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Abstract

Background: Dementia is caused by a variety of neurodegenerative diseases and is associated with a decline in
memory and other cognitive abilities, while inflicting an enormous socioeconomic burden. The complexity of
dementia and its associated comorbidities presents immense challenges for dementia research and care, particularly
in clinical decision-making.

Main body: Despite the lack of disease-modifying therapies, there is an increasing and urgent need to make timely
and accurate clinical decisions in dementia diagnosis and prognosis to allow appropriate care and treatment.
However, the dementia care pathway is currently suboptimal. We propose that through computational approaches,
understanding of dementia aetiology could be improved, and dementia assessments could be more standardised,
objective and efficient. In particular, we suggest that these will involve appropriate data infrastructure, the use of
data-driven computational neurology approaches and the development of practical clinical decision support
systems. We also discuss the technical, structural, economic, political and policy-making challenges that accompany
such implementations.

Conclusion: The data-driven era for dementia research has arrived with the potential to transform the healthcare
system, creating a more efficient, transparent and personalised service for dementia.

Keywords: Dementia, Alzheimer’s disease, Dementia care pathway, Data science, Computational neurology,
Computational modelling, Computational neuroscience, Healthcare economics, Clinical decision support systems

Background
Dementia refers to a clinical syndrome distinct from
physiological ageing, caused by one or more pathological
processes and characterised by progressive impairment
in cognition and everyday functioning [1]. Alzheimer’s
disease (AD), typically characterised by impairment in
memory, is the most common subtype of dementia, con-
stituting 60–70% of the cases [1]. AD can be categorised

as familial AD (with a family history of the disease and
early AD onset) and sporadic AD, with the latter over-
whelmingly being the most common type [2]. AD may co-
exist with pathological processes characteristic of other
common dementia subtypes such as vascular dementia,
frontotemporal dementia and Lewy body dementia [1].
Further, there may also be co-morbidities with other ill-
nesses such as epilepsy [3]. To add to the complexity, the
prodromal stages, or mild cognitive impairment (MCI),
associated with some dementia subtypes, can be loosely
defined and heterogenous, particularly when assessments
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are subject to factors like delirium, psychiatric illness and
the effects of medication [1, 4].
Globally, it is estimated that there were 47 million

people with dementia in 2015, and with a rapidly growing
ageing population, this is expected to reach 75 million by
2030 and 132 million by 2050 [5]. Dementia has a consid-
erable impact on the well-being and functioning of those
living with the disease, and also on their families and care-
givers. Dementia care can place health and social care
services under an operational and financial strain, costing
an estimated US$ 818 billion in 2015 and estimated US$2
trillion in 2030 [5]. In the UK, dementia costs £26 billion
per year. In 2014, 850,000 people in the UK were esti-
mated to be living with dementia, and this may rise to 1.6
million by 2040 [6]. In neighbouring Ireland, there were
about 48,000 people with dementia in 2011, and this is
projected to increase to 132,000 by 2041, while costing
€1.7 billion annually [7, 8].
Despite the demand for dementia care and treatment, to

date, there are no disease-modifying therapies for the
most common dementia subtypes. Medications that target
particular neurotransmitter systems (e.g. cholinesterase in-
hibitors) and nutritional supplements have been proposed
to slow the early cognitive decline associated with mild to
moderate AD and Lewy body dementia [9, 10]. Trials
investigating disease-modifying therapies have mostly
targeted the formation of beta-amyloid plaques, sug-
gested to be one of the neuropathological hallmarks of
AD, but the results have so far been underwhelming
[11, 12]. This may be attributed to testing people with
dementia too late; by the time that the clinical symp-
toms have manifested themselves, amyloid may have
been accumulating in the brain structures for several
years [13, 14]. Therapies targeting hyperphosphorylated
tau (twisted fibres of tau proteins), the other main neuro-
pathological substrate of AD, have also failed to demon-
strate significant improvements in clinical outcomes [13,
14]. In all likelihood, AD and other dementia subtypes are
likely to be the product of interactions between multiple
factors, including but not limited to cholinergic neuronal
damage, neuroinflammation, oxidative stress, glucose
hypometabolism and, more recently, gut microbiome per-
turbations via the immune system, endocrine system, vagus
nerve and bacteria-derived metabolites [14]. It is also pos-
sible that some of these hypotheses could be related [15],
but further confirmatory work is required.
Regardless of our incomplete understanding of demen-

