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Abstract

Adaptive designs for clinical trials permit alterations to a study in response to accumulating data in order to make
trials more flexible, ethical, and efficient. These benefits are achieved while preserving the integrity and validity of the
trial, through the pre-specification and proper adjustment for the possible alterations during the course of the trial.
Despite much research in the statistical literature highlighting the potential advantages of adaptive designs over
traditional fixed designs, the uptake of such methods in clinical research has been slow. One major reason for this is
that different adaptations to trial designs, as well as their advantages and limitations, remain unfamiliar to large parts
of the clinical community. The aim of this paper is to clarify where adaptive designs can be used to address specific
questions of scientific interest; we introduce the main features of adaptive designs and commonly used terminology,
highlighting their utility and pitfalls, and illustrate their use through case studies of adaptive trials ranging from
early-phase dose escalation to confirmatory phase III studies.
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What are adaptive designs?
In a traditional clinical trial, the design is fixed in advance,
the study is carried out, and the data analysed after com-
pletion [1]. In contrast, adaptive designs pre-plan possible
modifications on the basis of the data accumulating over
the course of the trial as part of the trial protocol [2].
We consider designs that allow for modifications of the
trial such as the sample size, the number of treatments,
or the allocation ratio to different arms. We do not con-
sider options such as stopping early due to failure to meet
operational criteria or excessive safety events, although
adaptive designs for some of these do also exist [3].
Adaptive design methodology has been around for more
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than 25 years [4], with some methods such as group
sequential designs being even older [5].
It is crucial that the adaptive nature of a design does

not undermine the trial’s integrity and validity [6]. By
integrity of a trial, we mean that the data have not been
used in such a way as to substantially alter the result, while
the validity of the results requires that the study answers
the original research questions appropriately. Adaptive
designs require procedures to ensure that data is collected,
analysed, and stored in an appropriate manner at every
stage of the trial, with specialised statistical methodol-
ogy for inference. The involved logistical and statistical
nature of adaptive designs should also be reflected in their
reporting [7].
Flexibility of a design is not a virtue in itself but

rather a gateway to more efficient and ethical trials where
futile treatments may be dropped sooner, more patients
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may receive a superior treatment, fewer patients may be
required overall, treatment effects may be estimated with
greater precision, a definitive conclusion may be reached
earlier, etc. Adaptive designs can aid in these aspects
across all phases of clinical development [2].
Despite the many clear benefits, many modern adap-

tive designs are still far from established as typical practice
[8–10]. Many reasons for this have been identified
[9–12], the main of which include the following: lack of
expertise and experience (in the application of adaptive
designs among clinicians, trialists, and statisticians), lack
of design and analysis software, time required for planning
and analysis, inadequate funding structure to account for
design uncertainty, and the fact that chief investigators
may prefer more familiar methods. We believe that the
main reason investigators are not inclined to adopt adap-
tive designs is a lack of clarity about what these are and
what they can (and cannot) accomplish and how they may
be implemented. Ambiguous terminology and vague def-
initions add to this confusion [13], and hence, we provide
a glossary of common types of adaptive design in Table 1.
Other work providing reviews of recent uses of adaptive
designs may provide insight into designs not covered in
detail here [4, 14].
To demonstrate how and when adaptive designs can be

useful, we focus on four key questions of scientific interest
when developing and testing novel treatments: ‘What is a
safe dose?’ ‘Which is the best treatment among multiple
options?’ ‘Which patients will benefit?’ ‘Does the treat-
ment work?’ For each of these questions, we briefly review
several important adaptive designs, outlining their advan-
tages and disadvantages. We illustrate their application
through real-world examples.

When to use an adaptive design
What is a safe dose?
Phase I trials of new drugs are conducted to assess the
safety of a treatment, the aim being to establish the safety
profile across a range of available doses, in order to select
a dose for further testing. In many therapeutic areas, the
goal is to identify the maximum tolerated dose (MTD),
that is the highest dose that controls the risk of unaccept-
able side effects [15] and hence is deemed safe. In practice,
one seeks to identify the dose at which the probability of a
dose-limiting toxicity (DLT) is equal to some pre-specified
target level, usually around 20–33%. This is done by treat-
ing consenting patients sequentially at increasing doses
until too high a proportion of unacceptable side effects are
observed.

3+3 design
The most commonly used method for conducting dose-
escalation studies in oncology is the 3+3 design [16, 17]. It
is a simple, rule-based approach under which patients are

dosed in cohorts of three. Based on the number of DLTs
observed in the current cohort of patients, recommenda-
tions are made to dose the next three patients at either the
next escalating dose or the current dose. Upon observing
a pre-specified number of toxic outcomes at a dose level
(say DLTs in more than 2 in 6 patients), the trial is ter-
minated and the dose level below is considered to be the
MTD. The 3+3 design is a special case of the more general
A+B design [18]; when a new dose is introduced, a cohort
of A patients are dosed, and if further observations are
required on the same dose, a cohort of B further patients
are then dosed.

Example Park et al. [19] performed a phase I dose-
escalating study of docetaxel in combination with 5-day
continuous infusion of 5-fluorouracil (5-FU) in patients
with advanced gastric cancer. The study used a 3+3 design
to find the MTD from four dose levels of 5-FU. The treat-
ment consisted of docetaxel 75 mg/m2 on day 1 in a
1-hour infusion followed by 5-FU in continuous infusion
from day 1 to day 5, according to the escalating dose levels.
The starting dose of 5-FU was 250 mg/m2/day for 5 days.
In the absence of any DLTs (defined as febrile neutrope-
nia and/or grade 3/4 toxicity of any other kind apart from
alopecia), dose escalation in additional cohorts continued,
increasing the dose by 250mg/m2/day for each increment.
The first DLT was observed at dose level 2 (5-FU

500mg/m2/day for 5 days). Three additional patients were
enrolled at this dose level, none of whom experienced
any DLT. Thus, dose escalation proceeded to dose level
3 (5-FU 750 mg/m2/day for 5 days) where a further 2
patients experienced DLTs and so dose escalation was
stopped. Dose level 2 was therefore the recommended
regimen with docetaxel 75 mg/m2 on day 1 and 5-FU 500
mg/m2/day in a 5-day continuous infusion.

