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Abstract

Background: Early-life malnutrition may have long-lasting effects on microbe-host interactions that affect health
and disease susceptibility later in life. Diet quality and quantity in conjunction with toxin and pathogen exposure
are key contributors to microbe-host physiology and malnutrition. Consequently, it is important to consider both
diet- and microbe-induced pathologies as well as their interactions underlying malnutrition.

Main Body: Gastrointestinal immunity and digestive function are vital to maintain a symbiotic relationship between
the host and microbiota. Childhood malnutrition can be impacted by numerous factors including gestational
malnutrition, early life antibiotic use, psychological stress, food allergy, hygiene, and exposure to other chemicals
and pollutants. These factors can contribute to reoccurring environmental enteropathy, a condition characterized by
the expansion of commensal pathobionts and environmental pathogens. Reoccurring intestinal dysfunction,
particularly during the critical window of development, may be a consequence of diet-microbe interactions and
may lead to life-long immune and metabolic programming and increased disease risk. We provide an overview of
the some key factors implicated in the progression of malnutrition (protein, fat, carbohydrate, iron, vitamin D, and
vitamin B12) and discuss the microbiota during early life that may contribute health risk later in life.

Conclusion: Identifying key microbe-host interactions, particularly those associated with diet and malnutrition
requires well-controlled dietary studies. Furthering our understanding of diet-microbe-host interactions will help to
provide better strategies during gestation and early life to promote health later in life.
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Background
Microbes of the gastrointestinal tract are associated to
health and disease. It is well established that their func-
tional coexistence within the gut can be manipulated by
altering their environment, of which host nutrition has
the greatest impact [1]. Although disease causality has
not been directly attributed to the microbiota,

researchers hypothesized that early-life exposure and as-
sembly of microbes in the gut influences host develop-
ment [2, 3]. The developmental origins of health and
disease (DOHaD) hypothesis proposes that an early-life
window exists where environmental exposures, including
the mode of birth, nutrition, breastfeeding, infection,
and antibiotics, lead to programming effects that can
affect long-term health [4]. During the first 1000 days of
life, host immune, endocrine, metabolic, and other de-
velopmental pathways mature in tandem with the micro-
biome to achieve a mutualistic relationship [5]. Even
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transient disturbances to microbial communities (“dys-
biosis”) during this critical window of development have
been associated with immune-mediated, metabolic, and
neurodevelopmental disorders [6–8]. In this review, we
discuss the potential implication of maternal and infant
diet-induced microbial and host changes surrounding
early-life protein, fat, carbohydrate, iron, vitamin D, and
vitamin B12 malnutrition.

Contribution of microbes in health and disease
Despite mounting evidence associating the microbiota to
health and disease, their causal contribution remains
poorly understood. Microbes are niche-specific, meaning
they are adapted to a particular lifestyle or ecological
niche [9]. The microbial signature, which reflects the
presence and activity of microbes, changes in response
to diverse exogenous factors, including diet, disease,
antibiotic usage, and host genetics [10]. For this reason,
distinct microbial signatures have been identified in vari-
ous human diseases, including obesity, diabetes, colorec-
tal cancer, irritable bowel disease (IBD), liver cirrhosis,
and pulmonary tuberculosis [11–13]. Although microbial
signatures are associated with disease, it is unclear
whether they are causally linked or simply a result of al-
tered gut ecology due to metabolic and immunological
changes occurring in the diseased host. Despite the fact
that microbial contributions may be secondary to the
causal agent of the disease, research on environmental
enteropathy (EE) strongly suggests their presence is re-
quired for disease pathogenesis and indicates that mi-
crobes play a key role.
EE, also known as environmental enteric dysfunction, is

a major contributor to early childhood stunting [14]. EE is
a subclinical disorder associated with altered diet-
microbe-host interactions and characterized by intestinal
injury, nutrient malabsorption, and inflammation [15, 16].
EE can induce stunting and wasting through poor diges-
tion and autoimmune dysfunction rather than food short-
age [14]. Brown and colleagues show in a mouse model
that specific bacteria are required for the development of
EE [17]. Researchers were able to recreate the full effects
of human EE by gavaging a defined mixture of Bacteroi-
dales species and Escherichia coli to mice fed a protein-
deficient diet (7% of the diet). However, when given an
isocaloric protein-sufficient diet (20% of the diet), mice
that were colonized with the same bacterial mixture did
not develop EE symptoms. This suggests that both diet
and microbes are necessary to induce EE.
Observations in mouse models reflect what has been

