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Abstract

Background: Wolbachia-infected mosquitoes reduce dengue virus transmission, and city-wide releases in
Yogyakarta city, Indonesia, are showing promising entomological results. Accurate estimates of the burden of
dengue, its spatial distribution and the potential impact of Wolbachia are critical in guiding funder and government
decisions on its future wider use.

Methods: Here, we combine multiple modelling methods for burden estimation to predict national case burden
disaggregated by severity and map the distribution of burden across the country using three separate data sources.
An ensemble of transmission models then predicts the estimated reduction in dengue transmission following a
nationwide roll-out of wMel Wolbachia.

Results: We estimate that 7.8 million (95% uncertainty interval [UI] 1.8–17.7 million) symptomatic dengue cases
occurred in Indonesia in 2015 and were associated with 332,865 (UI 94,175–754,203) lost disability-adjusted life
years (DALYs). The majority of dengue’s burden was due to non-severe cases that did not seek treatment or were
challenging to diagnose in outpatient settings leading to substantial underreporting. Estimated burden was highly
concentrated in a small number of large cities with 90% of dengue cases occurring in 15.3% of land area.
Implementing a nationwide Wolbachia population replacement programme was estimated to avert 86.2% (UI 36.2–
99.9%) of cases over a long-term average.

Conclusions: These results suggest interventions targeted to the highest burden cities can have a disproportionate
impact on dengue burden. Area-wide interventions, such as Wolbachia, that are deployed based on the area
covered could protect people more efficiently than individual-based interventions, such as vaccines, in such dense
environments.
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Background
Dengue is a mosquito-borne viral disease that has one of
the world’s fastest growing burden [1]. Despite substan-
tial investments, existing vector control methods, such
as insecticides, have proved insufficient to sustainably
control dengue [2]. Novel arbovirus vector control tools
are needed, and a range of alternative approaches are
currently under development to meet this need [3, 4].
Mosquitoes infected with Wolbachia, a naturally occur-
ring bacterium, experience reduced rates of dengue virus
(DENV) infection, and female mosquitoes can pass the
bacterium on to the next generation, allowing Wolba-
chia-infected mosquitoes to replace the wild-type popu-
lation [5]. Release of male mosquitoes infected with
Wolbachia can also be used for population suppression
due to inviable mating with female wild-type mosqui-
toes. Early releases of mosquitoes infected with the
wMel Wolbachia strain have shown promising replace-
ment results, and suppression strategies with other
strains are currently being tested in different countries
around the world [6–9].
An added advantage of a population replacement strat-

egy is that Wolbachia reduces replication of other arbo-
viruses within the mosquito, including chikungunya,
yellow fever and Zika viruses [10, 11], and potentially of-
fers the better longer-term strategy. Given such replace-
ment programmes are self-sustaining, investment in a
well-coordinated and properly monitored release cam-
paign over 2 to 3 years could have many years of benefit.
Existing releases at the local and city level have proven
that Wolbachia-infected mosquitoes can replace the
wild-type Aedes aegypti population and persist for at
least 7 years’ post-release [12]. Epidemiological evidence
of effectiveness is also growing, and a cluster randomised
controlled trial is currently underway in the city of
Yogyakarta [13]. The next phase of development for
Wolbachia will be to expand from single-site operations
to coordinated sub-national roll-out.
As the most populous country in dengue-endemic South

East Asia, Indonesia is consistently estimated to be among
the three countries with the largest dengue burden [14–16].
However, due to high rates of asymptomatic infection and
symptoms which are not easily distinguishable from many
other infections, the number of dengue cases is still highly
uncertain. Accurate, contemporary estimates of the burden
of dengue in Indonesia are needed to quantify the benefits
of any scale-up in DENV control. Fully detailing how the
economic and case burden of dengue is distributed over
space, by disease severity and financial responsibility can
help inform investment in new control tools. This is par-
ticularly important for diseases such as dengue where the
burden is dominated by morbidity rather than mortality
[15]. Milder dengue cases are nearly always underreported
[17], and the costs of illness by various parties often hidden

[18]. When combined with model-based estimates of the
impact of the intervention, burden estimates can be used to
map where new interventions, such as Wolbachia, are likely
to have the biggest effect and can be used for evaluating
eventual impact.
A major challenge to understanding the impact of inter-

ventions against DENV is an accurate estimation of base-
line disease burden. Estimates of disease burden for specific
settings are often scarce due to limited availability of data
on the sub-clinical community-based burden of dengue
including asymptomatic and mildly symptomatic cases.
Efforts to estimate the burden of dengue can be categorised
into either a bottom-up approach, where the primary focus
is to estimate the total number of cases through commu-
nity-based surveys for infection [14], then divide into differ-
ent levels of severity, or top-down approach where reported
case numbers are multiplied by “expansion factors” to cor-
rect for underreporting [16]. Multiple previous studies have
estimated the burden of dengue in Indonesia [14–16, 19–
21] using a variety of data sources and methods, but it is
difficult to assess consensus among them due to the differ-
ences in data sources, methods, case definitions and as-
sumptions about transmission.
Three types of data are typically available for mapping

