (5/12, 41.7%) (Table 2). Finally, 29/41
(70.7 %) of subtype F sequences from Austria clus-
tered together, including one MTC of 23 sequences
and three small clusters of two sequences each, and
12/17 (70.6%) of subtype G sequences from Italy clus-
tered together (Fig. 1b).
More specifically, for subtype B MTCs, 25/833 (3.0%)

were nationally mixed MTCs, comprising 231 from 3350
(6.9%) subtype B sequences clustered to MTCs originat-
ing from two or three of the following countries:
Austria, Germany, Italy, Norway, Spain and UK. Ten out
of 25 (40.0%) of these were identified from the initial
ML phylogenies, while another 15 (60.0%) were identi-
fied after the confirmatory analysis.

Association of clustering with demographic and clinical
factors
Table 3 presents the results from multivariable logistic
regression models for the association between the prob-
abilities of belonging to an MTC with other demo-
graphic or clinical factors. Women were less likely to
belong to an MTC than men (OR = 0.66; 95% CI, 0.56–
0.78; P < 0.001), as were those of black or other ethnicity
than white (black versus white: OR = 0.44, 95% CI,
0.32–0.62, P < 0.001; other ethnicity versus white: OR =
0.70, 95% CI, 0.55–0.88; P = 0.002). Sequences of sub-
types A and C and CRFs CRF01_AE or CRF02_AG were
significantly less likely to cluster than subtype B. MSM
were more likely to cluster than all other risk groups.
Younger age and being ART-naïve at sampling were also
associated with increased probabilities of belonging to
an MTC.
A trend was observed for an increased probability of

clustering in individuals who contributed samples in
more recent calendar periods and in PLWH with

A

B

Fig. 1 Number of sequences and cohort country for the largest molecular transmission clusters (MTCs) consisting of ≥ 10 sequences for subtype
B (a) and of ≥ 5 non-B and CRF_02_AG sequences (b)
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well-estimated seroconversion dates. Finally, clustering
probabilities differed by cohort country, with higher
probabilities observed in Germany and Canada followed
by Spain. Individuals followed up in Greece, the
Netherlands and France had the lowest probabilities of
belonging to an MTC. Repeating the analysis after exclu-
sion of participants belonging to one or all of these small
cohorts yielded estimates with negligible differences
compared with those of the main analysis.

Discussion
Phylogenetic analyses of ~9000 HIV-1 sequences re-
vealed that >40% of them belonged in MTCs. While this
observation is consistent with other reports of HIV-1
epidemic dispersal in these countries [29–34], our study
is among the first to investigate the structure of these

regional HIV-1 phylogenies in greater detail, using a
large-scale sequence dataset, dense reference sequence
sampling and associating multiple clinical and demo-
graphic factors with the dispersal of MTCs.
An additional strength of this study is that all the avail-

able sequences of non-B and CRF subtypes deposited in
the HIV Los Alamos database were used as reference se-
quences for phylogenetic analysis. For subtype B, we used
more than one-third of the publicly available references
sequences (14,946 of 42,470; 34.1%) after random selec-
tion representative of the global subtype B epidemic. Fi-
nally, MTCs were identified as those clustered sequences
fulfilling both phylogenetic (bootstrap value > 75% or pos-
terior probability support > 0.95) and geographic criteria
(75% of clustered sequences from the same region). To
date, there is no consensus on the methodology used to

Fig. 2 Clustering of HIV-1 sequences within the biggest molecular transmission clusters (MTCs) for subtypes A and G and CRF02_AG
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infer HIV-1 transmission clusters [35]. In our study we
used both geographic and phylogenetic criteria and a large
number of globally sampled reference sequences to iden-
tify MTCs.
Not surprisingly for these 10 countries, subtype B was