observed in clinical studies, where EE symptoms are as-
sociated with both a malnourished diet and specific mi-
crobial signatures [18–20]. Metabolomic and proteomic
analysis of blood plasma combined with metagenomic
analyses of fecal samples revealed distinct microbe and

host functions between healthy children and those with
severe acute malnutrition when consuming the same
therapeutic diet. As the children transitioned from se-
vere to moderate acute malnutrition, their proteomic
profiles became more similar to that of healthy children
[19]. A microbiota-direct dietary intervention to these
children had a greater impact than conventional therapy
to restore microbiota structure and health [20]. Develop-
mentally, a microbiota-direct dietary intervention in-
creased biomarkers and mediators of growth, bone
formation, neurodevelopment, and immune function to-
wards a healthy phenotype [19]. Gnotobiotic mice and
piglet models colonized with malnourished Malawian
microbiota and fed a low caloric nutrient-deficient diet,
resulted in weight loss and metabolic profiles distinctive
of EE [18]. Kau et al. were able to show that a higher pro-
portion of Enterobacteriaceae members relative to Akker-
mansia municiphila and Clostridium scindens in
malnourished Malawian children was indicative of a
pathogenic community related to malnutrition [21]. Using
mouse models, researchers confirmed that a combination
of diet and Enterobacteriaceae, Enterococcus, and Bacter-
oidetes members are required for EE pathogenesis.

Pathobionts
Gastrointestinal dysbiosis is characterized by the loss of
beneficial commensal microbe-host interactions and ex-
pansion of some commensal organisms, known as
pathobionts, that exert pro-inflammatory effects on the
host [22]. Pathobionts are opportunistic bacteria that
pose a unique challenge in malnutrition research be-
cause their pathogenicity is dictated by host diet and im-
mune function [23]. Numerous microbes have been
identified as major contributors of gut dysbiosis and in-
flammation linked to disease, including commensal
Escherichia coli strains [24], Helicobacter hepaticus [25],
Bilophila wadsworthia [26], Bacteroides fragilis [27],
Fusobacterium nucleatum [28], Enterococcus faecalis
[29], and Akkermansia muciniphila [30]. Although diet,
antibiotic, infection, and intestinal inflammation are the
primary triggers of dysbiosis, pathobionts can exacerbate
gastrointestinal dysfunction [22]. The impact of patho-
biont overgrowth in the gastrointestinal tract on health
may also be context-dependent. For example, Akkerman-
sia muciniphila has been shown to improve glucose con-
trol [31, 32], but has also been shown to exacerbate
infections and colitis [33, 34]. Reoccurring EE may be a
consequence of poor diet-microbe-host interactions that
limit the capacity of the gut to maintain the functional
network of microbes that keep pathobionts in check.

The critical window
The critical window of development is theorized to
begin during the preconception period, lasting from
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conception to up to the first 1000 days of life [5]. It is
considered the period during development characterized
by greatest phenotypic plasticity, and during which ex-
ogenous factors such as diet, antibiotics, mode of birth,
and pollutants may lead to long-term physiological and
immunological programming [35, 36]. The “fetal pro-
gramming hypothesis” suggest that maternal nutrition
and exogenous factors have long-term metabolic, im-
mune, cardiovascular, and central nervous system effects
on their offspring [37–39]. Moreover, the “missing mi-
crobe hypothesis” that occurs over-generations is be-
lieved to increase disease susceptibility due to
suboptimal microbe-host mediated immune develop-
ment. For instance, the adoption of a low-fiber diet is
considered a major player responsible for the intergener-
ational disappearances of microbes that may promote
gut stability and resiliency [40, 41]. Exogenous factors
that alter early colonization and succession of microbes
in the gut may delay gut maturation and development.
Disruptions to microbial networks during this critical
window of development are associated with asthma, al-
lergies, diabetes, inflammatory bowel disease, and obesity
[35, 42]. It is during this time that the host forms a mu-
tualistic or immune-tolerant relationship with microbes
and is thought to alter disease susceptibility (Fig. 1).

