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Abstract

Background: Risk prediction models are commonly used in practice to inform decisions on patients’ treatment.
Uncertainty around risk scores beyond the confidence interval is rarely explored. We conducted an uncertainty
analysis of the QRISK prediction tool to evaluate the robustness of individual risk predictions with varying modelling
decisions.

Methods: We derived a cohort of patients eligible for cardiovascular risk prediction from the Clinical Practice
Research Datalink (CPRD) with linked hospitalisation and mortality records (N = 3,855,660). Risk prediction models
were developed using the methods reported for QRISK2 and 3, before adjusting for additional risk factors, a secular
trend, geographical variation in risk and the method for imputing missing data when generating a risk score
(model A–model F). Ten-year risk scores were compared across the different models alongside model performance
metrics.

Results: We found substantial variation in risk on the individual level across the models. The 95 percentile range of
risks in model F for patients with risks between 9 and 10% according to model A was 4.4–16.3% and 4.6–15.8% for
females and males respectively. Despite this, the models were difficult to distinguish using common performance
metrics (Harrell’s C ranged from 0.86 to 0.87). The largest contributing factor to variation in risk was adjusting for a
secular trend (HR per calendar year, 0.96 [0.95–0.96] and 0.96 [0.96–0.96]). When extrapolating to the UK population,
we found that 3.8 million patients may be reclassified as eligible for statin prescription depending on the model
used. A key limitation of this study was that we could not assess the variation in risk that may be caused by risk
factors missing from the database (such as diet or physical activity).

Conclusions: Risk prediction models that use routinely collected data provide estimates strongly dependent on
modelling decisions. Despite this large variability in patient risk, the models appear to perform similarly according
to standard performance metrics. Decision-making should be supplemented with clinical judgement and evidence
of additional risk factors. The largest source of variability, a secular trend in CVD incidence, can be accounted for
and should be explored in more detail.
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Background
Risk prediction models have become an important
part of clinical decision-making. They provide a quick
and simple way to assess a patient’s risk of a given
disease or particular event which can then guide
treatment. A recent review by Damen et al. [1] found
363 models for predicting a patient’s risk of develop-
ing cardiovascular disease (CVD), and a review by
Goldstein et al. found 107 models from 2009 to 2014
that use routinely collected data from electronic
health records (EHRs) [2]. In the UK, national guide-
lines recommend that clinicians use a risk prediction
model (QRISK2 [3]) to determine whether to pre-
scribe a statin for primary prevention of CVD (if a
patient’s CVD risk is 10% or more [4]). There have
also been recent initiatives of promoting public use of
similar tools with completing of online questionnaires
and provision of individual estimates of ‘Heart Age’
[5, 6]. This has resulted in considerable publicity and
concern as four-fifths of those that participated were
found to have a heart age which exceeded their
chronological age [7, 8], when in reality this is
probably not true. The public availability of these al-
gorithms contradicts the NICE guidance, which em-
phasises the approximate nature of these algorithms
when applied to a specific patient and the need for
interpreting the risk scores alongside informed clinical
judgement [4].
The validity and usefulness of risk prediction models

are currently assessed using population-level statistics
that measure calibration and discrimination. Calibration
[9] is a measure of predictive accuracy assessing whether
the average predicted risk is close to the observed risks
in the overall population or in subgroups of that popula-
tion. Discrimination is a relative measure of whether pa-
tients with higher risks are more likely to have an event
(i.e. in a logistic regression model) or more likely to have
an event sooner (i.e. in a survival analysis) than those
with lower risks. In logistic regression, the area under
the curve [9] can be calculated, whereas for survival
models, Harrell’s C is a commonly used metric [10]. One
characteristic of note of these measures is that they are
population-based and derived from classifying larger
groups of patients. They do not provide evidence of the
level of uncertainty around a risk prediction for an indi-
vidual patient beyond the statistical confidence interval.
Uncertainty on a patient level may occur if major risk
factors are not considered, models are applied outside
the setting in which they were developed or different
EHR systems or coding dictionaries are being used with
varying standards in data collection [11, 12]. Further-
more, modelling decisions such as which variables to in-
clude or how to define the cohorts for the development
of the models may also yield different risk predictions

for the same patient. Variable selection is often based on
prior/expert knowledge, which may result in different
models depending on which researchers are involved.
While data-driven methods exist for variable selection, it
is unclear what the best way to do this is and again dif-
ferent methods may result in a different set of predic-
tors. Recent research found that well-established risk
prediction models (such as Framingham and QRISK2)
provided inconsistent predictions for individuals [13]
despite these models having good population-level per-
formance metrics. Uncertainty analyses have been pro-
posed in order to establish whether models can be used
for individual decisions [14]. These go beyond the clas-
sical statistical confidence interval which evaluates the
uncertainty associated with the fitted values, a group
mean for all patients with the same covariates. Instead
they evaluate the uncertainty associated with other
sources such as the modelling decisions that are made.
The objective of this study was to conduct an uncer-

tainty analysis of the QRISK2 risk prediction model for
CVD and to evaluate whether modelling decisions, in
particular what patient data we choose to include in the
model, had a meaningful impact on individual risk pre-
dictions (i.e. whether they substantially changed individ-
ual risk predictions). We focus in this study on the type
of uncertainty which is known as ‘epistemic’ and caused
by a lack of knowledge [14], as opposed to aleatory un-
certainty, which is inherent due to the complex pro-
cesses going on in the human body. This study consisted
of a comparison of alternative models, evaluating
whether they changed individual risk predictions and
population-level performance metrics. Clinicians could
face substantial uncertainty if alternative models that
perform equally well give different predictions for their
patients.

