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5mC regulator-mediated molecular
subtypes depict the hallmarks of the tumor
microenvironment and guide precision
medicine in bladder cancer
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Abstract

Background: Depicting the heterogeneity and functional characteristics of the tumor microenvironment (TME) is
necessary to achieve precision medicine for bladder cancer (BLCA). Although classical molecular subtypes effectively
reflect TME heterogeneity and characteristics, their clinical application is limited by several issues.

Methods: In this study, we integrated the Xiangya cohort and multiple external BLCA cohorts to develop a novel 5-
methylcytosine (5mC) regulator-mediated molecular subtype system and a corresponding quantitative indicator,
the 5mC score. Unsupervised clustering was performed to identify novel 5mC regulator-mediated molecular
subtypes. The principal component analysis was applied to calculate the 5mC score. Then, we correlated the 5mC
clusters (5mC score) with classical molecular subtypes, immunophenotypes, clinical outcomes, and therapeutic
opportunities in BLCA. Finally, we performed pancancer analyses on the 5mC score.

Results: Two 5mC clusters, including 5mC cluster 1 and cluster 2, were identified. These novel 5mC clusters (5mC
score) could accurately predict classical molecular subtypes, immunophenotypes, prognosis, and therapeutic
opportunities of BLCA. 5mC cluster 1 (high 5mC score) indicated a luminal subtype and noninflamed phenotype,
characterized by lower anticancer immunity but better prognosis. Moreover, 5mC cluster 1 (high 5mC score)
predicted low sensitivity to cancer immunotherapy, neoadjuvant chemotherapy, and radiotherapy, but high
sensitivity to antiangiogenic therapy and targeted therapies, such as blocking the 3-catenin, FGFR3, and PPAR-y
pathways.

Conclusions: The novel 5mC regulator-based subtype system reflects many aspects of BLCA biology and provides

new insights into precision medicine in BLCA. Furthermore, the 5mC score may be a generalizable predictor of
immunotherapy response and prognosis in pancancers.
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Background

Bladder cancer (BLCA) is one of the most common
urinary malignancies, and the tumor microenvironment
of BLCA is significantly heterogeneous [1-4]. The prog-
nosis of advanced BLCA is poor, despite promising pro-
gress in immune checkpoint blockade (ICB),
neoadjuvant chemotherapy, and targeted therapy [5].
This is because a majority of BLCA patients are not sen-
sitive to these therapies, and there are no robust and ef-
ficient biomarkers or tools to accurately predict the
clinical response to those treatments. Therefore, devel-
oping reliable treatment response stratification bio-
markers for achieving precision medicine is still
challenging.

The tumor microenvironment (TME) is a heteroge-
neous system consisting of cancer cells, immune cells,
and extracellular matrix [3, 4]. High TME heterogeneity
reflects significantly distinct functional hallmarks in pa-
tients with the same pathological stage and grade, which
may result in different clinical responses to the same
treatments [6, 7]. Notably, high TME heterogeneity im-
pedes the achievement of precision medicine in BLCA.
Therefore, depicting TME heterogeneity could reveal
many aspects of bladder cancer biology and further our
insights into bladder cancer treatment. Developing novel
therapeutic response predictors and therapeutic targets
in the context of TME heterogeneity may be a promising
path for achieving precision medicine in BLCA.

Molecular subtypes hold great promise in addressing
TME heterogeneity and in precision medicine for BLCA
[3]. Several molecular subtype systems have been devel-
oped based on RNA sequence data, such as the CIT,
Lund, MDA, TCGA, Baylor, and UNC systems [8—14].
However, the clinical application of these molecular sub-
types may be impeded by several issues, such as the
complex RNA sequencing method, high economic bur-
den, long detection period, and the nonnegligible diver-
sity of these molecular subtype classifications. Therefore,
more economical, rapid, and accurate molecular classifi-
cation is required to promote precision medicine in
BLCA. 5-Methylcytosine (5mC) in DNA, the most crit-
ical epigenetic modification, shapes TME heterogeneity
by influencing genomic stability, determining the cancer
cell differentiation state, and selecting cell identity [15—
18]. In BLCA, DNA methylation plays critical roles in
early diagnosis, predicting prognosis, predicting thera-
peutic opportunities, and acting as a potential thera-
peutic target [16, 19, 20]. Robertson et al. identified five
DNA methylation-based subtypes that correlated with
different biological characteristics, clinicopathological
characteristics, and clinical outcomes based on cancer-
specific hyper- or hypomethylated CpG sites in BLCA
[8]. This evidence indicated that DNA methylation-
based molecular subtypes could reflect the TME
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heterogeneity of BLCA. Nonetheless, the complex detec-
tion method of DNA methylation profiles and high eco-
nomic burden limit the clinical application of DNA
methylation-based molecular subtypes.