Hygiene
As stated in the UN Millennium Development Goals,
the supply of potable water and proper sanitation to
control gastroenteritis and malnutrition are important
targets across the globe. Intervention trials in these

areas, also referred to as WASH (water supply, sanita-
tion, and hygiene), involve the provision of water quality
at a public or household level, improved means of ex-
creta disposal, health, and hygiene education, and pro-
motion of handwashing. It has been suggested that EE is
a contributor to malnutrition and growth delay in chil-
dren living in areas with poor sanitation. A systematic
review by Gera et al. of trials conducted over the past
10 years in developing countries [43] documented a
modest effect of WASH interventions on most an-
thropometric parameters and studies were of low-quality
evidence. Improvement in water quality was associated
with a slightly higher weight-for-age Z-score (p = 0.06).
Combined water, sanitation, and hygiene intervention
improved height-for-age Z-scores (MD 0.22; 95% CI
0.12, 0.32) and decreased the risk of stunting (RR 0.87;
95% CI 0.81, 0.94). Several ongoing trials on these inter-
ventions may improve the quality of evidence on infant
malnutrition. In a more recent trial of WASH and de-
worming in Timor-Leste [44], a trend was observed for a
reduction in levels in young children of the fecal EE bio-
marker, myeloperoxidase; this finding was statistically
significant when household water was stored in covered
containers.
On the other hand, improved hygiene through regular

use of household cleaning products in developed coun-
tries has had unintended consequences on infant growth.
Despite their widespread use since the late 20th century,
antimicrobial cleaning products have not always reduced
infection rates of household members, and they release
chemicals into the indoor environment [45]. Based on

Fig. 1 The perinatal period represents a time in development when exogenous factors that affect the microbiome such as antibiotics, diet,
hygiene, pathogens, mode of birth, and pollutants can alter immune and physiological programming. The effects of early-life programming may
lead to increased disease susceptibility later in life. Created with BioRender.com
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data from full-term infants in the Canadian Healthy In-
fant Longitudinal Development (CHILD) birth cohort, it
was found that infant exposure to frequent cleaning with
household disinfectants was associated with altered gut
microbial composition at age 3–4months and risk of be-
ing overweight by age 3 [46]. The main attribute of hy-
giene on malnutrition is immune and gut maturation,
where excessive hygiene may hamper symbiont
colonization and too little may increase pathogen load.

The diet-microbe link
As in many cases, there is a constant struggle between
cause and effect with respect to microbial dysbiosis and dis-
ease outcome in the study of malnutrition and the micro-
biome. Although the debate to what effect the microbiota
contributes to disease remains unclear, it is reasonable to
conclude that both gut microbes and environment contrib-
ute to the pathogenesis of malnutrition and undernutrition
(Fig. 2). Dietary components play a major role in maintain-
ing microbe-host interactions that may promote intestinal
health [47]. Therefore, nutrition is an important tool that
can be manipulated to restore beneficial microbe-host in-
teractions that enhance intestinal integrity and health.

Protein
Beginning in the 1950s, protein-energy malnutrition
(PEM) became a primary focus associated with stunting
and disease susceptibility in children from developing
countries [48]. Food shortage is the main culprit of PEM
and is estimated to affect 1 in 4 children under the age of

5 worldwide [49, 50]. The prevalence of stunting and
wasting, particularly in developing countries, is attributed
to low protein-energy intake and increased exposure to
enteric infections as a result of poor sanitation [51]. The
“protein gap” was considered the primary reason for PEM;
however, after much debate, children in developing coun-
tries were actually estimated to consume adequate protein,
even above recommended levels [48, 52]. The prevalence
of stunting could not be explained by protein intake alone
and instead has been attributed to intestinal dysfunction
and poor energy density from weaning food in developing
countries [49, 52]. Unabsorbed proteins can alter intestinal
dynamics directly by disrupting gastrointestinal enzymes,
receptors, or other activities [53]. Indirectly, protein mal-
absorption in the small intestine can lead to microbial
proteolytic fermentation by-products (H2, CO2, CH4,
H2S, short-chain fatty acids (SCFAs), branched chain
amino acids (BCAAs), nitrogenous compounds, phenols,
and indoles) in the colon with poorly understood health
outcomes [54, 55]. Using national level data collected from
180 countries, Ghosh and colleagues concluded that diet-
ary utilizable protein provides a better index of protein in-
adequacies than total crude protein intake alone [56]. An
individual’s protein requirement should be based on pro-
tein quality and digestibility, along with the burden of in-
fection and energy deficits of the individual [48, 56]. In
addition, microbe-host interactions directed by dietary
proteins can provide further insight to assess protein qual-
ity and requirements that optimize intestinal health, espe-
cially during early development.