tia, the rising global population and longer average life-
span [1, 16] make an increasing and urgent case for timely
and accurate recognition of dementia and its subtypes,
particularly in guiding clinical decision regarding appro-
priate clinical care. Indeed, it is projected that the direct
healthcare costs of early diagnosis may be offset by the
cost savings arising from the earlier targeting of patients

to the appropriate clinical care pathways [17]. Such
savings may be linked to the benefits of earlier delivery of
dementia medication and caregiver interventions, and
delaying institutionalisation, thereby reducing the overall
direct and indirect health and social care cost burden [17].
In addition, early diagnosis and intervention increases the
quality of life and care planning for people with dementia
and their caregivers, which promote independence [17]. In
this context, it is clear that the potential economic and
humane benefits of improving the clinical care pathway
for dementia are immense. Indeed, as we shall discuss
below, the application of data-driven computational ap-
proaches can have an immediate impact on improving
dementia care pathway.

Dementia care pathway
To evaluate the effectiveness of dementia care, we must
first assess the current dementia care pathway. As an
example, the pre-eminent body in the UK working on
clinical guidelines and standardised practices for medical
professionals is the National Institute for Health and Care
Excellence (NICE), with dementia care guidelines updated
in 2018 to reflect the current best practices [18]. The
guidelines put forth several strong recommendations for
how dementia care should be implemented at the primary
care level, at specialist memory assessment services and in
the wider community. A schematic of the NICE 2018 rec-
ommendations for the dementia care pathway is illus-
trated in Fig. 1 [19]. Symptoms of dementia are usually
first identified by either the individual themselves or a
family member of caregiver, before being assessed by gen-
eral practitioners (GPs). At the primary care level, a major
focus is to exclude common and treatable causes of delir-
ium or other disorders. If dementia remains a concern,
further investigation and onward referral to secondary
care are required, where more detailed assessment by a
specialist (e.g. memory clinic) will diagnose dementia, its
subtype and initiate treatment [19, 20].
Two major issues that often impede the effectiveness

of the dementia care pathway are diagnoses and time
delays (Fig. 1, blue and purple text). Regarding the
former, the rates of dementia detection (underdiagnosis)
can vary considerably [21], and the diagnosis of demen-
tia, and its subtype, can be inaccurate [22, 23]. In one
US study, depending on the permissiveness of clinical
and neuropathological criteria, AD diagnosis sensitivity
(true positive rate) can range between 71 and 97%, while
it is between 44 and 71% for specificity (true negative
rate) [24]. Suggested reasons for dementia misdiagnosis
include physicians/GPs in primary care not being appro-
priately trained or confident in detecting the disease
(within their brief consultation time) and the lack of
standardised validated screening protocols and/or rou-
tine implementation of screening [22, 25, 26].
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There is also a link between early diagnosis and
dementia prevalence. It has been estimated that if
early identification of risks and diagnosis, leading to
proper treatments or interventions, can delay demen-
tia onset by 2 years, the prevalence would reduce by
20%, with a further prevalence reduction of 50% if a
delay of 5 years was achieved [27]. Interestingly, to
decrease the national dementia underdiagnosis rate,
the UK government has introduced the incentivisa-
tion for GPs dementia diagnosis (paid per case);
unintended consequences of the approach include
poor patient experience, false-positive diagnosis and
negative impacts on waiting lists in memory clinics
due to increased numbers of referrals [28–30].
Early and accurate diagnosis, on top of providing

timely and appropriate care and treatment and reducing
undue psychological stress associated with false-positive
diagnosis, also has economic benefits. In particular, past
studies have shown that patients with prior AD misdiag-
nosis (false positive) used substantially more medical
services until their (non-comorbidity) vascular dementia
diagnosis, leading to increased annual medical costs per
patient; following corrected diagnosis, the medical costs
converged to patients never diagnosed with AD [31, 32].