Methods
Overview of the development of QRISK risk prediction
models
The models developed in this paper are based on the
QRISK series of models. These CVD risk prediction
models were built using routinely collected EHRs from
primary care practices in the UK. The second version
QRISK2 [3] is currently being used by general practi-
tioners (GPs) in routine clinical practice. QRISK3 [15]
was developed in 2017 and is next in line to be used in
practice. All individuals aged 25–84 with no medical his-
tory of CVD or prior statin treatment are eligible for risk
prediction using this model. We have chosen to base the
current analysis around these because they are widely
used in clinical practice and have been developed and
validated in very large populations (QRISK3 was devel-
oped in 4,019,956/3,869,847 females and males) report-
ing strong performance [3, 15, 16]. Variables proposed
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for inclusion in these models are those that are known
or thought to affect cardiovascular disease from litera-
ture and NICE guidelines.

Study population
This study used data from the Clinical Practice
Research Datalink [17] (CPRD) linked with Hospital
Episode Statistics [18] (HES), mortality records from
the Office for National Statistics [19] (ONS) and
Townsend deprivation data. CPRD is a primary care
database that is representative of the UK in terms of
age, sex and ethnicity [17]. It contains the anon-
ymised EHRs from a large group of general practices
and is comparable to The Health Improvement Net-
work (THIN) database which was used in the external
validation of QRISK2 [20]. The study population was
derived using the same definitions as specified in
QRISK3 [15], the most recent version. Overall imple-
mentation could be followed closely, although code
lists for predictor variables and algorithms for deriv-
ing test data were not available, therefore differences
will exist here. It included patients aged 25–84 with
no history of CVD or statin medication prior to the
index date. The index date was the latest date of 25th
birthday, 1 year of follow-up for a permanently regis-
tered patient or 1 Jan. 1998 (study start date). Follow-
up ended on the earliest date of the patient’s transfer
out of the practice or death, last data collection for
practice or study end date of 31 Dec. 2015. The out-
come of interest was defined as the time until the
first CVD event (transient ischaemic attack, ischaemic
stroke or coronary heart disease) identified either
through CPRD, HES or ONS records (code lists pro-
vided in Additional file 1).

Definition of different risk prediction models
A series of different risk prediction models were devel-
oped in the study population with increasing amounts of
information. Each model contained all the same covari-
ates as the previous one, with some extra variables added
to the model. Variables beyond those included in
QRISK2 or 3 were identified in literature as thought to
be predictive, similar to the method for identifying vari-
ables for inclusion in QRISK. We emphasise the point
that by selecting variables in such a fashion, we are not
trying to answer the question ‘what is the best variables
to predict CVD with?’, we are asking ‘how sensitive are
individual risks to the addition of new variables?’. The
following models were fitted:

(i) Model A (same covariates as QRISK2 [3]) including
age, body mass index (BMI), atrial fibrillation,
cholesterol/high-density lipoprotein (HDL) ratio,
chronic kidney disease (CKD, stage 4/5), ethnicity,

family history of CVD, treated hypertension,
rheumatoid arthritis, systolic blood pressure (SBP),
smoking status, type 1 diabetes, type 2 diabetes,
Townsend deprivation score

(ii) Model B (same covariates as QRISK3 [15]),
covariates added: atypical antipsychotic use,
corticosteroid use, CKD (stage 3/4/5 instead of 4/5),
erectile dysfunction, HIV/AIDS, migraine, severe
mental illness, SBP variability, systemic lupus
erythematosus

(iii)Model C included covariates believed to be
predictive of CVD risk as identified from literature,
covariates added: alcohol abuse [4], anxiety [21], left
ventricular hypertrophy [13], number of days with a
medical record in year prior to index date [13] and
number of prescription items in 1 year prior to
index date [13]

(iv)Model D added the calendar time at the patient’s
index date to account for a secular trend in
CVD [22]

(v) Model E added the region the patient resides in to
account for regional variation in CVD incidence
[23] (taken at the strategic health authority (SHA)
level); after a restructuring in 2013, SHAs now
represent 10 purely geographical locations across
England [24]

The same methods were used to derive variables as in
QRISK3 when possible. Detailed information on the der-
ivation of all covariates can be found in Additional file 1.