Fig. 2 Diet is a major contributor to the pathology of malnutrition and undernutrition. Nutrient quality and quantity can alter host immunity
directly and through alteration of gut microbial communities. Dysbiosis adds to the cycle of malnutrition through dietary fermentation by-
products, pathobiont overgrowth, and epithelial oxygenation. These conditions alter intestinal permeability, leading to increased pathogen
susceptibility and endotoxemia that hampers host immunity and increases disease susceptibility. Created with BioRender.com
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Protein-insufficient diet models are used to study the
effects of protein malnourishment on intestinal health
[17, 57]. Reducing dietary protein in mice from 20 to 5%
has drastic consequences on growth stunting, intestinal
permeability, and immune function resulting in intestinal
inflammation with features similar to EE in humans [17].
Dietary protein provides essential amino acids for protein
synthesis, as well as is important for satiety, glucose, and
lipid metabolism, blood pressure, bone metabolism, and
immune function [53]. Studies show a unique microbial
signature specific to protein-deficient diets, distinguished
by an increase in Bacteroidetes and Proteobacteria species,
and a decrease in Lactobacillaceae and Erysipelotrichaceae
in the gastrointestinal tract [17, 57]. A decrease in Lacto-
bacillaceae and Erysipelotrichaceae family members are
associated with intestinal integrity dysfunction, inflamma-
tion, and increased susceptibility to enteric pathogens in
mice [58, 59]. Similarly in humans, the population of Bac-
teroidetes and Proteobacteria species has been shown to
be high, while Lactobacillaceae species stay low as
assessed in a Malawian twin study that evaluated kwashi-
orkor disease [18]. Early-life protein restriction post-
weaning in mice led to temporary glucose intolerance fol-
lowing nutritional recovery but did not increase suscepti-
bility to diet-induced liver steatosis and insulin resistance
later in life [60]. A critical window may exist during gesta-
tion and suckling prior to weaning that this study did not
include and may explain the transient metabolic dysfunc-
tion associated from post-weaning dietary protein deficits.
Aside from the microbiota, there is evidence suggest-

ing that maternal protein consumption can impact the
metabolism and immune system of their offspring. A
high-protein maternal diet was able to stimulate hypo-
thalamic MAPK insulin signaling pathways that are in-
volved in controlling energy and nutrient homeostasis
[61]. A diet low in protein was determined to activate
the liver and hypothalamus hedgehog-signaling pathway
that is positively correlated with liver disease (e.g.,
NAFLD) and hepatic repair mechanisms [61]. A low-
protein diet during pregnancy and lactation leads to in-
creased inflammatory status as determined by the ex-
pression of microRNAs (miRNAs), and levels of
inflammatory IL-6 and TNF-α markers in mice [37].
miRNAs are shown to be involved in the pathogenesis of
metabolic disorders by regulating insulin signaling,
immune-mediated inflammation, adipokine expression,
adipogenesis, lipid metabolism, and food intake [62]. In
pigs, a low-protein diet increased cortisol and decreased
protein levels in sows, and led to high cortisol, low IgA,
and increased mortality in suckling piglets [63]. The
high-protein diet decreased systemic immunoglobulin
(IgA, IgG, and IgM) and increased systemic CD4+ lym-
phocytes and CD4+/CD8+ ratio in weaned piglets indi-
cating altered immune function. An optimal quantity of