Global DNA methylation profiles depend on the cross-
talk between three kinds of 5mC regulators: writers,
erasers, and readers [21-24]. To date, the role of these
5mC regulators in shaping TME heterogeneity remains
to be further investigated in BLCA. Thus, we take a glo-
bal view of the mRNA expression levels of these 5mC
regulators to assess their comprehensive relevance to
TME heterogeneity, immune phenotypes, clinicopatho-
logical characteristics, and therapeutic opportunities for
BLCA. Then, a novel 5mC regulator-mediated molecular
subtype system was developed, and a 5mC score was
generated to quantify these subtypes in BLCA.

Methods

Data retrieval and preprocessing

Xiangya cohort

Sixty fresh bladder cancer tissues and 13 paired normal
bladder tissues were collected from our hospital and im-
mediately stored in liquid nitrogen. We first extracted
total RNA from fresh tissues using TRIzol (Invitrogen,
Carlsbad, CA, USA). Subsequently, we quantified the
total RNA using a NanoDrop and Agilent 2100 bioanaly-
zer (Thermo Fisher Scientific, MA, USA). After we con-
structed the mRNA library, we further purified and
fragmented the total RNA into small pieces. Finally, we
synthesized first-strand cDNA and second-strand cDNA,
which were further amplified by PCR to construct the
final library (single-stranded circular DNA). Eventually,
57 BLCA samples and 13 normal tissues were qualified
and sequenced on a BGISEQ-500 platform (BGI-Shen-
zhen, China). The RNA sequencing data of these sam-
ples were analyzed with TPM values.

Single-cell RNA sequencing One radical cystectomy
sample of a patient (muscle-invasive bladder cancer,
high grade) was collected from our hospital, and then it
was run by single-cell RNA sequencing in OE Biotech
Co, Ltd (Shanghai, China) (Xiangya scRNA set). The de-
tailed sequencing procedures, data preprocessing, and
analysis methods have been reported in previous studies
[25, 26]. Briefly, the tumor samples were prepared into
single-cell suspension, which was subsequently loaded
on a Chromium Single Cell Controller instrument (10x
Genomics, Pleasanton, CA, USA) to generate the single-
cell gel beads in emulsions. The Cell Ranger (version
2.2.0) was used to process the raw data. The InferCNV
package was used to detect the CNVs in all cells and to
recognize real bladder cancer cells. Then, we explored
the expression profiles of 5mC regulators on every cell.
Also, we downloaded a public BLCA single-cell data set
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(GSE145137), which provided the cell cluster and cell
type information [27]. Therefore, we directly visualized
the expression patterns of 5mC regulators by using the
“VInPlot” function in “Seurat” package for this data set.

The Cancer Genome Atlas (TCGA) cohort

For BLCA, the R package TCGAbiolinks was used to
download the RNA sequencing data (FPKM values), mu-
tation profiles, and clinical data from the Genomic Data
Commons (GDC, https://portal.gdc.cancer.gov/). Then,
the FPKM values were transformed into transcripts per
kilobase million (TPM) value. After filtering the genomic
and clinicopathological data, a total of 400 BLCA sam-
ples were included in this study. Among these patients,
396 patients were diagnosed with muscle-invasive blad-
der cancer (MIBC), while the other four patients were
diagnosed with non-MIBC (NMIBC). The copy number
variation (CNV) data were gathered from the UCSC
Xena data portal (http://xena.ucsc.edu/). The maftools R
package was used to plot the somatic mutation data. For
pancancers, the RNA sequencing data, mutation data,
and survival information were downloaded from the
UCSC Xena data portal. VarScan2 was used to analyze
the mutation data and then calculate the tumor muta-
tion burden (TMB). The microsatellite instability (MSI)
data were collected from the supplementary files of Bon-
neville’s study [28]. The stemness indices of pancancers
were gathered from Malta’s study [29].