Development of risk prediction models
We used multiple imputation by chained equations to
impute missing data for BMI, SBP and SBP variability,
cholesterol, HDL, smoking status and ethnicity. All pre-
dictor variables from model E were included as predic-
tors in the imputation procedure, as well as the Nelson
Aalen estimate of the cumulative baseline hazard at the
point of censoring or an event. The program used to im-
pute the data was the R package MICE [25]. We im-
puted 20 datasets and carried out 20 iterations for each
dataset. Full details about the imputation process can be
found in Additional file 2. The same randomly selected
200,000 patients were removed from each dataset, with
the remaining patients making up the development co-
hort. All models were developed on the same set of 20
imputed datasets. For model development, Cox propor-
tional hazards models were fitted, similar to QRISK, pre-
dicting the 10-year risks of developing CVD and
estimating the hazard ratios (HRs) for each of the covar-
iates. Models were developed separately for females and
males. For model E, a random intercept model was fitted
for region (strategic health authority level). Fractional
polynomials for age and BMI were tested when
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developing model A using the R package mfp [26], and
these fractional polynomials were used in all subse-
quent models. Fractional polynomials were tested for
a secular trend in model D and were used in all sub-
sequent models. When developing risk scores, survival
estimates were combined using Rubin’s rules on the
log(−log) scale [27].

Validation of models
Key aspects of data and model B were compared with
QRISK3 to highlight that the cohort used to develop
the models was similar. We have chosen to make
these comparisons with QRISK3 as the cohort is de-
fined over the same time period. We compared inci-
dence rates, distribution of covariates, HRs and
predicted risks. This was done for model B, as this
was developed using the same covariates as QRISK3,
the comparator. The calibration of model B was also
tested using internal validation with 200,000 randomly
sampled patients to make up the test data and the
remaining patients to develop the models (split sam-
ple approach). Average predicted risks were compared
with the Kaplan-Meier survival estimate at 10 years to
assess calibration across groups defined by the 10th
percentile of risk.
Various model performance measures evaluated the

performance of all our models [28–30]. These in-
cluded a variety of discrimination measures (Harrell’s
CH [10], Uno’s CU [31], Gonen and Heller’s CGH [32]
and Royston and Saurbrei’s D measure [33]), two
measures of explained randomness (Kent and O’Quig-
ley’s ρw,a [34], O’Quigley et al.’s ρk [35]), one measure
of predictive accuracy (Integrated Brier Score (IBS)
[36, 37]), and four measures of explained variation
(Kent and O’Quigley’s R2

PM [38], then Roystons R2,
Roystons R2

D [39] and R2
IBS [36], which are based on

the measures ρk, D and IBS respectively). These were
calculated to validate the models, but also as a key
outcome in our study. We were interested in knowing
to what extent the model performance metrics change
between models if those models are predicting sizably
different risks for individuals. While these metrics are
not designed to assess model performance on an indi-
vidual level, they are commonly used to evaluate
models which are in turn used for individualised risk
prediction. It is therefore important to know how
sensitive they are to changes in risk on that individual
level. We therefore report a range of metrics to help
highlight which types of metric may best explain these
changes in individual risk. When possible, performance
metrics were calculated using a split sample approach
(validation cohort size 200,000). ρk, R

2
K and CGH are based

on model features rather than event and censoring times,
and therefore, the split sample approach does not apply.

CGH was calculated on the model developed on a sample
of 200,000 patients as the algorithm used was unable to
handle larger sample sizes.
The three concordance indexes estimate the probabil-

ity that for a randomly selected pair of patients, the
higher risk patient will have the event sooner. The range
of values is 0.5–1, with a higher value indicating better
performance. The D statistic, which calculates the log
HR between two groups of patients split at the median
of the linear predictor, does not have this restriction and
may take values between 0 and infinity. Austin et al.
found that CH and CU were equally sensitive to the in-
clusion of new novel risk factors and were more sensi-
tive than CGH. They also echo the sentiments of Harrell
and Uno that concordance statistics may not be sensitive
when choosing between competing models and mea-
sures of explained variation may be more sensitive in de-
tecting differences in predictive ability. The measures of
explained variation and explained randomness may take
values between 0 and 1. Choodari-Oskooei et al. [28]
recommended using explained variation measures R2

PM

and R2D for best meeting their criteria (independence
from censoring, monotonicity, interpretability and ro-
bustness against outliers). For explained randomness
ρw,a is recommended by both Choodari-Oskooei et al.
[40] and Austin et al. [30], despite their differing criteria
of importance. This measure is very similar to R2

PM,
where the variance error term σ2/6 is replaced by 1.
Finally, the integrated brier score is included as it has
a different aim, which is to calculate the probability
of correctly predicting an event. The development
and validation of models was checked against the rec-
ommendations for reporting in the TRIPOD state-
ment (Additional file 3).