Regarding the issue of delays in dementia diagnosis,
this can be due to various factors. These include false-
negative diagnosis, caregivers’ lack of knowledge or
reluctance to seek help, uncertainty from patients and
families about when and where to seek help, poor
communication and uncertainty from medical doctors
[22, 33, 34]. For instance, in one review of services in
England, waiting times for assessment can range from 3
to 184 days, while dementia diagnosis from referral could
take up to 199 days [34]. Such delays could permit
substantial cognitive decline. Further, patients identified
with MCI have to wait for a follow-up re-evaluation in
either a recommended 6-month time interval or when
there is a significant change in status [19].

Assessments in dementia diagnosis
To receive appropriate treatment and support, careful
assessment for diagnosing dementia is necessary.
Current assessments and their associated ‘markers’ for
dementia can comprise several types, from clinical his-
tory, biological (e.g. blood- or brain-based) assessment,
to neuropsychological and functional assessments
(Table 1) [18]. Often, the choice of assessments is based

Fig. 1 Flowchart of the UK dementia care pathway under the NICE guidelines and potential disruption. Includes primary and secondary
(specialist) care. Blue and purple texts: potential time delays and under/misdiagnoses and also opportunities for technologies and novel dementia
markers. Flowchart based on [19]
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on factors such as accuracy, sensitivity, specificity, cost-
effectiveness, and speed and convenience of use.
Certain assessment types are more costly and less read-

ily available than others. These include cerebrospinal fluid
analysis and various neuroimaging modalities in secondary
(specialist) care. Moreover, structural neuroimaging is rec-
ommended in all cases unless dementia is well advanced
and dementia subtype is identified [18]. However, func-
tional neuroimaging is less often conducted to diagnose
dementia subtype even though some biomarkers such as
beta-amyloid based PET may have the ability to predict
the risk of dementia several years prior to the onset of de-
mentia symptoms (albeit with low specificity) [35]. Thus,
there is a need to strike a balance among reliable risk pre-
diction, healthcare costs and the inconvenience for the pa-
tient. In contrast, blood-based biomarkers have the
potential to offer high-throughput data and are easily sub-
jected to repeated measurement even in frail, elderly
people. Newer, e.g. neuroinflammatory-based, markers
may offer dementia risk prediction at even earlier pre-
symptomatic period [14, 36], although the specificity to
dementia, and hence practical use, remains unclear.
For cognitive, neuropsychological and functional as-

sessments, some may require the presence of a clinician
and nurse, and perhaps caregiver, while others may take
a relatively long time to administer; a comprehensive
investigation can even go beyond the time frame of a
medical appointment [19]. Thus, a balance between
convenience and performance of such assessments is re-
quired. Interestingly, composite scales, which combine
several neurocognitive subscales or with functional activ-
ity scales into a single summary score, have recently
gathered high interest for preclinical, prodromal and
mild AD, especially for early AD therapeutic research
[37]. A composite test assesses different domains of cog-
nition and function through the use of discrete subtests
and then averages the standard score means from these
subsets to yield an overall score [38]. However, it re-
mains unclear whether composites can actually perform
better than the current battery of assessments.
In terms of the health economics evidence for these

assessments, a number of cost-utility analysis, which re-
port on incremental costs and quality-adjusted life-years
(QALYs) analyses, have been conducted [18]. For instance,
[39] compared three cognitive and neuropsychological
assessments often used by GPs (Mini-Mental State Exam-
ination (MMSE), general practitioner assessment of
cognition (GPCOG) and 6-item cognitive impairment test
(6CIT)) and identified the most cost-effective option
(GPCOG), while providing caution regarding the results’
sensitivity to dementia medicines. Similarly, a cost-utility
analysis of (beta-amyloid based PET) neuroimaging
markers by [40] supported its use in comparison with
standard assessment alone or with cerebrospinal fluid