Advantages The key advantage of the 3+3 design is that
it does not require any time to design. In addition, this
method is well-known to clinicians, often leading to its use
being well motivated within the trial team. Web applica-
tions [20] are available to understand the performance of
such designs.

Disadvantages The major disadvantages of the 3+3
design will become clear as we draw comparisons to the
methods that follow. In particular, we note that the MTD
is not explicitly defined; this means that the most likely
dose to be chosen as the MTD can have a probability
of DLT far from the assumed target and can be highly
variable [21–23].
Rule-based dose-escalation methods such as 3+3

designs are seriously flawed, which runs afoul of the part
of our definition of an adaptive design that demands



Burnett et al. BMCMedicine          (2020) 18:352 Page 3 of 21

Table 1 Glossary of adaptive designs and descriptions of their typical applications

Method a.k.a Phase of development Definition Targeted benefits

What is a safe dose?

Continual
re-assessment
method

CRM I Dose-escalation design for
finding the maximum
tolerated dose (MTD)

More accurate and precise
estimation of the MTD
than with 3+3 designs,
more patients treated at
or close to the MTD

Escalation with
overdose control

EWOC I Dose-escalation design to
find MTD using an
allocation criterion to
avoid overdosing

More accurate and precise
estimation of the MTD
than with 3+3 designs,
avoiding undesirable
overdosing of patients

Which is the best treatment of multiple options?

Adaptive treatment
switching

II/III Allow trial participants to
switch from allocated
treatment to an alternative

More trial participants
receive preferred
treatment

Drop the loser DTL II/III Drop inferior treatment
arms (control group
typically retained)

Fewer trial participants
assigned to less effective
treatments

Multi-arm multi-stage
trial

MAMS II/III Compare multiple
treatments to a common
control, allow for early
stopping for efficacy or
futility

Common control requires
fewer patients than
conducting separate trials,
early stopping for efficacy
or futility

MCP-Mod II Combination of multiple
comparisons and
modelling approaches to
establish dose-response
model

Efficient use of available
data vs pairwise
comparisons

Response-adaptive
randomisation

Adaptive allocation, RAR II/III Shift allocation ratio
towards more promising
treatment(s)

More trial participants
receive effective treatment

Which patients will benefit?

Basket trials Examine a single
experimental treatment in
multiple sub-types of a
biomarker

Identify and target
biomarker sub-types that
benefit from the treatment

Biomarker adaptive Adaptive signature II/III Identify and utilise
biomarker information to
modify trial in progress to
target population

Target the correct patient
population

Covariate-adjusted
response adaptive

CARA II/III Shift allocation ratio
towards promising
treatment(s) using
covariate information

More trial participants
receive effective treatment

Population
enrichment

Adaptive enrichment II/III Allow for selection of
target population during
the trial based on
pre-defined patient
populations

Target the correct patient
population

Umbrella trials Multiple biomarkers each
paired with specific
treatments

Target the appropriate to
treatment within each
patient group

Does the treatment work?

Group sequential
design

II/III Early stopping for futility
or efficacy

Reduction in the expected
sample size, typically
allowing for faster trials
requiring fewer patients
(for a small increase in the
possible maximum
sample size)
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Table 1 Glossary of adaptive designs and descriptions of their typical applications (continued)

Method a.k.a Phase of development Definition Targeted benefits

Sample size
re-assessment

Sample size
re-estimation/re-calculation

II/III Mid-course adjustment of
the sample size, in either a
blinded or unblinded
fashion

Raise the probability of a
successful trial

Broader topics in adaptive designs

Bayesian adaptive I/II/III Bayesian methodology
may be incorporated into
many other designs in the
analysis and/or the interim
decision-making

Lower sample size due to
utilisation of prior
information

Seamless design Portfolio decision-making I/II/III Merge trials from different
phases of development,
e.g. phase I/II or phase II/III,
can be inferentially and/or
operationally seamless

(Inferential) More efficient
use of data from each
phase of clinical develop-
ment/(operational) faster
clinical development
process and moving
between stages

integrity and validity. Thus, this method being well-
known to clinicians, possibly allowing them to avoid col-
laboration with a statistician, can also present a serious
problem.

Continual re-assessmentmethod
The continual re-assessment method (CRM) [24, 25]
models the relationship between dose and the risk of a
patient experiencing a DLT, using an iterative process to
make use of all available trial data when choosing the dose
for the next patient cohort. Based on all available data
from the trial, the relationship between dose and toxic-
ity is modelled to inform the choice of dose for the next
cohort. The dose for the next patient or cohort is cho-
sen as either that with an estimated probability of DLT
closest to the target toxicity level, or the highest available
dose below the target level. This process is iterated for
each new cohort of patients, ensuring that at all times all
available data are used. The application of the CRM pro-
cess is highly flexible, allowing the investigators to adjust
the design to suit the particular trial and trialist (making
use of all trial data wherever it is introduced, as is seen
in the example to follow). Both the cohort size and the
sample size of a CRM trial are determined before the trial
begins; sample sizes are often planned with practical con-
straints in mind rather than statistical properties while
simulationmay be used to understand statistical operating
characteristics [26].