the spatial distribution of dengue burden: occurrence
(presence/absence), case incidence and seroprevalence
(lifetime prevalence). Seroprevalence data contain the
most information about long-term average burden in a
given location, but few such surveys have been con-
ducted, typically resulting in less information about the
geographic variation. Occurrence data, on the other
hand, is geographically ubiquitous, but many other fac-
tors determine how the presence of a disease translates
into case numbers. Existing approaches to map dengue
risk have been dominated by ecological niche modelling
using occurrence data [22–24] with a focus on mapping
the distribution rather than the burden of dengue. Maps
of reported dengue incidence at increasingly high spatial
resolution are routinely used by ministries of health but
are rarely combined with models to account for varia-
tions over time, reporting biases and quantification of
uncertainty. Some attempts have been made to map
seroprevalence data directly in areas with sufficient sur-
veys [25]. However, these contrasting approaches have
never formally been compared to identify their strengths
and weaknesses for mapping burden. There is also a lack
of consensus on how useful extrapolating from data in
other countries or transmission settings is for mapping
burden in any one given country.
In the current absence of cluster randomised control

trial results for Wolbachia, estimates of effectiveness have
been obtained by combining vector competence studies
with mathematical models of DENV transmission [26]. A
range of DENV transmission models have been published
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and, despite some fundamental differences in their struc-
tures, consensus results about the effects of interventions
can be drawn [27]. Even with the imperfect reduction of
DENV dissemination in the mosquito, substantial reduc-
tions in population-level burden can be achieved, even in
very high-transmission settings [26, 28, 29]. However, the
critical relationship between baseline transmission inten-
sity and Wolbachia effectiveness is yet to be demonstrated
in the field. Further, how control might be impacted by
the highly heterogeneous transmission intensities rou-
tinely observed across small spatial scales [30–32] remains
unknown. It is possible that if the impact on transmission
is small, this may just increase the average age of second-
ary, typically more severe, DENV infection to older more
vulnerable age groups; thus a detailed consideration of
DENV immunology is needed in such assessments.
Here, we produce the most up-to-date, detailed and

robust estimates of the burden of dengue in Indonesia;
map burden at a high spatial resolution throughout the
country; and predict the effect of a widespread Wolba-
chia programme in different locations.

Methods
Estimating national burden and breakdown by setting
Case burden
Multiple previous studies have estimated the burden of
dengue in Indonesia [14–16, 19–21] using a variety of
different data sources and independent methods, and

use case definitions that vary in disease severity. In this
analysis, we standardise (i) the case definitions across
existing estimates, (ii) the reference year and (iii) the de-
nominator population size for each estimate. We then
produce an ensemble estimate for the total burden dis-
aggregated by disease severity (Fig. 1).
We estimate burden at four levels of severity, with

each DENV infection resulting in one of these four, mu-
tually exclusive final outcomes:

1. Self-managed cases disrupt the routine of the
individual (e.g. not going to work or school) but do
not result in seeking treatment at a formal private
or public healthcare facility. Such cases may be
untreated, self-treated (e.g. using medicines from a
pharmacy) or treated in informal settings.

2. Outpatient cases are severe enough for formal
medical treatment to be sought but are managed on
an outpatient-basis, e.g. dengue (ambulatory)
clinics.

3. Hospitalised cases are severe enough to require
hospital admission and repeated observation by
trained medical staff.

4. Fatal cases whereby acute DENV infection is the
leading cause of death.

For burden estimation methods that were missing esti-
mates of burden at any of these levels of severity, new

Fig. 1 Schematic overview of the methods. Blue boxes indicate data, orange boxes modelling/analysis and green boxes outputs
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estimates were created using our own rates of care seek-
ing and hospitalisation. Care-seeking rates were obtained
from a nationally representative survey (SUSENAS [33])
that asked about treatment seeking for fever which was
assumed to be representative for dengue (Add-
itional file 1: SI1.1.). Hospitalisation rates were taken
from the control arm results of a recent dengue vaccine
trial in Indonesia [19] adjusted for age (Additional file 1:
SI1.2, Table S2).
The final breakdown of symptomatic cases is shown in

Additional file 1: Table S1. All burden estimation
methods that produced estimates of absolute “symptom-
atic” cases, i.e. disease at any level of severity, were ap-
portioned into their sub-categories using the values in
Additional file 1: Table S1. For the expansion factor-
based methods [19–21] (i.e. those that predicted the ra-
tio of true number of cases per one case reported), we
multiplied the expansion factor by the annual average
number of cases reported by the Indonesian Ministry of
Health (national branch) between 2014 and 2016 (n =
144,736, to derive an estimate for the reference year of
2015). These reported cases represent a mix of clinical
and laboratory-confirmed (NS1 antigen of IgM/IgG posi-
tive) cases in line with the SEARO-WHO case definition
[34], with a small subset tested using molecular methods
(PCR) to estimate regional serotype composition. To
standardise absolute burden estimates to this reference
year, we proportionally adjusted the estimates based on
population change over this time period using UN popu-
lation estimates [35]. The posterior distribution of the
consensus estimate was simulated using a simple ensem-
ble approach where 1000 random samples were drawn
from lognormal or normal distributions parameterised
using the mean and 2.5–97.5% uncertainty intervals
[UIs] of each of the burden estimates (with equal
weighting between studies, Additional file 1: Table S4).