Comparison of predicted risks between different models
After developing the models, the next step was to pro-
duce risk scores, replicating the process of someone hav-
ing their risk assessed in practice. In this situation, if a
patient has missing data for specific covariates, the
QRISK calculator will impute this using mean imput-
ation based on age, sex and ethnicity [41]. This involved
setting all originally missing values of BMI, cholesterol
HDL ratio, SBP and SBP variability, back to missing, and
then imputing these using mean imputation based on
age, sex and ethnicity, giving one mean imputed dataset.
The same 200,000 patients were then extracted from the
mean imputed dataset giving the test cohort. For each
patient in the test cohort, a predicted risk according to
each of model A–E was then generated. This is like a
split sample approach, apart from the fact that the im-
putation method for the development cohort and test
cohort is different (as is the case in practice).
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Finally, risks were also generated using model E, but
for a test cohort made up of 200,000 patients from one
of the multiply imputed datasets, rather than mean im-
puted. This represents a best estimate of the true values
of each patient’s missing data. The aim of this was to
understand how much variation in patient risk may be
masked by using mean imputation to generate a risk, as
opposed to prospectively collecting their real values, as
recommended by NICE. This will be referred to as
model F.
The predicted CVD risks for each patient were com-

pared between model A and models B–F. We started
with model A as this model replicates the risk scores de-
veloped using QRISK2, which is the model currently
used in practice. This evaluated the magnitude in which
risks for an individual patient change dependent on what
patient characteristics were introduced into the model.
Patients were grouped into risk groups of width 1% ac-
cording to their risk in model A. Then for models B–F,
we provide histograms to illustrate the distribution of
risks for patients from the same group, report the 2.5–
97.5 percentile range for each group (average 95% CI ac-
cording to model A also provided for comparison) and
report the proportion of patients from each group with a
risk above or below 10%, which is the threshold for be-
ing eligible for a statin prescription in England [4].
The final analysis consisted of the extrapolation of re-

sults to the population of England in order to assess
what proportion of patients would have their treatment
pathway altered depending on the model used. We ex-
trapolated the proportion of patients eligible for CVD
risk prediction in CPRD on 12 Jan. 2016 to the popula-
tion in England [42] and then estimated the level of re-
classification when using model F instead of model A
(QRISK2). Eligibility for patients on 1 Jan. 2016 was the
same as in the development cohorts, except the index
date was set to 1 Jan. 2016 for all patients. This dataset
was mean imputed when calculating risks according to
model A–E, and one stochastically imputed dataset
when calculating risks according to model F.

Sensitivity analyses
We found a large effect of a secular trend in CVD inci-
dence, resulting in 56% of the patients from the 2016 co-
hort to be reclassified from above to below the statin
treatment threshold of 10% (see results—extrapolation
to English population). We therefore ran two sensitivity
analyses to validate this finding. First, we verified the ex-
istence of the secular trend reporting crude incidence
rates per calendar year amongst the model derivation
cohort. For the second, we evaluated the existence of the
secular trend in a cohort of statin users. For this cohort,
all patients that were eligible for linkage and had more
than one statin prescription between ages 25 and 85 and

dates 1 Jan. 1998 and 31 Dec. 2015 were included.
Follow-up started on the first statin prescription date
and ended after a 6-month gap with no prescription. A
patient could re-enter the cohort if they initiated statins
again. A patient was not followed up after the event of
interest (CVD). We check for the presence of this trend
amongst the statin users’ cohort as the secular trend in
CVD incidence could be explained by an increase in sta-
tin use.
To analyse this data, each patient’s follow-up was seg-

mented into time followed up in each calendar year. It
was also recorded whether a patient had an incident
CVD event in that calendar year. We then fit a Poisson
model to the data, outcome being the CVD event,
adjusting for calendar year and using the time at risk in
each year as an offset. This was done for the develop-
ment cohort and the statin users’ cohort. Another model
was also fit to the statin users’ cohort adjusting for the
risk score at the start of the period of statin treatment as
well. This model attempts to find out whether the secu-
lar trend could also be explained by better prescribing of
statins to those who are at high risk, through the use of
models such as QRISK. The secular trend would only be
of interest if it is still present in this model, which ac-
counts for a potential change in the use of statins.

Software
Extraction of data and cohort derivation was done using
SAS/STAT software, version 9·4 for Windows. SAS and
all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute
Inc., Cary, NC, USA. All analyses were conducted using
R version 3.4.2.

Results
Validation of the models
CPRD contained 6,869,457 patients with > 1 day follow-
up aged 25–84 during the study period. Of these, 3,855,
660 (from 392 practices) were eligible for linkage to
HES, ONS and Townsend quintiles and were without
history of CVD or statin treatment at baseline. Table 1
contains the baseline characteristics for all patients who
met the study eligibility criteria, which includes all pa-
tients which we generate risk scores for. There was
42.07% and 38.21% of data recorded for ethnicity for the
male and female cohorts respectively, 68.83% and
53.62% for BMI, 38.48% and 35.71% for cholesterol/HDL
ratio, 81.01% and 59.21% for SBP, 50.39% and 20.94% for
SBP variability and 75.18% and 65.17% for smoking sta-
tus. The mean ages were 43.07 and 41.81 for females
and males and the mean BMI was 25.60 and 26.12, while
cholesterol/HDL ratio was 3.72 and 4.48 respectively.
More importantly, we found these values to match
closely with those from the derivation cohort of QRISK3
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(age 43.3 and 42.6, BMI 25.4 and 25.6, cholesterol/HDL
ratio 3.7 and 4.4 respectively), a full comparison given in
Additional file 4: Table S1. The prevalence of medical
history variables was broadly similar with that in
QRISK3. Similarly, the incidence rate of CVD
matched closely for both datasets (for females, there
were 6.19 CVD cases per 1000 person-years in our
study population compared to 6.27 in QRISK3; for
males, these were 8.18 vs 8.24 respectively), shown in
Additional file 4: Tables S2.1 and S2.2.
The HRs for model B (Additional file 4: Table S3)