Example Paoletti et al. [27] provide a tutorial of the
practical considerations for designing CRM trials; they
describe the design, conduct, and analysis of a multicen-
tre phase I trial to find the MTD (defined as the dose
with probability of a DLT closest to 20%) of rViscumin in
patients with solid tumours. A DLT was defined as any
haematological grade 4 or non-haematological grade 3 or

grade 4 adverse event as defined by the National Can-
cer Institutes Common Terminology Criteria for Adverse
Events (NCI CTCAE) Version 2, with the exclusion of nau-
sea, vomiting, or rapidly controllable fever. The starting
dose of the trial was 10 ng/kg, with fixed dose levels for
further exploration of 20, 40, 100, 200, 400, and 800 ng/kg;
if no adverse events of grade 2 or higher were observed
after escalation to 800 ng/kg, additional doses would be
added in increments of 800 ng/kg (i.e. 1600, 2400 ng/kg).
The trial used a two-stage CRM design [24] allowing

the low doses to be rapidly moved through while util-
ising the model-based approach in the selection of the
MTD. During the first stage, one patient was assigned
to the starting dose of 10 ng/kg, and if adverse events
were absent or grade 1, a new patient was given the next
highest dose; if a non-DLT adverse event of grade 2 or
higher was observed, a further two patients would be
given the same dose. Escalation continued in this man-
ner until the first DLT was observed, at which point the
model-based design took over. A one-parameter model
[25] was fitted to the data, and the dose with an esti-
mated probability of DLT closest to 20% was recom-
mended for the next patient, subject to the constraint that
no untested dose level is skipped. The trial was stopped
when the probability of the next five patients being given
the same dose was at least 90% (i.e. the trial would be
unlikely to gain further information that would affect dose
allocation).
The first DLT was observed in the 11th patient who

was given 4000 ng/kg, at which point the CRM part of
the design took over. In total, 37 patients were recruited
to the trial before it was terminated under the aforemen-
tioned rule, and the MTD declared as 5600 ng/kg, with
an estimated DLT probability of 16%; the estimated prob-
ability of a DLT at the next highest dose (6400 ng/kg)
was 31%. It is worth noting that during the ongoing trial,
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the first DLT was recoded to a non-DLT; this change is
easily incorporated in a CRM design by simply re-
estimating the DLT risks at each dose using the updated
data [26]. This recoding of the first DLT had an impact
on the overall trial outcome as without this a lower MTD
would have been selected [27]. This illustrates one of the
benefits of a model-based approach; deviations from the
planned course of the trial are handled without compro-
mising the validity of the design.
The authors describe how the statistical work of the

trial helped to inform study clinicians and the Trial Steer-
ing Committee, with whom any final decisions rest. For
example, a decision was made to dose another patient
at 3200 ng/kg rather than escalate to 4000 ng/kg as per
the design in order to gather more PK data at this level.
Furthermore, 10 extremely tolerable (but presumably inef-
ficacious) dose levels were cleared quickly and with far
fewer patients than the 3+3 design would require.

Advantages Conceptually, the CRM is a far wiser
approach (and more efficient/economic) than the 3+3
design because it uses all available trial data to make deci-
sions, rather than solely the data from the last cohort
[28, 29]; the CRM also targets a pre-specified toxic-
ity level. Numerous comparative simulation studies have
shown the CRM to supersede the 3+3 design by dosing
more patients in trial at or near the correct MTD and
also by selecting the correct dose as the MTD more often
[30–34], which in turn can result in higher probability
of success in subsequent phase II and phase III clinical
trials [35].
Furthermore, the CRM can easily be adapted to include

more informative endpoints as follows: multiple graded
toxicities to incorporate severity of side effects [36–38],
combinations of safety and efficacy [39–44], time-to-
event outcomes to distinguish between toxicity events
occurring sooner or later [45, 46], or even developed
to escalate multiple treatments at once [47–54]. Regula-
tory authorities are also recognising that novel adaptive
designs using statistical models are of great importance,
and actively encourage sensible usage of them in phase I
trials [55, 56].

Disadvantages The main disadvantage of the CRM
design is the time and effort required at the design stage to
assess how the trial is expected to perform. This requires
close collaboration between the clinical team and a suit-
ably trained statistician who is able to guide this opti-
misation process, although this opportunity to consider
the design more carefully can only be a good thing. The
clinical team may still see the CRM as a ‘black box’; to
resolve this concern, Dose Transition Pathways provide a
tool for visualisation of the CRM escalation/de-escalation
decisions [57]. Several computer programs are available

(see MD Anderson Cancer Center software library [58],
Vanderbilt University, and packages within R [59, 60]) for
conducting simulation studies, some of which can offer
comparisons to other popular dose-escalation designs [60]
and tutorial papers are available offering further guidance
[26]. Web-based solutions are on offer for both the CRM
and conceptual equivalents [61–63].

Escalationwith overdose control
The escalation with overdose control (EWOC) approach
[64] is similar to the CRM in that all available data are
used to make dose-escalation decisions with a target toxi-
city level used to choose which dose level the next patient
or cohort should receive. However, the EWOC approach
assigns the next patient using a skewed allocation crite-
rion to account for the fact that the overdosing of patients
is much more undesirable compared to the underdos-
ing. This results in a more conservative patient allocation
approach, with fewer patients being exposed to possible
overdosing compared to the CRM, while still benefiting
from the model attempting to allocate the patients near
the MTD [65, 66]. Additionally, the same statistical model
is re-expressed in a way that allows focus on the clinically
relevant parameters, the MTD, and the probability of a
DLT at the lowest dose. This means that prior information
about the treatment being investigated can easily be incor-
porated and one can visualise how the distribution of the
MTD changes over the course of the trial.

Example Nishio et al. [67] conducted a dose-escalation
study of ceritinib in patients with advanced anaplastic
lymphoma kinase-rearranged, non-small-cell lung cancer,
or other tumours. A Bayesian EWOC approach was used
to allocate the dose for the next patient. This allocates the
next patient to the largest dose with an estimated prob-
ability of less than 25% that the risk of a DLT exceeds
33%. In total, 19 patients were recruited to the trial: three
patients received doses of 300 mg, six patients received
doses of 450 mg, four patients received doses of 600 mg,
and six patients received doses of 750 mg. Two patients
experienced DLTs, one at 600 mg and the other at 750 mg.
TheMTDwas chosen as 750mg, the largest dose at which
the estimated probability of the risk of a DLT exceeding
33% was less than the target 25% (the probability was 7.3%
for the chosen dose). Although the aim of the trial was
not to evaluate efficacy of ceritinib in this population, 10
patients achieved partial responses to their cancers.