the most prevalent subtype in this dataset (84.3%),
followed by subtypes C (4.8%), CRF02_AG (3.5%), A
(2.9%) and CRF01_AE (2.1%), which is consistent with
previously reported data [29, 36, 37]. Notably, the prob-
ability of clustering in an MTC was significantly higher
among subtype B than non-B sequences (ORs,
CRF02_AG = 0.70, A = 0.65, C = 0.51 and CRF01_AE =
0.36; range of P-values 0.001–0.016) (Table 3). Some
studies have noted differences in the biological proper-
ties of HIV-1 subtypes [38, 39], but there is no conclu-
sive evidence that certain subtypes are more infectious
or have higher transmissibility than others. This is most
likely because of the high prevalence of subtype B infec-
tions in individuals enrolled in the study cohorts versus
non-B subtypes and recombinants, rather than differ-
ences in the transmissibility and infectivity of subtype B
viruses. It was the subtype B form of HIV-1 that was in-
troduced to Western Europe and this remains the most
prevalent subtype across Europe [29, 36]. However, in-
fections with non-B subtypes are more common among
individuals from highly endemic areas, with sex between
men and women being the predominant HIV risk factor.
The only exceptions in Western Europe are Greece and
Portugal, where subtypes G and A have spread success-
fully among the local populations [29, 40]. Given the
characteristics of the spread of these HIV-1 subtypes
throughout Western Europe, the finding that subtype B
infections have a higher probability of belonging to an
MTC reflects that local populations are more likely to
be infected within their country (e.g., through regional
networks). This hypothesis is further supported by the
differences across ethnic groups. In all comparisons,
samples from people of white ethnicity were much more
likely to contain sequences belonging to MTCs than
others (P < 0.001 in all cases). These findings suggest
that differences in the probability of belonging to an
MTC are likely to be associated with the fact that

Table 3 Factors associated with the probability of belonging to
a molecular transmission cluster: results from a multivariable
logistic regression model

Covariate Odds ratio 95% CI P-value

Sex

Male a 1

Female 0.66 (0.56–0.78) < 0.001

Unknown 0.44 (0.04–5.10) 0.514

Subtype

B a 1

CRF02_AG 0.70 (0.53–0.94) 0.016

C 0.51 (0.38–0.69) < 0.001

A 0.65 (0.48–0.89) 0.007

CRF01_AE 0.36 (0.24–0.54) < 0.001

Other (D,F,G) 1.04 (0.76–1.42) 0.814

Country

Germany a 1

Canada 0.91 (0.66–1.26) 0.584

Spain 0.7 (0.59–0.83) < 0.001

Norway 0.68 (0.49–0.94) 0.021

Austria 0.68 (0.50–0.92) 0.014

UK 0.5 (0.36–0.69) < 0.001

Italy 0.39 (0.29–0.53) < 0.001

France 0.23 (0.06–0.86) 0.028

Netherlands 0.2 (0.09–0.45) < 0.001

Greece 0.17 (0.07–0.41) < 0.001

Age at sample date

Per 10-year increase 0.79 (0.75–0.84) < 0.001

Sampling date

1987–2002 a 1

2003–2006 2.01 (1.67–2.43) < 0.001

2007–2008 2.38 (1.95–2.91) < 0.001

2009–2011 2.61 (2.12–3.19) < 0.001

Seroconverter

No a 1

Yes 1.44 (1.23–1.69) < 0.001

Risk group

MSM a 1

PWID 0.62 (0.52–0.74) < 0.001

MSW 0.69 (0.59–0.80) < 0.001

Haemophiliacs 0.27 (0.06–1.27) 0.097

Other – unknown 0.55 (0.42–0.72) < 0.001

Ethnicity

White a 1

Black 0.44 (0.32–0.62) < 0.001

Other 0.70 (0.55–0.88) 0.002

Table 3 Factors associated with the probability of belonging to
a molecular transmission cluster: results from a multivariable
logistic regression model (Continued)

Covariate Odds ratio 95% CI P-value

Unknown 0.91 (0.72–1.17) 0.467

ART-naïve at sampling

No a 1

Yes 1.19 (1.04–1.35) 0.010

Abbreviations: MSM men who have sex with men, PWID people who inject
drugs, MSW men who have sex with men and women
a Reference category