Four external BLCA validation cohorts

Two BLCA cohorts with detailed survival data and the
same sequencing platform, namely, GSE48075 and
GSE32894, were downloaded from Gene Expression
Omnibus (GEO). Then, we combined these two cohorts
into a meta-cohort using the sva R package. Another co-
hort (E-MTAB-4321) with 476 BLCA samples was
downloaded from the European Molecular Biology La-
boratory database. In addition, the IMvigor210 cohort,
which included 348 BLCA samples that received anti-
PD-L1 immunotherapy, was obtained from http://
research-pub.Gene.com/imvigor210corebiologies/.

Nine external immunotherapy cohorts
First, three immunotherapy cohorts were downloaded
from the GEO database, including GSE135222 (non-
small-cell lung cancer), GSE78220 (melanoma), and
GSE91061 (melanoma). Then, another six immunother-
apy cohorts with a detailed RNA expression matrix and
clinical information were gathered from the TIDE web-
site [30].

Detailed information about these cohorts is summa-
rized in Table S1A, B, C, D, E, F, G.
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Unsupervised clustering of 21 5mC regulators

We systematically included 21 5mC regulators in this
analysis from previous studies [21-24]. These 5mC regu-
lators included 3 writers (DNMT3A, DNMT3B, and
DNMT1), 4 erasers (TET1, TET2, TET3, and TDG), and
14 readers (MBD1, MBD2, MBD3, MBD4, MECP2,
NEIL1, NTHL1, SMUG1, UHRF1, UHRF2, and UNG).
Based on the expression profiles of these 5mC regulators
in the training set (TCGA-BLCA cohort), the Consensu-
ClusterPlus R package was applied to perform unsuper-
vised clustering analysis and then to identify distinct
5mC regulator-mediated molecular clusters comprehen-
sively [31]. For this cluster algorithm, we selected the
following parameters: 80% item resampling (pItem), 80%
gene resampling (pFeature), a maximum evaluated k of 6
(maxK), 1000 resamplings (reps), and kmdist clustering
algorithm (clusterAlg) upon 1-Spearman correlation dis-
tances (distance). Similarly, we also explored the purity
corrected 5mC clusters. The tumor purity data of
TCGA-BLCA was collected from the supplementary files
of Aran’s study (Table S1H) [32]. There were five types
of tumor purity data, including Estimate, LUMP, Abso-
lute, IHC, and CPE. Consistent with the previous study,
the CPE purity was used to adjust the original mRNA
expression matrix [32].

Identifying differentially expressed genes (DEGs) between
5mC clusters

We identified the DEGs between different 5mC clusters
by using the empirical Bayesian approach of the limma
R package. The significance criteria for determining
DEGs were set as adjusted P value < 0.001 and |logFC| >
1.5. To investigate the functions of these DEGs, we con-
ducted Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses using the Metas-
cape data platform [33]. These DEGs were called the
5mC gene signature in this study.

Identifying differential methylation probes (DMPs) and
developing DMP clusters

The level 3 methylation data of TCGA-BLCA (Human-
Methylation450 platform) was gathered from the UCSC
Xena data portal (http://xena.ucsc.edu/). The DNA
methylation status for each methylation site (CpG) was
evaluated by a beta () value, with scores of “0” repre-
senting no DNA methylation and scores of “1” repre-
senting complete DNA methylation. The ChAMP R
packages and several related functions were used to
process and analyze the DNA methylation data [34].
First, we screened the DMPs between bladder cancer
and normal samples using the significance criteria of ad-
justed P value < 0.01. Furthermore, CpG sites that were
not methylated in normal tissues (mean S value <0.2)
but were highly methylated in cancer tissues (mean f3
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value >0.5) were defined as the cancer-specific hyper-
methylated DMPs. In contrast, cancer-specific hypo-
methylated DMPs were defined as those DMPs which
were not methylated in cancer tissues (mean /5 value <
0.2) but were highly methylated in normal tissues (mean
B value >0.5) [8, 35]. Also, we performed unsupervised
clustering based on those cancer-specific hypermethy-
lated and hypomethylated DMPs to identify DMP clus-
ters. Similarly, we screened the significant DMPs
between 5mC clusters (adjusted P value <0.01); the
same filter criteria determined the 5mC cluster-specific
DMPs. We further identified the differential methylation
genes (DMGs) based on these DMPs. The GO and
KEGG pathway analysis of these DMGs were performed
by using the Metascape data platform. Finally, we corre-
lated the 5mC score with the promoter methylation sta-
tus of certain critical cancer-associated genes, including
oncogenes, tumor suppressor genes, driver genes, and
kinase genes. We defined the 5'UTR, TSS1500, TSS200,
and 1stExon as promoter regions.