dietary protein may exist because both low- and high-
protein diets increased IL-6 in the blood of piglets chal-
lenged with lipopolysaccharide (LPS) compared to nor-
mal protein feeding [63]. Maternal high-protein (40% of
diet) diets during pregnancy, but not lactation, alter hep-
atic gene expression in adult mouse offspring, suggesting
permanent imprinting on metabolic function [64]. A
small number of genes persisted in adulthood, including
those involved in liver regulation, damage, and metabolic
dysfunction (Hifla and Hnf4a), and genes that regulate
liver DNA methylation (Mecp2 and Sin3a) that explain
the long-term imprinting effects of a prenatal high-
protein diet [64]. Moreover, glucagon-like protein-1
(GLP1) was higher in high-protein offspring (protein in-
duces satiety) and was associated with reduced insulin
sensitivity as determined by high insulin serum levels
and increased resistin and IL-6 expression in brown adi-
pose tissue in rats [65]. Rat offspring from dams given a
high-protein diet during gestation had a 41.2% increase
in adiposity correlating with a significantly increased
phosphoenolpyruvate carboxykinase (PEPCK; a gluco-
neogenesis enzyme) and altered insulin signaling com-
pared to normal protein maternal diets [66]. A high-
protein diet during gestation and lactation is shown to
increase plasma insulin when rat pups are weaned on a
normal protein diet; however, weight gain remained the
same between groups [67]. This research indicates that
maternal and infant protein consumption may contrib-
ute to metabolic programming lasting into adulthood.
Yet, the discrepancy between some studies linking high-
maternal-protein diets to offspring weight gain may indi-
cate a role of the gut microbiota and requires further
investigation.
The amount of protein consumed early in life may

play an important role in programing metabolic func-
tion. Although the mechanism of programming is poorly
defined, the effects of dietary protein may have a micro-
bial component. The “early protein hypothesis” suggests
that the consumption of a high-protein diet with suffi-
cient energy, such as the typical infant formula, increases
infant weight gain, adipogenic activity, and obesity risk
later in life [68]. During the first 6 months of life, protein
intake has been shown to be 66–70% higher in formula-
fed (FF) than in breastfed (BF) infants leading to greater
weight gains in infants from 3 to 9months [69]. This is
partly due to the fact that infant formula contains higher
concentrations of protein than human breast milk. Pro-
tein content of human breast milk ranges from 1.4–1.6
g/100 mL to 0.8–1.0 g/100 mL after 4 months of lacta-
tion, whereas infant formula ranges from 2 to 3.5 g/100
mL, with a higher protein formula given to low birth
weight or preterm infants [70]. In a multicenter, double-
blind, randomized clinical trial, high-protein FF infants
(6 years old) had a significantly higher body mass index
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(BMI) and were twice as likely to develop obesity com-
pared to the low-protein FF infants [71]. Limiting pro-
tein intake may help reduce the effects of long-term
metabolic programming; however, the events leading to
this observation and cause are still poorly understood. A
targeted serum metabolome analysis revealed BF infants
demonstrated increased fat metabolism, whereas FF in-
fants had a metabolite profile indicative of protein me-
tabolism [72]. The greatest difference was determined at
2 months (baseline), 4 months, and 6 months of age, and
remained different when “carbohydrate-rich” comple-
mentary foods were added to the diet. Fecal microbiome
structure and metabolomic profile mirrored changes as-
sociated with serum metabolite profiles [72, 73]. As ex-
pected, protein-rich infant formula induced microbial
end-products typical of peptide and amino acid fermen-
tation such as branched chain fatty acids (BCFAs; isobu-
tyrate and isovalerate) and phenylacetate [73]. The
contribution of the microbiota to the relationship be-
tween early-life protein and long-term metabolic out-
comes has not been explored in a controlled system;
however, given the evidence linking early-life microbial
disruptions with long-term disease risk supports a role
of protein-microbe interactions.
Excessive protein intake can lead to protein fermenta-