Advantages The EWOC approach offers a more cautious
dose-escalation design that reduces the chance of patients
being treated at excessively toxic doses [64]. Similar to the
CRM, the EWOC approach has also been adapted to be
used in trials with more complex outcomes, such as time-
to-event data [68], and for combinations of treatments
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[69, 70]. Furthermore, the escalation control threshold can
be altered depending on the trial context and may change
during the conduct of the trial [65, 66]; this offers a con-
servative dose-escalation schema at the start of the trial
when there is little data available, but as more data are
accrued, dose-escalation gradually becomes less conser-
vative, and the MTD can be targeted more quickly than
with the standard EWOC approach [65, 66, 71].

Disadvantages A slower dose-escalation approach may
increase the number of patients treated at sub-therapeutic
doses. Similar to implementation of the CRM, care
is required when designing trials using the EWOC
approach. For example, choice of the MTD estimator
needs to be considered; several trials use the same crite-
rion as that by Nishio et al. [67], i.e. the MTD is the dose
that would be given to a new patient had they entered a
trial. The implications of each choice need to be consid-
ered well in advance [72]. Furthermore, if the investigators
plan to relax the escalation control mechanism, as has
been done in practice before [66, 73, 74], the implica-
tions of this decision need to be considered. The EWOC
approach may recommend to escalate the dose even
when the most recently evaluated patient experienced a
DLT [75].

Summary
Despite the 3+3 designs frequent use in phase I clinical tri-
als over the last 30 years [8, 76–78], there is overwhelming
consensus among statisticians and methodologists that it
is sub-optimal, and more efficient designs for identifying
the MTD should be used [35, 79, 80]. Many alterna-
tive designs propose the use of statistical models, such
as the two alternatives we have presented here; both of
which have superior operating characteristics over the
3+3 design.
The model-based approaches above serve as the main

framework for other proposed approaches designed for
trials with novel drug combinations, endpoints that use
time-to-event data and/or efficacy outcomes, or infor-
mation about the severity of observed toxicities. These
designs have found their way into clinical practice in
recent years, primarily in oncology for cytotoxic treat-
ments. However, they can be used for novel molecularly
targeted anti-cancer therapies [81], and in other disease
areas altogether: O’Quigley et al. [82] proposed CRM-type
designs for anti-retroviral drugs to treat human immun-
odeficiency virus (HIV), Lu et al. [83] conducted a dose-
escalation study of quercetin in patients with hepatitis C;
Whitehead et al. [84] proposed a model-based design for
trials in healthy volunteers, and Lyden et al. [85] used a
CRM design in the RHAPSODY trial in stroke patients.

Combining the advantages of both model-based and rule-
based designs can also be desirable, with proposals such
as the Bayesian optimal interval (BOIN) design [86, 87].
There is no ‘one size fits all’ approach for conducting

adaptive dose-escalation studies, but there is overwhelm-
ing evidence that model-based designs are far better than
rule-based designs, such as the 3+3. Model-based designs
are on the whole more efficient in their use of data, less
likely to dose patients at sub-therapeutic doses, more
likely to recommend the correct MTD at the end of the
trial, and provide an MTD estimate that directly relates
to a specified target level of toxicity. We have discussed
two approaches here for brevity, though many other
alternatives have also been proposed, including designs
based on optimal design theory [88–91] and model-free
designs [86, 92–94], without the shortcomings of com-
mon rule-based designs like 3+3. The increasing usage of
model-based designs in practice, as well as their acknowl-
edgement in regulatory guidance and the provision of
guideline documents [95], formal courses and computer
software is indicative of the changing tide of clinical prac-
tice for phase I trials. Although the fact remains that such
designs are more complex making implementation more
challenging, for a trained statistician unfamiliar with the
design planning, such a trial would require a significant
investment of time. Such issues in implementing novel
statistical methods are well recognised [96].

Which is the best treatment amongmultiple options?
After establishing the safety of a treatment, we next exam-
ine its efficacy. In this section, we consider randomised
clinical trials that aim to select the best treatment among
multiple experimental treatment arms (these can be dif-
ferent treatments, doses of the same treatment, or combi-
nations of the two). The methods we explore are typically
considered for use in phase II of the development process,
where we wish to select a treatment or dose for further
study. We explore methods that seek to remove less ben-
eficial treatments from the trial quickly, giving patients
a better chance of receiving an efficacious treatment. In
trials where the different arms correspond to a series
of exposure levels (such as doses of a drug, duration or
intensity of radiotherapy, or number of therapy sessions),
model-based approaches examine the dose-response rela-
tionship to provide a deeper understanding of this in an
efficient way.

Multi-armmulti-stage
Multi-arm multi-stage (MAMS) [97] trials allow the
simultaneous comparison of multiple experimental treat-
ment arms with a single common control. They are
conducted over multiple stages: allowing for the early
stopping of recruitment for either efficacy or futility. For
example, if an experimental treatment is found to be
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performing poorly, it may be dropped for futility at a
pre-planned interim analysis (if all experimental arms are
dropped, the trial is stopped for futility); alternatively, the
trial may end early when a treatment is shown to be suf-
ficiently efficacious. We cover group sequential designs
in more detail in the ‘Group sequential designs’ section,
but MAMS designs apply similar methodology while
testing multiple experimental treatments simultaneously.
A simplex schematic of how a two-stage four-arm
trial using MAMS design can progress is given in
Fig. 1.
MAMS trials are designed using a pre-planned set of

adaptation rules to find the best treatment to carry for-
ward for further study [98] or carry forward all promis-
ing treatments [99]. Alternatively, more flexible testing
methods [100–102] allow methodological freedom as to
how adaptation decisions are made. Open source soft-
ware is available to assist in the design and analysis of
MAMS trials in the form of the ‘MAMS’ package for R
[103]. Alternatively, in STATA, there are several mod-
ules available such as ‘nStage’ [104], ‘nStagebin’ [105], and
‘DESMA’ [106].