DALYs
DALY estimates for hospitalised and non-hospitalised
cases were obtained from Zeng et al [36] Years of life
lost were calculated from the age-stratified case data
using life expectancies based on Indonesia health statis-
tics [37] and were not discounted.

Mapping the spatial distribution of dengue burden
Mapping data
Three different datasets on occurrence, incidence and
seroprevalence of dengue were used to estimate the spatial
variation in dengue cases. Our updated dengue occurrence
database [https://doi.org/10.6084/m9.figshare.8243168] in-
cludes 626, 3701 and 13,604 unique point and polygon
locations where dengue has previously been reported in
Indonesia, South East Asia and globally, respectively
(Additional file 1: Table S5). A corresponding database of

330, 681 and 9039 locations where Japanese encephalitis,
West Nile fever, Zika and chikungunya have been reported
were used as background points for national, South East Asia
and global analyses, respectively. These diseases share similar
clinical, epidemiological or diagnostic features to dengue,
and we assume that the occurrence of these diseases is indi-
cative of the ability to diagnose and report arboviral diseases
including dengue. We therefore assume a report of these dis-
eases is indicative of an absence of dengue at that particular
time and place. Incidence was obtained from the aforemen-
tioned official data disaggregated into 333 regencies and cit-
ies (admin 2 areas).
Age-stratified seroprevalence studies (age range 1–18)

have recently been conducted across 30 admin 2 areas in
2014 [38, 39] which were used to estimate the long-term
average force of infection using simple catalytic models
fitted with a binomial likelihood [25] (Additional file 2).

Mapping covariates
All mapping models contained covariates for (i) gross do-
mestic product (using a demographic downscaling method
described in [40]), (ii) annual cumulative precipitation (from
the intergovernmental panel on climate change general
circulation model projections [41]), (iii) minimum annual
relative humidity (using a temperature-based dewpoint cal-
culator [40, 42]), (iv) mosquito suitability for Ae. aegypti and
Ae. albopictus [43], (v) urban/rural status [40] and (vi)
temperature suitability for DENV transmission [44] all at a
5 × 5 km resolution for the year 2015 [45]. For data points
representative at the admin 2 level (incidence, seroprevalence
data and selected polygon occurrence data), population-
weighted averages of each covariate were calculated over
their corresponding region.

Mapping models
Three distinct mapping models fit relationships between
the above covariates and the three different measures
risk: (i) occurrence, (ii) incidence and (ii) force of infec-
tion calculated from seroprevalence. Within each model,
100 bootstrapped generalised boosted regression models
(GBMs) were fit to capture data uncertainty. For the
presence/absence occurrence data, boosted regression
trees (BRT) with a binary Bernoulli distribution were fit-
ted [40, 46], while incidence and force of infection
models were fit with Poisson distributed GBMs (see
Additional file 1: SI1.3. for parameter settings and code
[https://doi.org/10.6084/m9.figshare.8243168]). A sensi-
tivity analysis was also performed to assess the occur-
rence data model sensitivity to local, regional and global
data (Additional file 1: SI1.3.). Simpler generalised linear
models with automated variable selection were also fit
for incidence and seroprevalence data to assess the rela-
tive prediction improvements with more complex model
structures (Additional file 1: SI1.3.).
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The risk maps created by each of these mapping
models was multiplied by a population surface [47] then
standardised to the estimated national burden total from
the ensemble of burden models. This assumed a linear
correlation between mapped risk and burden [14, 48]. A
posterior distribution of predicted incidence for each
5 × 5 km pixel was derived from an ensemble of each
three burden maps with the probability of sampling in-
versely proportional to the within mapping model vari-
ance among the 100 sub-BRT models.