(CSF) testing. However, these studies were often limited
to a small number of assessments.
Taken together, we have presented several current is-

sues facing dementia assessments and care. In particular,
we have emphasised that providing timely and accurate
diagnosis is crucial within the dementia care pathway.
To improve the effectiveness of dementia diagnosis and
care, we shall discuss in the remainder of this review the
needs and challenges associated with clinical data trans-
formation and computational approaches in both de-
mentia research and clinical practice. In particular, we
shall emphasise the advantages of improving clinical data
curation and integration, identifying new dementia
markers and assessments through new fundamental sci-
ences and algorithms, and the development of practical
decision support systems. These will be discussed along
with their challenges.

Data digitisation, curation and integration
To enable reliable data analyses for evidence-based solu-
tions to improve dementia diagnosis and care, well-curated
and “clean” data are necessary. Compliance with some or
all of the so-called 5 C’s (clean, consistent, conformed,
current and comprehensive) of data quality [41] and appro-
priate data governance [42] is necessary. Although this is
the case in most openly available dementia data acquired
within the context of a research study, actual clinical or
medical data paints a rather different picture.
A major reason for “dirty” clinical data is due to the

lack of standardisation in the dementia care pathway.
For instance, in Northern Ireland, although data related

Table 1 Summary of the UK’s primary and secondary (specialist)
care diagnosis for people aged 40 years old and over with a
suspected diagnosis of dementia [18]

Primary care diagnosis

Diagnostic
variables

Potential diagnostic variables include the following:
• Clinical history
• Clinical cognitive assessment
• Neuropsychological testing
• Physical examination
• Medication review

Secondary (specialist) care diagnosis

Diagnostic
variables

Potential diagnostic variables include the following:
• Specified diagnostic criteria
• Structural imaging (magnetic resonance imaging
(MRI) and computed tomography (CT))

• Single-photon emission computed tomography
(SPECT) (e.g. blood flow, dopamine)

• Positron emission tomography (PET)
(e.g. fluorodeoxyglucose (FDG), amyloid)

• Cerebrospinal fluid (CSF) examination
• Electroencephalography (EEG)
• Brain biopsy
• Neuropsychological assessment
• Functional assessment
• Genetic testing
• Neurological examination
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to dementia could be formally retrieved and analysed
(e.g. through the Health and Social Care Business
Services Organisation’s Honest Broker Service), the set
of dementia assessments adopted across different prac-
tice sites can differ. GPs in England also have similar
non-standardisation in dementia assessments [43]. This
could be due to the ambiguity within the national
(NICE) guidelines, allowing diversity in approaches and
locally based “best” practices. When these data are inte-
grated, they can lead to heterogeneity in data variables
and systematic missing (“dirty”) data [44–46]. Missing
data could also likely arise from other conditions, such
as certain individuals being more likely to complete
surveys or respond well to questions, individuals late for
medical appointments and individuals with severe demen-
tia unable to attend medical appointments altogether.
Therefore, practical strategic approaches, e.g. appropriate
data cleaning, imputation and harmonisation techniques,
are needed before conducting any analysis [47–52].
Indeed, there are some recent and promising large-
scale data extraction and integration initiatives such
as the UK-CRIS (Clinical Record Interactive Search)
system [53] (see below for more examples).
An alternative solution to reduce heterogeneous data

is to employ a “small data” approach. As discussed by
[54] in this journal’s collection, there are various advan-
tages to this approach, which can uniquely manage com-
plex, dynamic, multi-causal and complex diseases to
facilitate individual-level description, prediction and
control. Moreover, given the political, institutional and
human nature inertia to change, such localisation and
decentralisation could actually be a more viable and eco-
nomical approach, provided the localised data is of suffi-
cient quality. Further, this approach may be suitable to
handle known regional variation in the prevalence and
detection of dementia associated with the age profile of
the population and accessibility to services (see [7, 55]
for examples in rural Ireland). Analytical results or
models based on such data would also be localised,
which may perhaps be more conducive for the practice
of personalised or stratified medicine. If data linkages
across regional data silos are implemented for analytical
insights into wider patterns or trends, similar issues on
data integration could arise, as discussed previously.
Clinical or medical data may include unstructured or