were generally consistent with those reported in
QRISK3. The HRs for covariates introduced for
models C, D and E are reported in Table 2. All intro-
duced covariates had a sizeable effect on risk. For ex-
ample, the HRs for patients in the North West were
1.17 for females and 1.14 for males, compared to 0.92
and 0.94 respectively for patients from South Central.
The HR associated with calendar time was also large,
with a 0.95 and 0.96 reduction for females and males
respectively each year.
The calibration plots for model B showed overall good

calibration (Fig. 1), which is expected considering these
are optimistic calibration plots (internal validation only).
The female model is very well calibrated with the cali-
bration error no larger than 0.5% for any 10th percentile

Table 1 CVD incidence and baseline characteristics of the entire
study population

CPRD female N =
1,965,078

CPRD male
N = 1,890,582

Outcome variables

Incident CVD cases 86,547 107,051

Person years 13,801,919 12,977,235

Rate per 1000 person-years 6.27 8.24

Demographics

Age 43.07 (15.94) 41.84 (14.57)

Ethnicity

Recorded 42.07% 38.21%

White/not recorded 94.12% 94.48%

Indian 1.14% 1.19%

Pakistani 0.45% 0.49%

Bangladeshi 0.14% 0.19%

Other Asian 0.84% 0.78%

Black 1.73% 1.52%

Chinese 0.33% 0.23%

Other 1.27% 1.12%

Test data

BMI 25.60 (5.60) 26.12 (4.54)

Cholesterol/HDL ratio 3.72 (1.20) 4.48 (1.40)

SBP 123.91 (18.28) 130.03 (16.48)

SBP variability 9.47 (5.98) 10.13 (6.80)

Smoking status Never = 56.04%,
Ex = 16.97%,
Current = 26.99%

Never = 46.63%,
Ex = 17.48%,
Current = 35.99%

Medical history

Atrial fibrillation 0.44% 0.57%

Atypical antipsychotic
medication use

0.30% 0.33%

Chronic kidney disease

Stage 3/4/5 0.45% 0.32%

Stage 4/5 0.12% 0.15%

Corticosteroid use 0.48% 0.30%

Erectile dysfunction NA 1.45%

Family history of CVD 15.08% 11.02%

HIV/AIDS 0.06% 0.09%

Migraine 7.27% 2.94%

Rheumatoid arthritis 0.69% 0.26%

Severe mental illness 8.63% 4.59%

Systemic lupus erythematosus 0.10% 0.01%

Treated hypertension 6.18% 4.50%

Type 1 diabetes 0.21% 0.28%

Type 2 diabetes 1.16% 1.42%

Variables not in QRISK

Number medical records in 14.94 (13.97) 8.83 (11.45)

Table 1 CVD incidence and baseline characteristics of the entire
study population (Continued)

CPRD female N =
1,965,078

CPRD male
N = 1,890,582

the previous year

> 50 medical records in the
previous year

2.84% 1.37%

Number of prescription items
in the previous year

9.60 (19.87) 5.72 (16.00)

Number with > 50 prescription
items in the previous year

3.49% 2.04%

Alcohol abuse 0.65% 1.46%

Anxiety 13.44% 7.96%

Left ventricular hypertrophy 0.14% 0.18%

Region

North East 1.89% 1.96%

North west 13.10% 13.38%

Yorkshire and the Humber 3.93% 3.85%

East Midlands 3.14% 3.23%

West Midlands 11.04% 11.28%

East of England 11.67% 11.68%

South west 11.99% 11.88%

South Central 12.84% 12.81%

London 17.52% 17.18%

South East Coast 12.88% 12.74%
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group. The largest miscalibration for the male model is
for group 9, an under prediction by 1.29%.
The overall performance metrics calculated for each of

the models are given in Table 3. The largest increase is
in D and R2

D (which is derived from D), which increase
from 2.39 to 2.55 and 0.58 to 0.61 (females) across the
models respectively. There was little change in any of
the three C statistics across the different models. While
Uno’s C, CU, went from 0.85 to 0.88 for the female co-
hort, there was not a consistent upward trend in the
male models. Harrell’s C, the most commonly reported
metric, was very insensitive to the model choice. Mea-
sures of explained variation and randomness showed an
upward trend from model A to model F, while measures
derived from the IBS were not sensitive to model choice.