Introduction of a Wolbachia programme to reduce
dengue
Mathematical modelling
A human age-structured deterministic dynamic math-
ematical model of DENV infection was used to deter-
mine the impact of a wMel Wolbachia programme in
Indonesia (Additional file 1: SI1.4.). Individuals were as-
sumed to be born susceptible and upon exposure will
develop primary DENV infection. We assumed that
upon recovery, an individual will go through a period of
temporary cross-immunity, and afterwards, the individ-
ual is assumed to only be susceptible to heterologous se-
rotypes. Serotype-specific exposure is not modelled
explicitly, but sequential reductions in susceptibility due
to homologous immunity and a maximum of four life-
time infections allow the model to replicate multi-sero-
type behaviour assuming all four serotypes are
omnipresent (Additional file 1: SI1.4.). All individuals
that develop infection were assumed to be equally infec-
tious, and this was independent of disease severity [49].
We do not explicitly account for DENV infection within
mosquitoes but assume that human-mosquito-human
transmission is accounted for within the transmission
coefficient. For each stage of infection, the probability of
being symptomatic, hospitalised or fatal was assumed to
vary based on the different model parameterisations
from a previous dengue modelling comparison exercise
Flasche et al. [27] (Additional file 1: Table S6–S7). To
capture the uncertainty in these values, eight sub-models
were created with identical structure but different pa-
rameters for disease severity, duration of infectiousness
and duration of temporary cross-immunity.

Fitting the mathematical model to burden estimates
The model transmission coefficient was estimated by fit-
ting (using least squares) to unique values of symptom-
atic incidence as predicted by our burden and mapping
analyses for each of the eight model parameterisations.
Symptomatic cases was chosen as a fitting metric be-
cause the variation would closely align with variation in
the transmission rate, as opposed to variation in as-
sumed hospitalisation rates that vary across models. The
best-fitting transmission coefficient values were obtained

using a rejection MCMC algorithm with a 5% tolerance
on the symptomatic case incidence rates. Our analysis
aimed to quantify long-term average estimates of trans-
mission then predict the effectiveness with the disease at
equilibrium. However, dengue in Indonesia, as of 2015,
is not currently at equilibrium. Continual, urban nation-
wide transmission of dengue has only been present in
Indonesia from circa 1988 onwards [50], meaning there
is currently a higher proportion of susceptible individ-
uals and thus higher incidence rates than there will be
once the disease reaches long-term equilibrium. To en-
able our model to fit these temporarily high symptom-
atic case incidence rates, we reduced the life expectancy
to 27 (2015–1988) years by imposing 100% mortality
after the 27th year to represent the shorter period of ex-
posure during transmission coefficient fitting. For high
reported incidence where model estimates are outside of
the 5% tolerance, the nearest fitting parameter estimate
was selected as we assumed that these high incidence
values were representative of anomalous years or symp-
tomatic case rates. This only affected < 3% of values but
may underestimate transmission and thus overestimate
Wolbachia effectiveness in very high-transmission envi-
ronments. After obtaining accurate estimates of the
transmission parameter, it was applied to a model with
current-day realistic Indonesian life expectancy and age
distribution (Additional file 1: Figure S1). The ability of
this model to reconstruct accurate age-specific sero-
prevalence was assessed (Additional file 1: Figure S2),
then it was used to simulate symptomatic case incidence
with and without Wolbachia to calculate the effective-
ness at equilibrium.

Vector competence reduction
The clinical and field entomological data of vector com-
petence of wMel-infected Ae. aegypti in Carrington et al.
[51] were used to estimate the reduction in transmission
associated with a Wolbachia programme. A logistic re-
gression model of the extrinsic incubation period (EIP)
in mosquitoes was fitted to observe the reduced rate at
which DENV disseminates from the ingestion of a blood
meal to the presence in the mosquito salivary glands in
Wolbachia-infected compared to wild-type mosquitoes
(Additional file 1: SI1.5, Figure S3, Additional file 1:
Figure S4). Separate models fit for each serotype and
high- and low-viremia blood meals which were assumed
representative of hospitalised and non-hospitalised cases,
respectively.

Incorporating the impact of a Wolbachia programme
Estimates of the reduction in vectorial capacity in Wol-
bachia-infected mosquitoes (Additional file 1: SI1.5)
were used to proportionally reduce transmission coeffi-
cients in the DENV transmission model which was then
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run until endemic equilibrium was reached (100 years) with
an average life expectancy of 65 years, consistent with the
Indonesian population age distribution (Additional file 1:
Figure S1). The impact of the Wolbachia programme is es-
timated as 1- (symptomatic incidence post-Wolbachia/
symptomatic incidence pre-Wolbachia). For each model
parameterisation, this gave point estimates of efficacy for a
range of different values of baseline transmission in-
tensity (as measured by incidence of hospitalised
cases). To create a smooth, continually decreasing
function between these two variables, monotonically
decreasing thin-plate splines were fit using the “scam”
package in R (Additional file 1: Figure S7). Simulation
from a normal distribution defined by the mean and
standard error of the fit of the spline model was used
to build a distribution of effectiveness values for each
DENV model parameterisation (eight parameterisa-
tions). An ensemble prediction of effectiveness was
then derived by the sum of predictions from the indi-
vidual models (equal weighting). This relationship was
then applied to each map pixel with 1000 realisations
of burden and effectiveness to build up a predicted

distribution of burden before and after release of
Wolbachia-infected mosquitoes. All code used in
these analyses is available from the following reposi-
tory [https://doi.org/10.6084/m9.figshare.8243168].