semi-structured data. For instance, transcription from
handwritten notes from clinicians and nurses to consist-
ent digital formats is needed before storing in oper-
ational data storage or data mart, and for use in the
analysis. With the advent of robust handwriting recogni-
tion algorithms, especially deep learning [56], this can be
solved to some extent, but medical (e.g. International
Classification of Diseases (ICD)) codes may still need to
be further decoded in an efficient way. Also, with the

increasing use of medical devices such as pervasive
(wearable) sensors or detectors that generate continuous
data stream and point-of-care technology, real-time sig-
nal processing and edge analytics and other big data ap-
proaches would be needed [57, 58]. More fundamentally,
the way clinical data is captured early on should be
changed and formalised to allow better and systematic
digitisation of electronic health or medical records. To
enable this would require widespread adoption through
policy change. Overall, setting a robust and practical
data infrastructure is vital for any reliable data analytics
or modelling.

Computational neurology, an integrative
computational framework
In [59], we introduced the umbrella term computational
neurology to embrace not only computational and the-
oretical neuroscience, which has largely focused on
neural mechanistic or probabilistic modelling [60], but
also data-driven artificial intelligence (AI) approaches to
handle heterogeneous, complex and large data. Computa-
tional or theoretical neuroscience usually requires focused
and relatively detailed data (e.g. across neighbouring
spatial scales) to model, explain and predict specific
biophysics of neural tissues, their activities and functions
in either healthy or disordered brains, including in AD
and dementia (see e.g. [59, 61–68] and references therein).
Such causal-based modelling approaches can help to test
hypotheses and elucidate the mechanisms of brain disor-
ders and potential therapeutics.
For such approaches, the required detailed (biological)

data may not always be readily available. Further, it may
take a long time to realistically model or simulate large-
scale brain activities for practical clinical purposes, although
there are attempts using simpler reduced computational
models [69–71]. Moreover, when data is heterogeneous or
when biological information is lacking, biologically realistic
mechanistic modelling to bridge across scales may not be
feasible, and probabilistic or statistical modelling can be ap-
plied. Thus, with the unavailability of mechanistic systems
models, causality may be inferred, e.g. based on probabilis-
tic models [60, 72, 73].
When the data gets sufficiently large and complex, the

applications of data mining, AI or machine learning
become essential. This is especially the case for big data
generated by new technologies, as discussed previously.
Some of the wider perspectives on this topic have already
been discussed in this journal’s collection [74, 75]. Notable
open big data initiatives include those for fundamental
brain sciences such as the Allen Brain Map [76], Collation
of Connectivity Data for the Macaque (CoCoMac) data-
base [77] and Human Connectome Project (HCP) [78],
and for clinical and translational sciences, including the
Cambridge Centre for Ageing Neuroscience (Cam-CAN)
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dataset inventory [79], Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [80], the National Alzheimer’s Coordinat-
ing Center (NACC) [81], UK Biobank [82] and the Demen-
tias Platform UK (DPUK) [83]. Other large-scale projects
include those coordinated by the Innovative Medicines
Initiative (IMI), e.g. the European Medical Information
Framework (EMIF) [84], the European Prevention of
Alzheimer’s Dementia Consortium (EPAD) [85], AETI-
ONOMY (Organising mechanistic knowledge about
neurodegenerative diseases for the improvement of drug
development and therapy) [86] and Neuronet (Efficiently
Networking European Neurodegeneration Research) [87].
Importantly, these databases and platforms now enable

researchers, particularly those with computational or
theoretical inclination, to perform large-scale quantita-
tive analyses to enable wider and more direct research
impact (e.g. see [88]). There are also opportunities for
researchers to link across mechanistic and data-driven
computational approaches (e.g. see [89, 90]). Figure 2
summarises the possible interactions of these various
modelling approaches with different data types. To-
gether, these computational approaches can be applied
for a deeper understanding of dementia, test potential
therapeutics and for detecting and predicting dementia.