Example The TAILoR trial [107] was a phase II, multi-
centre, randomised, open-labelled, dose-ranging trial of
telmisartan using a two-stage MAMS design. The trial
planned recruitment of up to 336 HIV-positive individu-
als over a 48-week period, with a single interim analysis
planned after 168 patients had completed 24 weeks on
either an intervention or a control treatment. Patients
were randomised with equal probability to one of four
groups: no treatment (control), 20 mg telmisartan daily,
40 mg telmisartan daily, or 80 mg telmisartan daily.
At the interim analysis, there were three possible out-

comes based on assessment of change in HOMA-IR index
from baseline to 24 weeks: if one telmisartan dose was
substantially more effective than control, the study would
stop and that dose would be recommended for further
study; if all telmisartan doses were less effective than con-
trol, the study would stop with no dose recommended for
further study; if one or more doses were better than con-
trol but none met the first criterion, the study would con-
tinue and patients would have been randomised between
these remaining dose(s) and control. If a second stage was
conducted, then a final analysis would be conducted with

Fig. 1 A two-stage four-arm MAMS design
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two possible outcomes: either the best dose is significantly
more effective than the control in which case it is recom-
mended for further study, or no dose is significantly better
than control in which case no dose is recommended.
A total of 377 patients were recruited [108] (note this

difference in sample size was due to higher than expected
dropout). In stage 1, 48, 49, 47, and 45 patients were ran-
domised to control and 20, 40, and 80 mg telmisartan,
respectively. At the interim analysis, the 20- and 40-mg
telmisartan groups performed worse than control on aver-
age and so only 80 mg telmisartan was taken forward
into stage 2. At the end of stage 2, 105 patients had been
recruited to control and 106 to the 80-mg arm (in total);
there was no difference in HOMA-IR (estimated effect,
0.007; SE, 0.106) at 24 weeks between the telmisartan (80
mg) and control arm. If a traditional fixed sample design
had been used in place of a MAMS design, all experimen-
tal arms would have been studied throughout the trial,
requiring a further 100 or so patients for arms that ulti-
mately did not demonstrate an effect of the experimental
treatment.

Advantages MAMS designs are useful when there are
multiple promising treatments with no strong belief that
one treatment will be more beneficial. The use of a
shared control group considerably reduces the number
of patients that need to be recruited compared to sepa-
rate RCTs testing each treatment. Other advantages are
as follows: treatments that provide no benefit to patients
are dropped from the trial; patients have a higher chance
of receiving an experimental treatment compared to a 2-
arm trial, which may improve recruitment to the study
[109, 110]; administratively and logistically, effort is only
required for one trial and thus can substantially speed up
the development process [111].

Disadvantages MAMS trials require an outcome mea-
sure that allows a timely decision about the worth of each
treatment. Consequently, the primary endpoint needs to
be relatively quickly observed (in comparison to patient
accrual) or an intermediate measure that is strongly asso-
ciated with the primary endpoint is required for interim
decision-making. MAMS designs require a larger poten-
tial maximum sample size than a corresponding multi-
arm fixed design (although smaller than several separate
trials). The MAMS approach has a variable sample size
depending on which decisions are made during the trial,
making planning more cumbersome, although the possi-
ble pathways are pre-defined; this is more variable than is
typical of even other adaptive designs because decisions
relate to each treatment individually.

Drop the loser
Drop the loser (DTL) designs [112, 113] are closely related
to MAMS designs [114] in that they compare several
experimental treatments to a common control over mul-
tiple stages. The key difference is that in a DTL design,
it is pre-determined how many arms will be dropped
after each stage of the trial. As the name suggests, the
worst performing experimental treatments are dropped at
interim analysis, leaving only one treatment to compare to
control at the final analysis.

Example The ELEFANT trial [115] is a randomised con-
trolled, multicentre, three-armed trial testing whether
early elimination of triglycerides and toxic free fatty acids
from the blood is beneficial in HyperTriGlyceridemia-
induced Acute Pancreatitis (HTG-AP). The study uses a
two-stage DTL design; in the first stage, patients with
HTG-AP are randomised with equal probability into three
groups: patients who undergo plasmapheresis and receive
aggressive fluid resuscitation, patients who receive insulin
and heparin treatment with aggressive fluid resuscitation,
and patients with aggressive fluid resuscitation only (the
control). At the interim analysis, the two experimental
treatments will be compared and the one demonstrated
to be the best will be retained for the remainder of the
trial. Thus, in the second stage, patients are randomised
into two groups, the control and the selected experimental
treatment. At the conclusion of the trial, formal statisti-
cal comparisons may be drawn between the control and
the experimental treatment selected at the interim anal-
ysis. The target sample size is 495 in order to detect a
66% relative risk reduction, using a 10% dropout rate with
80% power at 5% significance level. The study began in
February 2019 and is expected to finish December 2024.

Advantages As with MAMS designs, the key advantage
is the use of the shared control group which reduces the
number of patients required. Of further practical benefit
is the guarantee that a pre-specified number of arms will
be dropped during the course of the trial, meaning that the
required sample size is known before recruitment begins
[114]. At the conclusion of the trial, only one experimen-
tal treatment remains to be compared against the control
making for a clear interpretation of results.

Disadvantages The choice to only continue the most
efficacious treatments may cause concern; consider for
example an interim analysis where a dropped treatment
has demonstrated almost equivalent performance to a
treatment that continues in the trial, it is possible that a
suitable treatment has been dropped by chance. In addi-
tion, there is a similar operational complexity to MAMS
designs as it is unknown which treatments will be carried
through the trial.
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Response-adaptive randomisation
At the beginning of the trial, the comparable performance
of the experimental treatment arms may be unknown;
hence, equal randomisation is sensible under a clini-
cal equipoise principle. However, as data accumulates, it
becomes challenging from an ethical standpoint to ran-
domise patients to a treatment arm that data suggest may
be inferior. To resolve this, response-adaptive randomisa-
tion (RAR) aligns the randomisation probabilities with the
observed efficacy of the different arms (Fig. 2).
RAR dates back to 1933 [116], and since then, sev-

eral methods to align randomisation probabilities and
observed evidence of efficacy have been proposed
[117, 118]. Thompson [116] proposed to randomise
patients to arms with a probability that is proportional to

the probability of an arm being the best arm. Regardless
of how these probabilities are defined and applied, they
can be also used to define further adaptations to the trial
depending on the values they assume. For example, if the
allocation probability goes below or rises above a certain
value, arms can be dropped for futility or selected simi-
lar to a MAMS study [119, 120]. Free software is available
from the MD Anderson website [58]. The R package ‘ban-
dit’ offers an alternative to the implementation of such
designs [121].