Results
Case burden of dengue by disease severity
To obtain consensus estimates of the burden of den-
gue in Indonesia, we take a simple unweighted en-
semble of multiple previous approaches (Fig. 2). We
found that nearly all previous burden estimates had
overlapping credible intervals with Bhatt et al.,
GBD2017; Shepard et al.; and Toan et al. estimates
having the closest concordance [1, 14, 16, 20]. The
estimate by Wahyono et al. [21], which was the only
method to estimate underreporting solely using Del-
phi panel interviews of dengue experts, was consist-
ently lower than all other estimates for all disease
severities and underrepresented the degree of uncer-
tainty relative to other estimation methods. Our com-
bined ensemble captured uncertainty in both the
individual models and uncertainty about model choice

Fig. 2 Previous estimates for the burden of dengue in Indonesia adjusted for the year of 2015 (colours) and our ensemble estimate (grey
shading) at different levels of disease severity
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and is thus broad, particularly at lower disease sever-
ity levels.
We estimate that 7.8 million (UI 1.8–17.7 million)

symptomatic dengue cases occurred in Indonesia in the
reference year 2015 (average 2014–2016) or approxi-
mately 1 in 31 people (Table 1). Among these, we esti-
mate 64% were self-managed with over the counter
medicines or other forms of informal healthcare. A fur-
ther 22% were seen as outpatients with limited oppor-
tunity for diagnosis of dengue and were never admitted.
Despite this large proportion of non-hospitalised dengue,
we still predict that 1.1 million (0.22–2.9) hospitalised
dengue cases occurred in Indonesia in 2015, among
which 3658 (1590–8240) died, equating to a hospitalised
case fatality rate of 0.33% (0.29–0.71). Only 100,347,
129,689 and 204,172 dengue cases (mostly hospitalised)
were reported to the ministry of health in the years of
2014, 2015 and 2016, respectively. Assuming only hospi-
talised cases are reported, this would suggest only 12%
(UI 7–45%) of hospitalised cases are reported.
By combining these case estimates with the reported

age distribution of dengue cases in Indonesia and sever-
ity-specific disability weights [36], we estimate a total of
332,865 (UI 94,175–754,203) DALYs are lost due to den-
gue each year in Indonesia of which 73.6% are due to
disability and 26.4% due to fatality (Table 1). This fur-
ther emphasises the contribution of non-fatal and non-
severe outcomes to dengue burden.

Mapping dengue burden
Comparing local to global data for producing national risk
maps
As occurrence data was available globally, we first per-
formed a sensitivity analysis to the geographic scope of
data. Using data just from Indonesia will maximise rep-
resentativeness of local DENV epidemiology but may fail
to capture the full range of environmental space in

which dengue can be transmitted in the country. The
opposite is true of using global datasets. We find that
using a regional dataset from across South East Asia of-
fers the best compromise between accurately predicting
occurrence data from Indonesia (mean area under the
curve [AUC] 0.95) while still maintaining a good multi-
variate environmental coverage (mean Multivariate En-
vironmental Similarity Score [MESS] > 0 for 88% of
Indonesian land area, Additional file 1: Figure S5).

Comparing occurrence, incidence and seroprevalence data
for mapping burden
We found that dengue risk maps fitted to occurrence, in-
cidence and seroprevalence datasets gave contrasting risk
maps with some areas of consensus. While more complex
GBM model structures gave a better fit for incidence data
(R2 0.171 vs 0.022, Additional file 1: Table S10), simpler
generalised linear models (GLMs) explained more vari-
ance within the smaller seroprevalence dataset (R2 0.112
vs 0.082, Additional file 1: Table S10). All maps agreed
that the highly populated urban regions of Java, West Kali-
mantan and Northern Sumatra conferred higher risk. The
map using reported case data (Fig. 3b) tended to predict
lower incidence in more remote areas than the other two
maps (e.g. Sulawesi and Timor). Generally, maps based on
seroprevalence data (Fig. 3c) predicted little geographic
heterogeneity; maps based on reported cases (Fig. 3b) esti-
mated high geographic concentration in particular areas
with maps based on occurrence (Fig. 3a) somewhere be-
tween the two. Given the strengths and limitations of each
of these different data sources, our final map consisted of
an ensemble of each of these three maps weighted by their
relative bootstrap predictive variance. While the ensemble
propagated the uncertainty around the distribution of
dengue through the rest of the analysis, a mean map of
the ensemble is given in Fig. 3d.