Computationally derived and other novel markers
of dementia
Computational neurology applied to dementia can po-
tentially solve some of the issues facing dementia diag-
nosis and prognosis. Particularly, data-driven models can
provide more objective methods for detection and risk
prediction of dementia. For some applications, the detec-
tion accuracy can be higher than that of humans. For in-
stance, in the sub-area of computational neuroimaging,
advanced techniques such as deep learning have led to
very high accuracy for identifying dementia severity, out-
performing human experts [91]. Some neuroimaging

work, e.g. [92], has also combined multiple neuroimag-
ing modalities to further enhance dementia predictive
accuracy. However, to convince relevant stakeholders of
their use in clinical practice, cost-utility analysis of these
computational approaches and their identified markers
may be needed.
As compared to the current battery of dementia assess-

ments, including recently suggested use of composite
scales, computational researchers can now use algorithms
to perform unbiased and automated selection of the most
relevant assessments or variables, and their (optimal) com-
binations, for predicting dementia severity and risk (e.g.
[73, 88]). Such data-driven approaches may reveal markers
that can lie beyond human intuition. Moreover, these
computationally derived markers often consist of a smaller
number of variables than standard assessments, while still
able to provide reasonable (or higher) accurate prediction
of dementia. Thus, there is potential that their use can
lead to more effective dementia diagnosis.
Novel biomarkers using newer technologies, not cur-

rently deployed in the dementia care pathway, may also
have the potential to transform dementia diagnosis and
prognosis. These include readily accessible novel blood-
based markers (using high-throughput next-generation
DNA sequencing, proteomic and metabolomic technolo-
gies) permitting identification of protein concentrations/
activity/isoforms and post-translational modifications,
metabolic products, such as amino acids, carbohydrates,
lipids, organic acids and nucleic acids (single nucleotide
polymorphisms (SNPs)) [93]. Similar data analytical, e.g.
feature selection and dimensional reduction, methods
can be used to home in and identify key markers [94, 95].
Although not currently part of the dementia care pathway,

magnetoencephalography (MEG), with its high temporal
resolution, can more directly identify novel biomarkers for
dementia and its prodromal stage. They can come in the
form of abstract machine learning or functional brain

Fig. 2 Schematic of computational and theoretical approaches in computational neurology: from fundamental research to clinical applications. Blue
boxes: small or focused data; brown boxes: larger or more heterogeneous data. Arrows: relationships. Sometimes, artificial intelligence (AI), data mining
and machine learning methods are also used in relatively smaller or less heterogeneous data to guide mechanistic modelling (not shown)
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connectivity-based markers [96–99]. Given that electroen-
cephalography (EEG), with poorer spatial localisation than
MEG, has already been incorporated in dementia diagnosis
(Table 1) [18], it may perhaps be not too inconceivable to
also include MEG. Further, MEG, with its ease of use, may
be more favourable for frail, elderly or demented partici-
pants owing to the avoidance of cumbersome procedures,
e.g. preparation of the electrodes and conducting gel as re-
quired for EEG. However, the current high costs associated
with the acquisition and maintenance of MEG instrumenta-
tion impede its widespread use.
Post-clinical validation of computationally derived and

other novel markers should be followed by discussion
among policymakers, researchers and other stakeholders
to allow their assimilation into the current dementia
care pathway. For instance, in conjunction with the trad-
itional set of assessments, assessment for novel blood-
based markers could be performed using point-of-care
technologies within primary care, while MEG assessment
conducted at secondary care.