Developing a 5mC score to quantify 5mC clusters

We comprehensively developed a 5mC score to quantify
the 5mC subtype of individual patients. The process to
establish the 5mC score was similar to that in previous
studies [36—44]. First, univariate Cox analysis was per-
formed on the above DEGs (5mC gene signature) to
identify prognostic DEGs. Then, principal component
analysis was further performed on those prognostic
DEGs to calculate principal component 1, which was
used for 5mC score calculation in this study.

5mC score = Z PC1;

i shows the expression of 5mC cluster-related prog-
nostic DEGs.

For all public BLCA cohorts, we calculated the 5mC
score based on the prognostic DEGs. For the Xiangya
cohort, we calculated the 5mC score directly based on
the 5mC gene signature because the survival data of this
cohort were not available. Similarly, we calculated the
5mC score directly based on the 5mC gene signature to
ensure the comparability of results in the pancancer
analyses.

Depicting the classical molecular subtypes of BLCA

In this study, we analyzed seven different classical mo-
lecular systems, including CIT, Lund, MDA, TCGA,
Baylor, UNC, and Consensus subtypes, by using the
ConsensusMIBC and BLCAsubtyping R packages based
on the RNA expression matrix [8—14]. Despite the pres-
ence of numerous subtypes in these systems, BLCA can
be generally divided into luminal and basal subtypes. We
evaluated the accuracy of the 5mC score in predicting
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classical molecular subtypes by using receiver operator
curves (ROCs).

Depicting the immunological characteristics of the TME in
BLCA

The TME is a complicated and heterogeneous system
composed of various immunomodulators, tumor-
infiltrating immune cells (TIICs), and inhibitory immune
checkpoints. Other immunological characteristics include
cancer immunity cycles and T cell inflamed score (TIS).
We described these immunological characteristics and the
corresponding algorithms in our previous study [45].
Briefly, we summarized 122 immunomodulators (MHCs,
chemokines, immune stimulators, and receptors) [46].
Then, we calculated the infiltration level of TIICs in the
TME using seven independent algorithms: Cibersort,
Cibersort-ABS, MCP-counter, quanTIseq, TIMER, xCell,
and TIP [47-52]. In addition, we summarized the effector
genes of several critical TIICs (including CD8+ T cells,
natural killer cells (NK), dendritic cells (DCs), macro-
phages, and Th1 cells) and collected 22 inhibitory immune
checkpoints [53]. Finally, we estimated the enrichment
scores of several stromal signatures, including EMT]I,
EMT?2, EMT3, and the panfibroblast TGFf response sig-
nature (F-TBRS) [36, 54].

The cancer immunity cycles included seven critical
steps: cancer antigen release and presentation (Steps 1
and 2), anticancer immune priming and activation (Step
3), immune cell trafficking (Step 4), immune cell infiltra-
tion into the TME (Step 5), T cell recognition of cancers
(Step 6), and killing of cancer cells (Step 7) [55]. Then,
we calculated the activities of these steps as described
previously [52]. The pancancer TIS, which could reflect
the pre-existing anticancer immunity and predict the
clinical response of ICB, was calculated based on eight-
een IFN-y-responsive genes [56].

18
ms= 36X,

where 8, is a weighted coefficient predefined in the
previous study, and X, is the yth gene’s expression level
(Table S1I). Furthermore, we previously collected ten
genes that could predict the risk of ICB-associated
hyperprogression [45].