Spatial concentration of dengue burden
Because our maps suggest dengue is ubiquitous through-
out Indonesia, the urbanised nature of the population in
Indonesia ensures that the case burden of dengue is
highly spatially concentrated. Fifty per cent of the 7.8
million cases are concentrated in just 1.08% of the land
area and 90% of cases in just 15.26%. This spatial con-
centration of burden presents a key advantage for con-
trol strategies with costs that scale with the area (as
opposed to the number of people) such as Wolbachia
(Fig. 4).
In Indonesia, 14.7% of total dengue burden is concen-

trated in just ten cities that together make up only 0.35%
of the land area (Table 2). These cities do, however, also
make up 15.0% of the national population, implying that
the concentration of dengue burden is due to the highly
urbanised distribution of Indonesia’s population. This

Table 1 The total estimated burden of dengue in Indonesia in
2015 by case severity and disability-adjusted life years (DALYs)

Outcome Absolute number in
thousands (95% UI)

Percentage share (95% UI)

Fatal 3.658 (1.59–8.24) 0.05 (0.05–0.09)

Hospitalised 1102 (224–2883) 14.20 (12.63–16.33)

Outpatient 1675 (409–3535) 21.59 (20.02–23.00)

Self-managed 4977 (1142-11,233) 64.16 (63.61–64.28)

Total 7757 (1778-17,660) 100

YLDs 245 (56–556) 73.6 (59.5–73.7)

YLLs 88 (38–198) 26.4 (26.3–40.5)

DALYs 333 (94–753) 100

95% uncertainty intervals (UI) are shown for all predictions. UIs for percentage
share are based on the mean totals
YLD years lost to disability, YLL years of life lost
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makes dengue a good candidate for targeted interventions,
particularly for interventions that focus on immobile vec-
tor populations.

Predicted reduction in dengue burden achievable
through a Wolbachia programme
Predicting the potential reduction in dengue burden achiev-
able by a nationwide Wolbachia programme requires con-
sidering several stages in the transmission process.

Our re-analysis of the vector competence data from
[51] combined with mosquito survival rates suggested an
average 56% (95% confidence interval [CI] 54–58%) re-
duction in the probability of onward transmission from
a mosquito infected from a non-severe (low viremia)
dengue case (Additional file 1: Table S8). This percent-
age reduction was slightly higher for DENV4 (60%, CI
59–62) and considerably lower for severe (high viremia)
cases (47–50% for DENV1–3, 54% for DENV4).

A B

C D

Fig. 3 The spatial distribution of annual incidence of symptomatic dengue cases in Indonesia as predicted by models fit to the a occurrence data
b reported case data, c seroprevalence data and d the mean of an ensemble of each data type. The spatial location of the data points and
polygons for each map are also shown. Pearson correlation coefficients between pixels are as follows: a, b 0.15, a–c 0.24 and b, c 0.15 (all non-
significant). The full map ensemble (not just the mean) is used for all subsequent analyses

Fig. 4 Predicted spatial concentration in dengue burden. The minimum spatial area that contains 50% (red) then 40% (orange) of dengue
burden. The 10 cities with the highest predicted burden are also shown
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To assess what impact these reductions in trans-
mission would have on case burden at different
transmission intensities, we used an ensemble of
mathematical models with eight different parameteri-
sations (Fig. 5). There was a consensus among the
models that Wolbachia could achieve elimination in
low transmission settings (baseline incidence of
symptomatic cases < 5 per thousand). Models also
agreed on a gradual decrease in effectiveness (% re-
duction in cases after Wolbachia introduced) as
transmission intensity increased, albeit at consider-
ably different rates (Fig. 5, Additional file 1: Figure

S7). Models with parameterisations based on the
DENV models from Sanofi predicted the lowest ef-
fectiveness of Wolbachia while those from Hopkins
predicted the highest effectiveness (Fig. 5).
Finally, applying these effectiveness functions to the maps

and burden estimates allowed us to map the effectiveness
and symptomatic cases averted across Indonesia (Fig. 6).
This showed that while effectiveness is lower in the high
transmission intensity cities (Fig. 6a), if Wolbachia can be
deployed in each area for approximately equivalent cost,
the number of cases averted (and thus cost-effectiveness)
will be higher in urban areas (Fig. 6b).

Table 2 Top 10 cities in Indonesia with the highest estimated dengue burden

City Predicted cases (all severities,
thousands, 95% UI)

Percentage of national
burden (95% UI)

Cumulative percentage
of national burden

Cumulative percentage
of national population

Cumulative percentage
of national area

1. Jakarta* 515.2 (108–1439) 7.7 (6.3–9.5) 7.7 8.8 0.14

2. Kota
Bandung

79.8 (17–222) 1.2 (1.0–1.5) 8.9 9.9 0.15

3.
Surabaya

73.9 (18–231) 1.2 (1.0–1.3) 10.1 11.0 0.16

4. Medan 66.8 (15–189) 1.0 (0.9–1.1) 11.1 11.8 0.18

5.
Semarang

54.3 (12–143) 0.8 (0.6–1.0) 11.9 12.4 0.20

6. Cirebon 47.3 (10–120) 0.7 (0.6–0.8) 12.6 13.1 0.25

7.
Pekanbaru

39.8 (9–112) 0.6 (0.5–0.7) 13.2 13.5 0.31

8.
Palembang

38.6 (8–100) 0.6 (0.4–0.7) 13.8 14.1 0.32

9. Kota
Malang

30.7 (7–85) 0.5 (0.3–0.6) 14.3 14.5 0.33

10.
Denpasar

29.6 (5–87) 0.4 (0.3–0.7) 14.7 15.0 0.35

*City of Jakarta includes the satellite cities of Bekasi, Tangerang, South Tangerang, Depok and Bogor