Example A prospective, randomised study reported by
Giles et al. [122] was conducted in patients aged 50 years
or older with untreated, adverse karyotype, acute myeloid
leukaemia to assess three troxacitabine-based regimens:

Fig. 2 A description of a RAR procedure
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idarubicin and cytarabine (the control arm), troxacitabine
and cytarabine, and troxacitabine and idarubicin. The trial
used a Bayesian RAR design along the lines proposed by
Thompson [116]. Thirty-four patients were recruited and
randomised to one of the three arms. Initially, there was an
equal chance of randomisation to each arm. The randomi-
sation probabilities were updated after every patient such
that treatment arms with a higher success rate, defined
as the proportion of patients having complete remission
within 49 days of starting treatment, would receive a
greater proportion of patients. The design would drop
arms if their assignment probabilities became too low or
promote them to phase III if their assignment probabil-
ity was high enough. The probability of a patient being
randomised to the control arm was fixed until the first
experimental arm was dropped. This occurred when the
randomisation probability for the dropped experimental
arm was 0.072 [123].
Of the thirty-four patients recruited, 18 were ran-

domised to idarubicin and cytarabine, randomisation to
troxacitabine and idarubicin stopped after five patients,
and randomisation to troxacitabine and cytarabine
stopped after 11 patients. Success rates were 55% (10 of 18
patients) with idarubicin and cytarabine, 27% (three of 11
patients) with troxacitabine and cytarabine, and 0% (zero
of five patients) with troxacitabine and idarubicin.

Advantages RAR can increase the overall proportion of
patients enrolled in the trial who benefit from the treat-
ment they receive while controlling the statistical oper-
ating characteristics [124–126]. This mitigates potential
ethical conflicts [127] that can arise during a trial when
equipoise is broken by accumulating evidence and makes
the trial more appealing to patients [110] possibly improv-
ing trial recruitment [128]. The main motivation for RAR
designs is to ensure that more trial participants receive
the best treatments; it is possible to use such methods
to optimise other characteristics of the trial [129]. In a
multi-armed context, RAR can shorten the development
time and more efficiently identify responding patient
populations [130].

Disadvantages RAR designs have been criticised for a
number of reasons [131] although many of the raised con-
cerns can be addressed. Logistics of trial conduct is a
noticeable obstacle in RAR due to the constantly changing
randomisation [132]; requiring more complex randomisa-
tion systems may in turn impact things such as drug sup-
ply and manufacture. When the main advantage pursued
is patient benefit, this may compromise other characteris-
tics; for example, a two-arm RAR trial will require larger
sample sizes than a traditional fixed design with equal
sample sizes in both arms; methods to account for such
compromise have been proposed [124, 133].

Choosing an approach from the variants of RAR can be
challenging; in most cases, balancing the statistical oper-
ating characteristics and randomly assigning patients in
an ethical manner is required. Most RARmethods require
the availability of a reliable short-term outcome (although
the exact form of the data may vary [124, 134]); however,
this can result in bias, requiring the use of extra correction
methods for estimation purposes [135]. Another statisti-
cal concern is control of the type I and type II error rates.
As discussed above, this is possible but requires inten-
sive simulations or the use of specific theoretical results
[118, 129, 130, 136]; this creates an additional burden at
the design stage, requiring additional time and support.

Multiple comparison procedures andmodeling approaches
(MCP-Mod)
In phase II dose-ranging studies, patients are typically ran-
domised to either one of a number of doses and possibly
a placebo. The target dose is often the minimum effective
dose, the smallest dose giving a particular clinically rele-
vant effect. A traditional approach to find the target dose
is based on pairwise comparisons. However, this only uses
the information from the corresponding doses and typ-
ically results in larger sample sizes required in the trial
[137]. As an alternative, MCP-Mod [138, 139] employs a
dose-response model allowing for interpolation between
the doses.
MCP-Mod is a two-stage method that combines Multi-

ple Comparison Procedures (of dose levels) and MODel-
ing approaches. At the planning stage, the set of possible
models for the relationship between dose and response
are defined, such as those shown in Fig. 3. The inclusion
of several models addresses the issue of some of the mod-
els being mis-specified. At the trial stage, the MCP step
checks whether there is any dose-response signal. This is
done through hypothesis tests for each model, adjusting
for the fact that there are multiple candidate models. This
controls the probability of making an incorrect claim of a
dose-response signal (a type I error). If nomodels are found
to be significant, it is concluded that the dose-response
signal cannot be detected given the observed data.
With a dose-response signal established, a single model

is selected, or if multiple models are selected, an average is
made. The selection of models can be based either on tests
performed at the MCP step or on some other measures
such as information criterion [140]. The chosen model is
used to select the best dose. We refer the reader to the
works focusing on the step-by-step application of MCP-
Mod in practice [137, 141].

Example Verrier et al. [142] described the application
of MCP-Mod in a placebo-controlled parallel group
study undertaken in hypercholesterolaemic patients,
which evaluated the change in low-density lipoprotein
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Fig. 3Model fitting in MCP-Mod

cholesterol (LDLC, mg/dL) following 12 weeks treatment
as the primary endpoint. Three active doses were studied:
50, 100, and 150 mg, and nearly 30 patients per treat-
ment group were recruited. The objective of the trial was
twofold: (i) to demonstrate the dose effect of the com-
pound and (ii) to select the dose providing at least a 50%
decrease in LDLC.
The set of candidates was composed of linear, logistic

(four possible pairs of parameters obtained from the guess
that 50% of the maximum effect occurred at 50, 75, 100, or
125 mg, respectively, defined four models), and quadratic
(corresponding to the maximum effect at 125 mg) mod-
els. The hypothesis tests selected a logistic model, and the
estimated target dose was 76.7 mg. Alternatively, an infor-
mation criterion approach selected the quadratic model
and the estimated target dose was 78.2 mg. To check the
robustness of the results, model averaging was used and
resulted in nearly the same estimated target dose. This
analysis informed the selection of the dose for phase III
trials for which the dose of 75 mg was chosen. This choice
of dose was not one of those three active doses directly
studied but could be selected due to using a model-based
approach.