Analysis of risk scores
Table 4 shows the distribution of changes in predicted
CVD risks when using models B–F instead of model A.
Females with a risk between 9 and 10% with model A
(QRISK2) were found to have risks with a 95% percentile
range of 8.0 to 13.6 with model B (QRISK3) and range
of 4.4 to 16.5% with model F. The impact of the choice
of model on the distribution of risks increased with
higher CVD risks. For females with a risk of 19 to 20%
with model A, their risks were between 9.6 and 34.6
(95% percentile) when using model F. These are shown
graphically in Fig. 2.
Table 5 summarises the number of patients in the

study population who were reclassified with models B–F
based on a treatment threshold of 10%. In the female

Table 2 HRs (95% CI) of fixed and random effects introduced
into models C, D and E. HRs reported are all from model E

Female Male

Fixed effects

Alcohol abuse 1.36 (1.25–1.48) 1.32 (1.25–1.39)

Anxiety 1.10 (1.08–1.13) 1.10 (1.07–1.12)

Left ventricular
hypertrophy

1.65 (1.53–1.78) 1.67 (1.56–1.80)

> 50 medical records
in the year prior to
the index date

1.30 (1.25–1.36) 1.25 (1.18–1.31)

> 50 prescription items
in the year prior to the
index date

1.55 (1.51–1.59) 1.49 (1.44–1.54)

Calendar time (by year) 0.96 (0.95–0.96) 0.96 (0.96–0.96)

Region (random effect)

North East 1.07 (1.00–1.14) 1.09 (1.08–1.09)

North west 1.17 (1.11–1.24) 1.14 (1.13–1.15)

Yorkshire and the Humber 1.11 (1.05–1.19) 1.09 (1.08–1.10)

East Midlands 1.00 (0.93–1.06) 0.99 (0.98–0.99)

West Midlands 0.99 (0.94–1.05) 0.99 (0.99–1.00)

East of England 0.94 (0.89 1.00) 0.94 (0.93–0.94)

South west 0.98 (0.92 1.04) 0.99 (0.99–0.99)

South Central 0.92 (0.87–0.98) 0.94 (0.94–0.95)

London 0.89 (0.84–0.95) 0.88 (0.88–0.89)

South East Coast 0.96 (0.90–1.02) 0.97 (0.97–0.97)

Fig. 1 Calibration plots by 10th percentile of risk for model B
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cohort, 8% of those with a CVD risk between 7 and 8%
with model A were reclassified to a risk of ≥ 10% with
model F (for risks between 8–9% and 9–10%, this was
17% and 28% respectively). Substantially more patients
were reclassified downward with predicted risks reduced.
In the female cohort, 32% of those with a risk between
12 and 13% were reclassified to a risk of < 10% with
model F (for risks between 11–12% and 10–11%, this
was 43% and 57% respectively). Similar effects on the
risk scores were found amongst the male cohort.

Extrapolation to English population
Figure 3 shows the proportion of patients reclassified
from each risk group when model F is used, applied to
the cohort of patients eligible in CPRD for risk assess-
ment on 1 Jan. 2016. When using model F, there was a
substantive reclassification downwards across the higher
risk categories, in which 64% of females and 52% of
males with a risk > 10% would no longer be eligible for
statin treatment (Additional file 4: Table S4). This shift
is caused by the introduction of the secular trend. When
extrapolating results to the population of England, there
were 37,273,200 people aged 25–84 in England [42] in

2016 and 29,382,463 would have been eligible for risk
assessment using QRISK2 (79% of patients registered on
1 Jan. 2016 were eligible). 6,652,920 of these patients
would be classified as high CVD risk (≥ 10%) using
model A (QRISK2). If model F was used, 3,792,474
(57%) of them would be reclassified downwards and
cross the treatment threshold. The 57% is calculated as
the average of the 64% of females and 52% of males,
weighted by the female to male ratio. A full breakdown
of these calculations and data used to derive Fig. 3 is in
Additional file 4: Table S4 (additional text).

Post hoc analyses of the secular trend
There was a strong secular trend in CVD incidence in
both the female and male derivation cohorts as can be
seen in Fig. 4. The RR was 0.96 (0.96–0.96) and 0.97
(0.97–0.97) annually for females and males respectively
(Table 6). A stronger trend was found in the cohort of
statin users, with a RR of 0.94 (0.94–0.94) for both co-
horts. Adjusting for baseline QRISK2 score, the annual
reduction in CVD incidence was unchanged from 0.94
(0.94–0.94) for the female cohort and changed slightly
to 0.94 (0.94–0.95) for the male cohort.

Discussion
In this study, we assessed the uncertainty in individual
risk predictions by using different modelling approaches.
A large amount of variability in individual risk predic-
tions was found when taking into account different in-
formation about the patient. The introduction of secular
trend substantially changed individual risk predictions.
The largest uncertainty in individual risk prediction oc-
curred in patients with higher risks (i.e. those who are
considered for statin treatment) with a large number of
patients being reclassified as no longer requiring statin
treatment.
The QRISK models did not consider the secular trend,

and their follow-up was also restricted to more historic
data (starting in 1998 [43]). In the present study, the lar-
gest contributing factor to the within-person variability
in the CVD estimates was the secular trend. After intro-
ducing the secular trend into the modelling, 62% of fe-
males and 51% of males in 2016 would be classified
down from a CVD risk ≥ 10% to less than 10% risk and
thus no longer be eligible for statin treatment according
to guidelines. When extrapolating to the population in
England, this could affect almost 4 million individuals.
Other studies have also reported a reduction in the CVD
incidence over time [22, 44, 45]. A nation-wide study in
England reported that the rate of hospitalisations for
acute myocardial infarction reduced by 5% annual be-
tween 2002 and 2010, which is similar to our esti-
mates [44]. Better CVD prevention may have
contributed to this decline, which could include an