Practical clinical decision support systems
As of now, and in the foreseeable future, clinicians make
an informed clinical diagnosis after weighing over all
available diagnostic evidence. Given the complexity of
the data forming such evidence and the decision-making
processes required, computerised decision support sys-
tems (CDSSs) can act as tools to assist human experts
with interpretation, diagnosis and treatment [100]. A
CDSS may consist of a highly specialised computational
model, e.g. for discriminating specific neuroimaging data
[101]. It may also consist of systems-based computa-
tional model that embraces a wide variety of data types
or markers [88, 102]. Crucially, CDSS can act as a bridge
from fundamental, data-driven research towards clinical
application (Fig. 2).
CDSSs can be useful to solve the underdiagnosis or

misdiagnosis of dementia within primary care settings,
thereby reducing the load at the secondary care level. In
fact, a criticism of the UK’s National Dementia Strategy
has suggested that more diagnosis should take place in
primary care [34]. Moreover, CDSSs can also provide
more effective (e.g. neuroimaging) assessments within
secondary care. Further, adoption of a common CDSS
platform may promote more standardisation of dementia
assessments. When incorporated into the telemedicine
scene, the adoption of CDSS could be accelerated
through awareness of its resolving of issues in financial
costs, delays and accessibility (e.g. in an infectious
disease pandemic) related to dementia diagnosis and
care. In fact, with the widespread use of smartphones,
some dementia assessments may perhaps be digitised
and conducted within the CDSS in mobile devices (e.g.
the IMI RADAR-AD (Remote Assessment of Disease

and Relapse – Alzheimer’s Disease) project [103] and
the EDoN (Early Detection of Neurodegenerative dis-
eases) project [104]), increasing accessibility to assess-
ments and expediting early diagnoses in cognitive
decline and dementia and other supporting services
[105–109]. However, this may also lead to potential data
security and privacy issues [58].
While developing computational models for CDSSs,

care has to be taken as the models trained in e.g. open
dementia datasets may consist of variables (e.g. specific
cognitive assessments) that may not be the same as that
in clinical practice. Also, individual cases are often not
considered in analysis and model validation (but see, e.g.
[88]). In longitudinal studies for risk prediction, models
need to take into account appropriate time trajectories
[110] and trajectory heterogeneity [111]. Thus, many
current models’ decisions may have an inappropriate es-
timation of their predictive precisions for actual clinical
practice. Moreover, in open dementia datasets, the
proportion of MCI or dementia individuals may not ne-
cessarily reflect the actual proportion in society. Thus,
an appropriate adjustment may be necessary before
translational deployment. In addition, many computa-
tional modelling studies often struggle with obtaining
high detection accuracy when dealing with MCI cases,
regardless of the intrinsic strength of the models (e.g.
[91]). This may be due to the studies failing to differentiate
the subtypes of MCIs (e.g. amnestic MCI) or the ill-
defined general term of MCI [112]. Fundamentally related
to this is that the clinical classification of the disease is
often mixed. We suggest that the next stage for dementia
classification would arise from data-driven computational
modelling rather than the standard labels in the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM-5).
Particularly, computational neurology could follow the
path of computational psychiatry for mental health in the
identification of disease categorisation and stages, e.g.
through data-driven dimensional or network-based ap-
proaches [113, 114].

Conclusion
Currently, our understanding of dementia is lacking, and
the dementia care pathway is suboptimal. We propose
that computational neurology approaches can offer
specific solutions. With mechanistic biologically based
modelling, it can provide insights into the underlying
neural mechanisms and assist in dementia therapeutics
research. Supported by appropriate data infrastructure,
data-driven modelling and CDSS can provide immediate
improvements through better dementia diagnosis and
prognosis, and improve related care pathways, while po-
tentially reducing delays and health and social care costs.
New markers may be elucidated based on algorithms
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and new technologies, which may complement the
current diagnostic and prognostic processes.
However, such benefits may only be realised if computa-

tional models and CDSSs are appropriately evaluated and
adopted by users. Obstacles to implementation in clinical
practice may be explained by the general lack of engage-
ment from clinicians, physicians and health specialists
[115]. Indeed, many computational models of dementia
may perhaps be too ‘academic’ and lack translational char-
acteristics. To move the field forward, it is imperative that
computational researchers, informaticians, clinicians, pa-
tients, health institutions, policymakers and other stake-
holders should work synergistically together.
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