Advantages MCP-Mod allows for a more efficient use of
data. There are many practical recommendations avail-
able [137], and it has been successfully applied in a
number of trials [143]. The European Medicines Agency
issued a qualification opinion of MCP-Mod [144] con-
cluding that MCP-Mod uses available data better than
the traditional pairwise comparisons, and the FDA also
designated the method as fit for purpose [145]. There
is software that implements the methodology, e.g. an

R-package, DoseFinding [146] and PROC MCPMODin
SAS.

Disadvantages The method can be sensitive to the
model assumptions [147], which can result in significantly
lower power if the dose-response relationship is not well
approximated by one of the pre-specified candidate mod-
els. The number of doses to be included should inform
the choice of the candidate models. When the treatment
regimens consist of various drugs and schedules (and
doses within each), such disadvantages are amplified and
MCP-Mod should be approached with much care.

Summary
The methods presented in this section are suitable for
selecting a treatment or dose for further study and can
allow for formal testing in a confirmatory setting. With
RAR, we see the goal of focusing on the more effective
treatments was thought of as an important topic almost
90 years ago; however, it is only in the last 30 years or so
that this topic has gained traction as a more active area of
methodological research. The knowledge on these more
modern methods will need to be broadly shared before we
start to see their use more widely in clinical practice [148].
Each of the methods discussed uses adaptation to make

efficient comparisons of several treatments or doses.
There is a common advantage of reducing the (expected)
number of patients required to achieve the same strength
of evidence when compared with fixed sampling alterna-
tives. The key challenge is making design decisions given
the uncertainty about how the trial will develop.
For RAR, MAMS, and DTL designs, the trial focuses

on those treatments demonstrating effectiveness. These
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methods are appealing as they increase the chance of
receiving a treatment that is more likely to be effective.
Further to this, the model-based approach of MCP-Mod
increases understanding of the relationship between dose
and response in order to better allocate patients based
on current trial data, in turn allowing greater confidence
about the choice of dose.

Which patients will benefit?
Late in the development cycle, such as phase III of drug
development, we wish to confirm the treatment is effec-
tive. An important aspect of this is to ensure the right
patients receive the treatment (i.e. those who will gain a
meaningful benefit). Here, we focus on trials that use clin-
ically relevant biomarkers to identify patients who may be
sensitive to a treatment and therefore likely to respond.

Covariate-adjusted response adaptive
A form of RAR (see the “Response-adaptive randomi-
sation” section) that accounts for patient differences is
covariate-adjusted response adaptive (CARA). Randomi-
sation probabilities are aligned to the patient’s observed
biomarker information skewing allocation probabilities
towards the best performing arms according to a patient’s
set of characteristics. Such changes based upon avail-
able biomarker information are one of the most common
adaptations in biomarker adaptive designs [149].
CARA procedures are sometimes (incorrectly) referred

to as minimisation procedures or dynamic allocation; the
methods referred to with these names are very different
in their goals and nature. For example, some CARA pro-
cedures have been proposed altering the randomisation
(similar to RAR) [150] while othermethods do not do so in
a randomised fashion determining allocation probabilities
based solely on covariates [151–153]. Some CARA proce-
dures are designed to minimise imbalances on important
covariates only [150, 151] while other methods have an
efficiency goal, being designed to minimise the variance
of the treatment effect in the presence of covariates [154].
Finally, some CARA rules will aim to assign the largest
number of patients to the best treatment while accounting
for patients’ differences in biomarkers [155].

Example The BATTLE [156] trial is a prospective,
biopsy-mandated, biomarker-based, adaptively ran-
domised [157] study conducted in 255 pre-treated lung
cancer patients. Initially, 97 patients were randomised
equally to four arms: erlotinib, vandetanib, erlotinib plus
bexarotene, or sorafenib, based on relevant biomarkers.
Then, for the remaining 158 patients, the allocation
probabilities were adapted using a CARA procedure. This
procedure used a Bayesian adaptive algorithm: the data
from the first 97 patients were assessed giving a prior
distribution (describing the likely values of the effect of

the treatment) for disease control rate (DCR, the primary
endpoint) in each biomarker group; this prior distribution
was continuously updated using the accumulating data
as more patients were observed giving a posterior distri-
bution (describing the likely values of the effect of the
treatment having combined information from the prior
distribution and the available trial data) for DCR in each
biomarker group; upon recruiting, any new patient to the
trial their randomisation was governed by the currently
available data using posterior distribution. Results include
a 46% 8-week disease control rate (primary endpoint) and
evidence of an impressive benefit from sorafenib among
mutant-KRAS patients.

Advantages/disadvantages Because of the similarity to
RAR, advantages and disadvantages of CARA designs are
very similar. The main advantage being that they allow
flexibility, introducing balance, efficiency, or ethical goals
according to what might be more relevant. In addition,
CARA designs make assumptions about the model for
biomarker interactions for patients in the trial and thus
are further sensitive to these assumptions.

Population enrichment
Population enrichment designs are useful when
biomarker-defined sub-groups are known before the trial
commences. With uncertainty about which populations
should be recruited, they select which sub-populations
to recruit from for the remainder of the trial based on
data available at the interim analysis. Figure 4 illustrates
how an adaptive enrichment design can progress. In a
non-adaptive trial, the study team must make this sub-
population selection before the trial begins. Population
enrichment designs are typically planned with one of two
goals in mind: target the sub-population where patients
receive the greatest benefit, or stop recruiting from
sub-populations where the treatment may not provide a
benefit.
Flexible hypothesis testing methods [101, 102, 158]

preserve the statistical integrity of the trial while allow-
ing freedom in the selection of sub-populations. The
decision-making methodology is key in population
enrichment with several approaches, both Bayesian
[159–161] and classical techniques being applied
[162, 163].