Table 3 Performance metrics for each of the models

Measure Model A Model B Model C Model D Model E Model F

Female

IBS 0.02 0.02 0.02 0.02 NA NA

R2IBS 0.12 0.13 0.13 0.13 NA NA

R2PM 0.65 0.65 0.66 0.67 0.67 0.67

Ρ2k 0.85 0.86 0.86 0.86 0.86 NA

Ρw,a 0.76 0.76 0.76 0.77 0.77 0.77

R2 0.62 0.62 0.63 0.63 0.64 NA

D 2.39 2.42 2.49 2.52 2.52 2.55

R2D 0.58 0.58 0.60 0.60 0.60 0.61

CH 0.86 0.87 0.87 0.87 0.87 0.87

CU 0.85 0.86 0.86 0.86 0.86 0.88

CGH 0.81 0.82 0.82 0.82 NA NA

Male

IBS 0.03 0.03 0.03 0.03 NA NA

R2IBS 0.12 0.12 0.12 0.12 NA NA

R2PM 0.62 0.63 0.63 0.63 0.64 0.64

Ρ2k 0.78 0.79 0.79 0.79 NA NA

Ρw,a 0.73 0.73 0.73 0.74 0.74 0.75

R2 0.49 0.49 0.50 0.50 NA NA

D 2.12 2.12 2.18 2.21 2.21 2.24

R2D 0.52 0.52 0.53 0.54 0.54 0.55

CH 0.84 0.84 0.84 0.84 0.84 0.85

CU 0.75 0.74 0.74 0.74 0.74 0.77

CGH 0.81 0.81 0.81 0.82 NA NA
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increase in statin use [46]. Given the use of these models
is mandated in NICE guidelines, it is quite likely this is
caused by QRISK resulting in a prediction paradox [47],
and the increase in statin use could explain this secular
trend. However our analyses found that the cohort of
statin users also showed a decreased CVD risk over
time, suggesting that other factors may have contributed
to the decline in CVD incidence. It is important that cli-
nicians and patients are made aware of this as inclusion
of the secular trend into the QRISK models could mas-
sively reduce the number of patients who were eligible
to receive treatment with statin therapy. There are many
ways to address a secular trend in predictive models.

The first is to re-calibrate the model to the time period
of interest [9, 48], which is effectively what QRISK de-
velopers do by updating the time period in which they
derive the model each year. However this still allows for
a large un-modelled secular trend occurring between the
study start and end date. This can also be done on a
continuous scale using continuous model/Bayesian up-
dating and can be used with a forgetting factor to down
weight historical data [48]. However this also constitutes
developing a model in some data, and updating it in
light of new data, and therefore suffers the same prob-
lems. Varying coefficient models are also available which
allow the relationship between predictors and outcomes
to vary over time [48]. Our approach is equivalent to a
special case of these models, where only the intercept is
allowed to vary over time. The use of varying coefficient
models to model the secular trend should be considered
in future work, although a more detailed assessment of
whether the secular trend is associated with changes in
database usage, and the role of statin use on the secular
trend would have to be carried out.
Other factors also contributed to non-negligible levels

of variability in risk prediction, for example the effect of
using mean imputation to impute patient data. This is
relevant because we found there are missing data
amongst the statin users’ cohort at statin initiation,
which is the group of patients who should be having
their risk assessed. For these patients, using mean im-
putation adds an avoidable level of uncertainty to the
risk score. It is therefore important to measure all risk
factors and include the measurements rather than rely-
ing on mean imputed values. Beyond this, we
highlighted the variability in risk scores caused by intro-
ducing a variety of risk factors into the models. All fac-
tors that were introduced into the models have been
shown in the literature to be risk factors of CVD [4, 13,
21, 22]. However there are many other factors that we
could not evaluate, such as diet [49, 50], level of physical
inactivity [51], an accurate measure of alcohol consump-
tion, transaminase levels [52], C-reactive protein levels
[53] or biomarkers and genetic information [54, 55].
This means the level of uncertainty associated with a
risk score is likely to be far higher than what we have
been able to highlight in this paper. Despite this, there is
no feasible way for these risk factors to be incorporated
into a model used at point of care in routine practice, as
they are not routinely recorded. We are not trying to
recommend the collection and inclusion of such factors
to improve the current models used in practice. Rather,
we have highlighted that the introduction of new risk
factors that could be measured has a sizeable effect on
individual risk, and this effect would be bigger if one
were able to collect such risk factors and incorporate
them also.

Fig. 2 Distribution of risks according to each model for those with
risk 9–10% in model A
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This study found that widely used population-level
performance metrics of risk predictions were not very
sensitive with varying modelling approaches in contrast
to the individual risk predictions. Harrell’s C statistic
[10] is the most commonly used performance metric but
the comparisons between models showed marginal
change. This finding is consistent with literature that re-
ported that in well-performing models, C statistics are
not sensitive to the introduction of new covariates [30,
56]. The measures of explained variation and random-
ness were more sensitive to the modelling decisions,
mostly increasing by 0.2 across all the models. The D
statistic showed the largest absolute increase, although
this is unsurprising given it is not bounded by 0 and 1.
While none of these metrics were developed to assess
variability on the individual level, the large variability in
individual risk but lack of variability in population-level
performance metrics is of importance to the patient be-
ing treated. It should also be noted that there was a gen-
eral trend of improved performance as variables were
added to the models, potentially leading to the conclu-
sion that adding any variable that may be associated with
CVD will improve risk prediction. We do not believe
this to be the case and think the trend is likely explained
by increasing amounts of overfitting as more variables
are added to the model. Although split sample tech-
niques were used to derive the performance metrics, the
sample is very large and the test data is likely to be rep-
resentative of the development cohort. You therefore
would expect improved performance as more variables
were added when carrying out internal validation.