Fig. 5 Reductions in hospitalised dengue cases at equilibrium after the introduction of Wolbachia as predicted by a mathematical model using
eight different parameterisations from previously published models. Baseline incidence is the number of hospitalised dengue cases per million
before the introduction of Wolbachia. Ensemble mean and 95% uncertainty intervals are shown in dark blue. One hundred per cent coverage
forms the baseline scenario for subsequent analyses. Vertical dotted lines show the 1, 25, 50, 75 and 99th percentiles of the estimated
symptomatic incidence in areas across Indonesia
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Overall, we predict that a national roll-out of Wolba-
chia at 100% coverage could achieve a long-term average
of 86.2% (UI 36.2–99.9%) reduction in cases of all sever-
ities, potentially averting 6.7 million symptomatic cases,
947 thousand hospitalisations and 3154 deaths a year
based on 2015 burden figures (Table 3).

Discussion
In this paper, we produce comprehensive estimates of
the burden of dengue in Indonesia and find that a large
proportion of cases self-manage their own disease (64%,
5.0 million) or are treated in outpatient departments
(22%, 1.7 million). We use multiple mapping methods
and data sources to show that the spatial distribution of
dengue risk is heterogeneous even in an endemic coun-
try such as Indonesia. The highly urbanised nature of
the population means that 14.7% of the national burden
is concentrated in just 10 cities. Finally, we show that a
nationwide Wolbachia campaign could (over the long
term) avert a significant proportion of burden (86.2%, UI

36.2–99.9%) with elimination predicted in low transmis-
sion settings.
The high spatial concentration of dengue burden in

cities, in highly urbanised countries such as Indonesia,
presents opportunities for targeted control strategies. In
particular, Wolbachia, which is deployed on a per-km2

basis, could offer major scaling advantages over vaccines,
which are deployed on a per-person basis, in areas with
high population density. The large number of people
covered by a focal Wolbachia programme has the poten-
tial to outweigh the reduced efficacy of the intervention
in these high transmission settings, and formal cost-ef-
fectiveness analysis is needed to compare the investment
cases between urban and rural areas.
This work adds to a growing body of evidence that the

majority of the burden of dengue is attributable to mor-
bidity rather than mortality [14, 15, 19, 52]. The large
number of self-limiting mild infections contributes more
to DALY burden than the small number of infections
that result in severe or fatal manifestations. Many of
these mild cases do not seek treatment, are not clinically

A

B

Fig. 6 Maps of effectiveness (a) and averted symptomatic cases per year (b) from a nationwide homogeneous Wolbachia programme with
100% coverage

O’Reilly et al. BMC Medicine          (2019) 17:172 Page 10 of 14



diagnosable and thus do not have any opportunity to be
reported in routine health statistics. These results can be
used to assess the hidden economic burden of the
disease and to estimate the cost-effectiveness of inter-
ventions for dengue [16, 27]. Our results also suggest
that only 12% (UI 7–45%) of hospitalised cases are re-
ported. While lower than the regional average (42%)
[17], underreporting of dengue is not unusual and may
occur for a variety of reasons including lack of reporting
in the private sector, misdiagnosis and limited coverage
of the surveillance system [53].
A key limitation of our analysis is the wide uncer-

tainty intervals for our final estimates of burden, and
thus predicted efficacy of Wolbachia. This arises due
to the limited quantity and variable quality of datasets
detailing the treatment-seeking behaviour for dengue
[17], reliability of diagnosis and underreporting of
identified cases. In this study, we chose to ensemble
different burden estimation methods with equal
weighting due to different data sources and methodo-
logical approaches challenging any formal assessment
of quality or comparativeness. Initiatives such as the
WHO burden estimation toolkit [53] aim to provide
guidance to countries on how to conduct burden esti-
mation for dengue and aim to generate more standar-
dised and internationally comparable data for dengue
burden estimation. Additionally, while using the na-
tional SUSENAS survey to estimate the treatment-
seeking rates was a great strength due to its sample
size and comprehensive design, it did require assum-
ing that treatment seeking for fever is comparable to
treatment seeking for dengue. As fever is one of the
milder symptoms of dengue [54], this may have
underestimated rates of seeking care [55].
Different data sources suggest different spatial distri-