Example TAPPAS [164, 165] is a trial of TRC105 (an anti-
body) and pazopanib versus pazopanib alone in patients
with advanced angiosarcoma. The study identified two
sub-groups, those with cutaneous advanced angiosar-
coma and those with non-cutaneous advanced angiosar-
coma. There was an indication of greater tumour sensitiv-
ity to TRC105 in the cutaneous sub-group. The primary
endpoint for this study was progression-free survival, with
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power, with 5% two-sided type I error rate, to detect a haz-
ard ratio (HR) of 0.58 in favour of scheduled surgery, this
required 113 events. With accrual time of 2 years and 4
additional years of follow-up and a 2–3% loss to follow-up,
the initial study design planned to randomise 340 women.
The HR of 0.58 was felt to be optimistic based on

available information and sources external to the trial. A
blinded sample size re-assessment using the available data
increased the sample size by 170 patients, to a total of 510
randomised patients (with a required 175 events) in order
to target a revised HR of 0.65.

Advantages The main aim of sample size re-assessment
is to ensure that the trial recruits an appropriate num-
ber of patients. Sample size re-assessment designs are not
as complex as many other adaptive methods, allowing
the trial to be planned more quickly. The fact that both
unblinded and blinded methods are available means that
sample size re-assessment can be applied in many differ-
ent settings. There is an upward trend in the use of sample
size re-assessment in clinical practice, and as these designs
becomemore widespread, it will become increasingly easy
to put them forward.

Disadvantages This is a method with few drawbacks.
There is a small additional burden at the interim analy-
sis to properly estimate the required sample size for the
remainder of the trial, which requires appropriate exper-
tise in the case of both blinded and unblinded interim
analyses. Most of the practical issues that a sample size re-
assessment designmay bring (time constraints or securing
sufficing funding in advance) are similar to those faced
when using other adaptive designs, while further con-
cerns may be raised from extending the trial beyond the
originally planned end. An example is the comparability
of patients recruited early and those recruited late to a
modified trial [196].

Summary
These methods are the most widespread of the adap-
tive designs we have considered [174], to the extent
group sequential trials may even be considered a stan-
dard approach. The group sequential framework forms a
foundation for many other adaptive methods due to its
preservation of the integrity of the trial results.
The fact that such methods are so well established in

practice shows promise for the use of the adaptive meth-
ods discussed in this paper. Despite the complexity, these
methods are sufficiently well-known in the trials commu-
nity with software support and common practices estab-
lished allowing their implementation. The other methods
discussed throughout this work share many similarities in
terms of methodological complexity while each has their
own advantages/disadvantages, but these are not so far

removed from those that have been overcome for group
sequential designs so as tomake overcoming these hurdles
an impossibility.

Conclusions
Research into adaptive designs has become more preva-
lent across all stages of clinical development, although
this increase is not necessarily reflected by their uptake
in practice. The suitability of adaptive methods depends
largely on the clinical question being addressed. We have
presented four key clinical questions for which adaptive
designs may be of use across a wide range of disease areas,
study settings, and endpoints. For each possible design,
there are advantages and disadvantages with some key
themes: increase in efficiency of the design in terms of the
expected number of patients or a clear benefit in under-
standing the question of scientific interest, clear ethical
advantages to ensuring the right patients are given the best
available treatment whenever possible, and the key disad-
vantage is the additional burden, both in planning the trial
and the interim analyses. Importantly, while the adaptive
methods can be highly effective when used in the correct
scenario, an adaptive method is not always the best choice
[197], so careful consideration must be taken before their
use.
At the design stage of any trial (adaptive or not), some

design assumptions must be made. These will influence
the performance of the trial and inadequate assumptions
can lead to a sub-optimal design.With the additional com-
plexity of many adaptive designs, there are more assump-
tions to be made and it is critical that these are well
understood by the trial team to consider the impact of
these choices, although for a corresponding fixed sam-
ple design many of these assumptions must be made
anyway. As noted in the “Summary” of the “Does the
treatment work?” section, many such problems have been
well worked out for group sequential designs and are not
insurmountable for the other designs discussed. Commu-
nication and establishing a common practice between the
methodology and trial community will be key in seeing the
wider spread application of such methods.
Regulatory bodies are increasingly recognising the

desire for the use of adaptive designs and accepting their
use although it is recommended regulators be engaged
early in the process whenever using any novel method-
ology [55, 198]. Funding bodies are also increasingly
comfortable with the use of adaptive designs; the TAI-
LoR trial discussed in the ‘Multi-arm multi-stage’ section
appears as a case study on the National Institute for
Health Research website [199]. Additionally, new report-
ing guidance for adaptive designs [200] has recently been
published to facilitate uptake further.
We have not been exhaustive in our discussion of adap-

tive designs, focusing on the key designs to answer the
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most common questions of clinical interest. Seamless
designs [101, 102, 201], which we have not discussed in
detail, use similar adaptive design methodology to com-
bine phases of clinical development: designs may be infer-
entially seamless, where data from the earlier stage are
incorporated into the overall trial results; operationally
seamless, avoiding any break in recruitment between the
stages of the development process but excluding data
from earlier stages from the final analysis of the lat-
ter; or both. There are many motivations for conduct-
ing seamless designs [202], making it an active area of
research [203].
For many years, one major obstacle to the use of adap-

tive designs in practice has been the lack of suitable
software to aid both the design and conduct of trials. This
issue is increasingly being tackled by those researching
the methods, with many open source packages available
for the design and analysis of adaptive methods some of
which have been cited in this work. For example rpact
[204] is an R package that assists in the design and analysis
of confirmatory clinical trials. In addition, there is a steep
learning curve to the implementation of such designs;
training courses are becoming increasingly available to
address this.
From a methodology standpoint, there are some further

issues that go beyond the level of detail we have discussed
that should be considered when proposing an adaptive
design, for example potential information leakage or the
introduction of bias [205, 206]. The Practical Adaptive
and Novel Designs and Analysis (PANDA) toolkit [207] is
under development at the time of writing and will be an
online resource that addresses and explains broader issues
in the use of adaptive designs.
Despite the challenges in the design and analysis of an

adaptive trial, we believe that under the right circum-
stance, the benefits introduced by the increased flexibility
clearly outweigh these issues.
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