The difference of regulon expression and gene fusion
events among 5mC clusters

To further depict the molecular differences between
5mC clusters, we analyzed 23 BLCA associated “regula-
tor” gene expression profiles (regulons) between 5mC
clusters [8, 14]. The list of 23 regulons is provided in
Table S1J. In addition, we collected the gene fusion data
from Robertson’s study [8]. Gene fusion events, which
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occurred at least on two samples, were included in our
analysis.

Collecting classical molecular subtype-specific signatures,
therapeutic-specific signatures, and other functional
pathways

The Bladder Cancer Molecular Taxonomy Group sum-
marized twelve molecular subtype-specific signatures
[14]. Critical therapeutic-specific signatures, including
several oncogenic pathways that shaped a noninflamed
TME, signatures related to targeted therapy, and signa-
tures related to radiotherapy, were summarized previ-
ously [45]. Additionally, the mutation status of several
critical genes, including RB1, ATM, ERBB2, ERCC2, and
FANCC, predicted the response to neoadjuvant chemo-
therapy in BLCA. Mariathasan et al. identified nineteen
gene signatures related to the clinical response to an
anti-PD-L1 agent (atezolizumab) in BLCA [54]. The en-
richment scores of these signatures in BLCA samples
were calculated using the ssGSEA algorithm [57]. Then,
we determined the role of the 5mC subtype and 5mC
score in predicting the sensitivities of these therapies.
Furthermore, we extracted BLCA-related drugs and
drug-target genes from the DrugBank database to fur-
ther analyze the role of the 5mC score and 5mC subtype
in predicting therapeutic opportunities [58]. In addition,
we collected 50 hallmark biological pathways, 189 onco-
genic pathways, and 186 KEGG pathways from the
MSigDB database [59].

Statistical analysis

We applied the Pearson and Spearman coefficients to
analyze the correlations between continuous variables.
We used the t-test to compare the differences in con-
tinuous variables between two groups if the continuous
variables fit the normal distribution. Otherwise, we ap-
plied the Mann-Whitney U test. We used chi-square
and Fisher’s exact tests to analyze the difference between
categorical variables. For the 5mC score, we applied the
“survcutpoint” function to determine the optimal cutoffs.
Then, samples were classified into high and low 5mC
score groups based on the cutoff. The Kaplan-Meier
method was used to plot the survival curves, while the
log-rank test was applied to calculate the statistical sig-
nificance. All statistical analyses were conducted using R
software, version 3.6.3 (http://www.r-project.org). The
level of significance was set at P < 0.05, and all statistical
tests were two-sided.

Results

Landscape and multiomics analysis of 5mC regulators in
BLCA

5mC is a dynamic and reversible process mediated by
several distinct regulators that plays critical roles in
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various biological processes in cancers (Fig. S1A). As
shown in Fig. S1B, the 21 5mC regulators were signifi-
cantly correlated with each other. In the TCGA-BLCA
cohort, most of the 5mC regulators were significantly
highly expressed in bladder cancer tissues compared
with normal tissues (Fig. S1C). Furthermore, this imbal-
ance in the expression of 5mC regulators between blad-
der cancer tissues and normal tissues was also observed
in the Xiangya cohort (Fig. S1D). More importantly, we
confirmed the cancer-specific overexpression patterns of
5mC regulators from the aspect of the single-cell RNA
sequence. In the Xiangya scRNA set, after quality con-
trol, 6798 qualified single cells were visualized with 2D
tSNE and classified into seven cell types, including can-
cer cell, T cell, iCAF, mCAF, myloid, B cell, and endo-
thelial (Fig. S2). A majority of 5mC regulators were
expressed explicitly on cancer cells, such as DNMT3A,
MBD1, MBD3, UNG, NEIL1, ZBTB33, NTHLI,
SMUGI, TDG, UHRF1, TET1, TET2, and TET3 (Fig.
S3). Six 5mC regulators, including DNMT1, MECP2,
MBD2, ZBTB38, MBD4, and UHRF1, were expressed in
both cancer and nonmalignant cells. Nonetheless, the
proportion of 5mC regulators positively expressed cells
was the highest in the type of cancer cells. Similar results
were observed in the GSE145137. For instance, several
5mC regulators, including MBD1, MBD2, MDB3, UNG,
ZBTB2, UHRF1, UHRF2, and TET3, were only
expressed on cancer cells (Fig. S4). For several 5mC reg-
ulators which are expressed in both cancer and nonma-
lignant cells, the proportion of positively expressed cells
was the highest in the type of cancer cells. Meanwhile,
the majority of 5mC regulators were adverse prognostic
factors in the E-MTAB-4321 cohort (Fig. S1E). However,
CNV alterations and mutations of 5mC regulators were
not frequent in BLCA (Fig. S1IF-G). In summary, these
results indicated that 5mC regulators may be potential
diagnostic and prognostic predictors in BLCA.