tion products known to disrupt gastrointestinal tract
function and contribute to the pathogenesis of irritable
bowel syndrome and ulcerative colitis, with a distin-
guishing malodorous flatus [54]. Plant-based diets from
developing countries such as bean and cowpea flour are
primarily poor in protein quality and reduced linear
growth compared to fish protein-rich diets [74]. Maize
and cassava are other popular protein sources in devel-
oping countries that are poor sources of tryptophan and
lysine [75]. Microbiota-derived tryptophan metabolites
are instrumental in maintaining intestinal homeostasis
[76]. In fact, tryptophan is considered the limiting amino
acid in infant formula (~ 250 mg/L) due to low bioavail-
ability from bovine milk protein. Formula would require
twice as much tryptophan to reach the bioavailable levels
similar to that of breast milk (~ 200–400 mg/L) [72].
Processes that disrupt microbial activity and reduce
tryptophan metabolite capacity can lead to increased di-
gestive dysfunction and pathogen susceptibility [77, 78].
In mice, dietary amino acid metabolism has been mech-
anistically linked to angiotensin I-converting enzyme 2
(Ace2) deficiency by altering microbial gut ecology and
antimicrobial peptide expression, increasing infection
susceptibility [79]. Bioavailability of certain amino acids
may play an instrumental role in diet-induced dysfunc-
tions leading to PEM. Protein source and digestibility
can impact microbe-host interactions in the gut, per-
petuating malnutrition by decreasing intestinal integrity
and function [47]. More research is needed to determine

to what extent the microbiota and host intestinal activ-
ities are programmed through maternal exposure to the
amount and source of proteins.

Fats
A universal deficiency that occurs in malnutrition, both
energy and PEM, is a less than sufficient intake of fat
and/or essential polyunsaturated fatty acids. Although
the gut microbiota is recognized as an important patho-
physiologic factor in the development and sustainment
of malnutrition, there are few studies that have specific-
ally examined their impact in relation to dietary fat. It is,
however, generally accepted that the bidirectional inter-
actions between the microbiome, fat availability, and
gastrointestinal function contribute to a vicious circle,
further impairing health outcome in malnutrition [80].
Although gut microbes have been implicated in regu-

lating fat absorption and metabolism [81], a comprehen-
sive and mechanistic approach to understanding the
pathways is still needed. In a healthy infant, > 95% of fats
are absorbed before entering the large intestine. Malnu-
trition, especially in infants/children results in a general-
ized disturbance of the small intestine structure
(shortened, blunted villi, and increased crypt depth) and
function (disturbances in permeability and absorption)
resulting in fat malabsorption [80]. This results in diar-
rhea, weight loss, other nutritional deficiencies, and gut
dysbiosis [80]. The accompanying intestinal and systemic
inflammation are suggested to contribute to these patho-
logical changes [80, 82]. Additionally, the microbiota
plays a major role in bile acid deconjugation [83]. Al-
tered microbial deconjugation of bile acids would further
impair absorption of fat, cause bile salt injury to the
colon, and interfere with digestive enzymes and nutrient
transporters [80].
In the colon, microbial perturbations can indirectly

alter energy balance via changes in the levels of anorec-
tic hormones (peptide YY (PYY) and GLP-1) and effects
on energy (both lipid and glucose) metabolism [84]. The
gut microbiota has been demonstrated to stimulate hep-
atic triglyceride production (lipogenesis) by activating
the transcription factors, carbohydrate response element
binding protein (ChREBP), and sterol response element
binding protein (SREBP) [85]. Recently, a critical role of
the, complex but less diverse, small intestine microbiota
as a regulator of fat digestion and absorption has been
identified [86, 87]. These microbes appear to be essential
for host adaptation to dietary lipid changes by regulating
gut epithelial processes involved in their digestion and
absorption. It is hypothesized that this occurs via sys-
temic control of enteroendocrine signaling and an effect
on erythrocytes fatty acid transport [87]. As fat is the
major energy source for infants and children, an inad-
equate supply can lead to long-term health
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consequences to the infant/child through the impact on
inadequate energy reserve, epigenetic changes in cells
critical for growth, long-term defects in the small intes-
tine and immune maturation, and recurrent bouts of in-
fection [82]. Changes to the microbiome early in life
could also have lasting effects on the ability to adapt to
changes in fat intake later in life, thereby contributing to
metabolic disorders [87].
A supply of both the n-6 and n-3 PUFA is essential for