National treatment guidelines in the UK state that ‘all
CVD risk assessment tools can provide only an approxi-
mate value for CVD risk’ and that ‘interpretation of
CVD risk scores should always reflect informed clinical
judgement’ [4]. Our results highlight the importance of
this, considering clinical judgement and supplementing
these model estimates with evidence on additional risk
factors. Despite this recommendation, our experience is
that output from QRISK is regularly used to guide treat-
ment decisions, while confusion remains around its in-
terpretation [57]. Furthermore, there has been a recent
push by Public Health England [58, 59] for self-
assessment by the public of risk using a tool JBS3 [6]
which is based on the lifetime QRISK model [60]. Argu-
ably, patients will need to be informed about the ap-
proximate estimates of these tools and the need for
clinical judgement. This is very much an issue about
communication of the limitations of such estimates, ra-
ther than an issue with the models themselves. It may be
important not to communicate a single value which does
not take into account important risk factors such as diet,
exercise and lifestyle [61], the severity of presenting co-
morbidities or the uncertainty underlying the modelling
decisions.
There are several limitations in this study. While the

dataset used to derive the models is similar to that used
to derive QRISK3 in terms of demographics, there may
be many other hidden differences between the datasets,
for example geographical coverage or coding practices
between the databases. This means our models do not
directly represent the ones used in practice in England.

Fig. 3 Percentages of patients registered 1 Jan. 2016 who cross the treatment threshold when using model F
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One limitation was that a crude disease classification
was used to derive many of the predictor variables. A
combination of medical and/or prescription codes was
used which may be sensitive to the choice of the code
lists. Another limitation of this study was that important
information on other risk factors was missing (such as
diet or exercise), which could explain a large amount of
unexplained variation in risk. Frailty models were con-
sidered to quantify the level of unexplained variation in
patient risk due to missing covariates [62]. However we
were unable to fit these models in a consistent fashion
to the data, while also finding strong arguments against

this methodology [63]. We also did not consider the
variability in coding between practices, or between data-
bases. Models may perform erroneously when used in a
database in which it was not developed, an issue which
has caused issues in recent history [12]. For example
how will a model perform in a database that uses a dif-
ferent coding system? This was not considered in this
study as data from two databases with different coding
systems was not available; however this is an important
area for future research. Finally, this paper focused on
uncertainty induced by considering different information
about the patient. However there may also be

Table 6 Relative rates (95% CI) associated with the calendar year and risk at start of statin treatment period, in Poisson models
modelling CVD incidence

Female Male

Model Calendar year Risk at start of treatment Calendar year Risk at start of treatment

Development cohort 0.96 (0.96–0.96) NA 0.97 (0.97–0.97) NA

Statin users cohort 0.94 (0.93–0.94) NA 0.94 (0.94–0.94) NA

Statin users cohort (also adjusting for 10-year
risk at inception into cohort)

0.94 (0.94–0.94) 1.02 (1.02–1.03) 0.94 (0.94–0.94) 1.02 (1.02–1.02)

Fig. 4 The secular trend in CVD incidence in the model derivation cohort and the statin users’ cohort
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uncertainty associated with the risk scores caused by
various modelling decisions. For example in models de-
veloped in this way, the target population is not well
defined. The association of covariates with the out-
come may change with age, and although interaction
terms are included, it is difficult to truly model these
relationships. Given these models are used to generate
risk scores for patients over a wide age range, this
could also induce uncertainty on the patient level.
There are many other methodological choices which
induce uncertainty, which should be explored in their
own right. This paper focuses primarily on the choice
of what information about the patients to include in
the models.

Conclusion
In conclusion, we found sizeable levels of uncertainty
in the prediction of individual CVD risks for patients.
Variations in the selection of covariates, inclusion of
the secular trend in CVD incidence, geographical
variation and different approaches to handling missing
data considerably changed predictions. This high level of
instability was not detected with conventional population-
level model performance metrics. Extrapolating to the
population in England, 3.8 million patients could be mis-
classified as requiring statin treatment depending on the
model used, which is mostly down to the inclusion of the
secular trend in CVD incidence. Population-level risk
prediction models that are based on routinely col-
lected data should not be used in isolation due to the
uncertainty in the predictions. Clinical judgement, as
recommended in national treatment guidelines [4],
supplemented with evidence of additional risk factors,
should be an essential part of individual decision-
making. Uncertainty analyses with varying of model-
ling choices and quantification of incomplete evidence
should routinely be conducted to assess uncertainty
beyond the confidence interval.
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