Paraskevis et al. BMC Medicine            (2019) 17:4 Page 8 of 11



residents of each country are more closely linked with
each, rather than the fact that they are infected with sub-
type B per se. In other words, if another subtype, such
as C, was dominant in Europe, we would probably ob-
serve a similar pattern, but with subtype C rather than
B. To date, non-B infections in Western Europe (except
for Greece and Portugal) are detected either as single
lineages – not grouped with others from the same area,
or forming small clusters of few sequences [29, 41]. Our
study highlights that non-B subtypes have not been asso-
ciated with widespread epidemics in Europe, but in some
countries there is some evidence for regional expansion
[20, 41, 42].
The subtype B epidemic was first described in the

MSM population, but was spread among PWID soon
afterwards [43]. We also found that the MSM population
was more likely to belong to MTCs than heterosexuals,
PWID and haemophiliacs, suggesting that the MSM
population has a greater chance of transmitting HIV be-
tween their members (Table 3). Others have also con-
firmed this trend [13, 44]. With respect to our findings,
there may be a higher prevalence of HIV in this group, a
higher probability of HIV transmission through MSM
practices or more risky behaviour [13, 44]. The probabil-
ity of clustering was also higher among younger and
ART-naïve individuals, reflecting that the younger age
group may engage in more risky behaviour and has
higher HIV-RNA levels [11].
Finally, the probability of belonging to an MTC dif-

fered by cohort country, with higher probabilities ob-
served in Germany and Canada, followed by Spain
(Table 3). Since nearly 50% of study sequences were
from the three countries with the highest probabilities
(namely Spain, UK and Germany), these observed higher
probabilities might be explained by the regional expan-
sion of local epidemics [20, 30, 34].
There are several limitations to this study, as in all mo-

lecular epidemiological studies. Firstly, the findings may
be distorted by the sampling method used. For instance,
in all cohorts, there were more sequences available with
more recent sampling dates. Significantly reduced sam-
pling from Greece, France and the Netherlands may have
biased our results. To minimise the effect of bias, we used
a) highly homogenous inclusion criteria; b) a large-scale
sequence cohort dataset and c) a large number of refer-
ence sequences (>34% of all available for subtype B and
100% for all other subtypes and CRFs analysed) to infer
the fine structure of regional epidemics and dispersal net-
works. Furthermore, clustering definition of sequences
uses both phylogenetic and geographic criteria, enabling
higher sensitivity for the identification of MTCs. Although
we used stricter definitions for networks, the current def-
inition remains credible because it has been confirmed by
Bayesian analysis [28, 45, 46]. Finally, to avoid sampling

bias – especially given the lower numbers of sequences
from the Greek, French and Dutch cohorts – we repeated
the multivariable analysis after excluding participants be-
longing to one of these three small cohorts. Results of this
repeated analysis yielded estimates with negligible differ-
ences compared with the main analysis.
We found that sequences from samples from individ-

uals with well-estimated seroconversion dates and more
recent sampling dates had a higher probability of be-
longing to MTCs in the specific regional cohorts. Given
improvements in the depth of sampling and efficiency of
sequencing, larger and more complete HIV-1 sequence
datasets are now available. This suggests that some of
the increase in the regional MTCs might, at least in part,
be attributed to better capturing of recent transmission
events. This is in line with previous findings, in which
recently infected patients were found to be crucial in the
spread of the HIV epidemic [8, 11]. Thus, prevention
measures should specifically target these newer MTCs of
specific risk groups. The public health implications of
such findings, including treatment strategies, are of spe-
cial interest.

Conclusion
Using a large-scale dataset comprising protease and par-
tial RT sequences from unique patients from nine Euro-
pean countries and Canada, which were linked to
demographic and clinical data, we identified that a high
proportion (>40%) of PLHIV belong to an MTC. The
epidemic appears to be driven by subtype B viruses
spreading among young people in the MSM population.
We also found that the recent increase in regional epi-
demics might, at least in part, be attributed to recent
transmission clusters and not the growth of older, estab-
lished clusters. This finding is in line with recent obser-
vations that recently infected patients are crucial in
spreading the HIV-1 epidemic and is of significant im-
portance for designing prevention public health inter-
vention strategies.
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