growth and intestinal, neurocognitive, visual, and im-
mune development [88, 89]. Among the n-3 PUFA, ei-
cosapentaenoic acid (EPA; C20:5) and docosahexaenoic
acid (DHA, C22:6) are the two main bioactive forms in
humans and for the n-6, arachidonic acid (Ara, C20:4).
An n-3 PUFA deficiency, especially during intrauterine
and early life, is associated with impaired psychomotor
development, and issues with attention, cognition, and
visual acuity [90]. An insufficient supply of PUFA alters
systemic and intestinal immune development, which oc-
curs postnatally within the first 3 years of life [89]. How-
ever, the development of the immune system is closely
tied with that of the microbiome [85]. Despite this
knowledge, the impact of essential fatty acid deficiency
on the microbiome has not been well studied.
Studies have shown that different types of dietary fat,

including saturated fatty acids (SFAs), monounsaturated
fatty acids (MUFAs), and PUFAs, and their abundance
in the diet, could change gut microbiota composition
[91]. There is growing evidence for a potential role of a
disrupted microbiota in metabolic disorders induced by
n-3 PUFA deficiency. Studies have shown that dietary n-
3 PUFAs can modify the intestinal microbiota compos-
ition by increasing the number of bifidobacteria that de-
crease gut permeability and decreasing the number of
Enterobacteria that increase intestinal permeability [92].
Animal studies have reported that supplementation of n-
3 PUFA in young rodents can restore the disturbed gut
microbiota composition of maternally separated female
rats [93] or the disrupted function of the microbiome in
male pups [90]. The position of the DHA or ARA in
milk triacylglycerols has also been demonstrated to
modify the intestinal bacterial population of the suckling
rodent [94]. The effect of these fats on the microbiota is
best explained by indirect mechanisms. This is particu-
larly evident in a study that demonstrated differences in
microbial composition in response to changes in the
parenteral fatty acid formulations [95].
The impact of PUFA on the gut microbiota is less well

defined. The few studies completed in adults showed
some common changes in the gut microbiota after n-3
PUFA supplementation. In particular, a decrease in Fae-
calibacterium, often associated with an increase in the
Bacteroidetes and butyrate-producing bacteria [92]. Al-
though the literature on this topic is discordant, n-3

PUFAs are generally associated with anti-inflammatory
effects, in comparison with the omega-6 PUFAs that are
linked to pro-inflammatory effects, due to the different
downstream lipid metabolites [92]. Supplementation
with n-3 PUFAs can exert a positive action by reverting
the microbiota composition in adult inflammatory dis-
eases and increase the production of anti-inflammatory
compounds, like short-chain fatty acids [92]. In addition,
accumulating evidence in animal model studies indicates
that the interplay between gut microbiota, n-3 PUFA,
and immunity helps to maintain intestinal integrity and
influences the gut–brain axis, acting through shifts in
the microbial gut network [92]. Infant trials have dem-
onstrated that supplementation with PUFA results in
greater bacterial diversity combined with lower abun-
dance of some pathogenic bacteria, such as Streptococ-
cus, Clostridium, and some genera of the
Enterobacteriaceae family, such as Escherichia, Klebsi-
ella, Serratia, and Citrobacter, suggesting that n-3
PUFAs favor the butyrate-producing bacterial genera
[96]. Identifying direct and indirect attributes of dietary
fats on microbial networks and immune function will
help elucidate the contribution of dietary fat type and
quantity on malnutrition status.

Carbohydrates
The main contribution of carbohydrate in human nutri-
tion is to provide glucose for supporting the high energy
demands of the brain and muscular system [97, 98]. Ex-
perts recommend an intake of 150 g/day in adults to
support muscle and brain physiology, but no minimum
requirement has been established [99, 100]. Humans
have thrived on diets containing various amounts and
types of carbohydrates. However, the excessive con-
sumption and reliance on poor-quality carbohydrates is
thought to have contributed to the increased prevalence
of chronic diseases [100]. Although difficult to define,
the nutritional quality of a carbohydrate can be de-
scribed by their digestibility and activity on the
microbiota.
Unabsorbed carbohydrates are fermented by gut bac-

teria into lactic acid, succinate, SCFAs (acetate, propion-
ate, and butyrate), and hydrogen, methane, and carbon
dioxide gases [101]. SCFAs are associated with improved
intestinal and metabolic health; however, it may also
contribute to a variety of gastrointestinal symptoms in-
cluding abdominal cramps, bloating, flatulence, and diar-
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