butions of dengue risk. This is partly because each data
source has strengths and weaknesses for measuring dif-
ferent aspects of dengue’s distribution (summarised in
Additional file 1: Table S11) [23]. Occurrence data is
most informative about the extent of transmission, inci-
dence about temporal variation and seroprevalence
about long-term risk of infection. Occurrence and inci-
dence data may also be subject to spatial reporting bias,
e.g. higher probability of reporting in urban areas, which
may lead us to overestimate the concentration of risk in
high-density areas. We tried to overcome this by using
notifications of other infectious diseases (which are also
subject to the same biassed sampling frame) as

background points, and the relative influence statistics
(Additional file 1: Table S9) and covariate effects plots
(Additional file 1: Figure S6) do not suggest simple uni-
variate drivers of dengue’s distribution in Indonesia.
Disease mapping frameworks have been suggested that
would enable simultaneous joint inference of the distri-
bution and observation bias of multiple rare diseases and
could improve occurrence maps for diseases that share
similar characteristics but limited data [56]. Future work
will attempt to more formally define relationships be-
tween occurrence, incidence and seroprevalence data
and their relationship with burden to enable joint infer-
ence that accounts for the accuracies, sensitivities and
biases in each data source [57].
Our mathematical model assumed a stable prevalence

of Wolbachia in the wild Aedes population and only fo-
cussed on the long-term stable-state effectiveness. With
the high levels of herd immunity currently present in
Indonesia, it is possible that elimination would temporar-
ily be achieved even in high transmission intensity areas
and short-term impact would generally likely be higher
than predicted here [58]. Our analysis of vector compe-
tence data only compared dissemination rates to the mos-
quito salivary glands in lab-reared (not-field caught)
mosquitoes. Effectiveness may be higher in the field due
to the effect field conditions impose on the mosquito
immune system and the availability of nutritional
resources [51]. Due to the lack of available vector
competence data, we were only able to model the
reduction in transmission due to one strain of
Wolbachia (wMel) and one vector species (Ae.
aegypti). Ae. albopictus, a known secondary DENV
vector, is also present in Indonesia, although it typic-
ally has a more rural distribution and its role in sus-
taining dengue transmission in this setting remains
unclear [59]. Different Wolbachia strains also vary in
their DENV-blocking dynamics, their effects on mos-
quito longevity and can be affected by local condi-
tions, e.g. temperature [60], meaning further
reductions in DENV transmission may be possible. Fi-
nally, our modelling comparison exercise only used
the parameter estimates from each of the models, not
the model structures themselves, which may include
additional uncertainty and provide further insights
into the effectiveness of Wolbachia and its variation
across transmission intensity. Our current estimates
are in agreement with earlier work suggesting elimin-
ation is achievable in low transmission intensity but

Table 3 Predicted annual number of cases of dengue averted by a nationwide release of Wolbachia-infected mosquitoes
Self-managed Outpatient Hospitalised Fatal Total DALYs Percentage reduction

4,290,379
(413,657–11,163,893)

1,442,623
(147,587–3,567,030)

946,971
(81,545–2,909,260)

3154
(569–8118)

6,683,127
(643,358–17,648,301)

290,002
(38,604–727,567)

86.2%
(36.2–99.9%)

Numbers in brackets are 95% uncertainty intervals
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not high transmission intensity environments [26].
This raises the possibility that Wolbachia may need
to be combined with a range of other dengue control
tools in high endemicity environments. The key
strength of this analysis is that it is the most detailed
analysis of Indonesia’s dengue burden to date. We
combine multiple modelling and mapping approaches
with multiple datasets and fully propagate uncertainty
at each step through to our final results.
Future work will include pairing these burden esti-

mates and impact predictions with economic data on
the costs of dengue illness and of deploying Wolbachia
in different areas. This will allow estimates of the cost-
effectiveness of Wolbachia programmes and estimates of
how it varies throughout Indonesia that can be used to
quantify the costs and benefits of future investments in
wide-scale releases and inform different release
strategies.

Conclusion
In this paper, we use various mathematical modelling
approaches to estimate the current burden of dengue in
Indonesia. We estimate a total of 7.8 million (UI 1.8–
17.7 million) symptomatic cases occurred in 2015 with a
high proportion not seeking treatment and not being re-
ported to the national surveillance system. Despite this,
the concentration of disease burden in large cities offers
hope of targeted dengue control. Releasing Wolbachia-
infected mosquitoes is one option that we predict could
ultimately avert over three quarters of the country’s
current disease burden. Past experience with dengue in-
terventions [27] has taught us to take an optimistic but
cautious, conservative and diverse approach to such pro-
jections that considers all potential routes of failure and
their subsequent impact on cost-effectiveness. However,
given early evidence of epidemiological effectiveness [7]
and a general desire to see Wolbachia scaled up, model-
based projections have an important role to play in ad-
vising decision-makers on maximising the impact.
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