Depicting the 5mC clusters

The workflow of developing 5mC clusters and the 5mC
score is shown in Fig. S5A. Figure 1A displays the com-
prehensive landscapes of 5mC regulators with respect to
the prognostic value, correlations, and groups in the
TCGA-BLCA cohort. As shown in Fig. S5B-I, the
TCGA-BLCA cohort was classified into several clusters
based on the mRNA expression of 21 5mC regulators.
Notably, only when the cohort was divided into two
clusters was the clustering algorithm superior, and dif-
ferent clusters had significant prognostic value. There-
fore, 135 patients were classified into 5mC cluster 1, and
the rest were classified into 5mC cluster 2. Figure 1B
shows the correlations between 5mC clusters and clini-
copathological characteristics. Obviously, the 5mC regu-
lators were differentially expressed between the two
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5mC clusters. Patients in 5mC cluster 2 had a poorer
prognosis than patients in 5mC cluster 1 (Fig. 1C). Fur-
ther multivariable Cox analysis indicated that the 5mC
cluster was an independent prognostic factor after
adjusting for stage, grade, age, and LVI (Fig. 1D).

Developing the 5mC gene signature, 5mC score, and their
functional analyses

Figure S6A displays the 5mC score algorithm. First, we
identified 401 DEGs (5mC gene signature) between two
5mC clusters (Fig. S6B, Table S2). Then, we highlighted
DEGs with the most significant expression differences
(|logoFC| greater than 2.5) in the volcano map (Fig.
S6C). Interestingly, a majority of these highlighted DEGs

were BLCA molecular subtype-specific markers. KRT6A,
KRT6B, KRT6C, KRT5, KRT14, SERPINB3, SERPINB13,
SERPINB4, and DSG3 were basal subtype-specific
markers. In contrast, UPK1A, UPK2, UPK3A, KRT20,
and SNX31 were luminal subtype-specific markers (Fig.
S6C) [60]. This indicated that 5mC clusters may be simi-
lar to classical BLCA molecular subtypes. The functions
of the 5mC gene signature were obviously enriched in
immune-related processes. For example, biological pro-
cesses (BPs) mainly included leukocyte chemotaxis and
myeloid leukocyte migration (Fig. S6D, Table S3A). The
molecular functions (MFs) mainly included chemokine/
cytokine receptor binding and chemokine/cytokine ac-
tivity (Fig. S6D, Table S3A). The cellular components
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(CC) mainly included the MHC protein complex and
keratin filament (Fig. S6D, Table S3A). Furthermore, the
most significant KEGG pathways of the 5mC gene signa-
ture were cytokine-cytokine receptor interactions and
chemokine signaling pathways (Fig. S6E, Table S3B).
These data suggested that 5mC clusters (5mC gene sig-
nature) may play critical roles in modulating TME im-
munity and regulating the anticancer immune response
in BLCA.

Within the 5mC gene signature, 88 DEGs had prog-
nostic value (Table S2). Then, we performed PCA based
on these prognostic DEGs to calculate the 5mC score.
Eventually, the TCGA-BLCA cohort was divided into a
high 5mC score group (n = 197) and a low 5mC score
group (n = 203) based on an optimal cutoff value of the
5mC score. Patients in the high score group had a better
prognosis than patients in the low score group (Fig.
S6F). As expected, the 5mC score could effectively quan-
tify the 5mC clusters. 5mC cluster 1 belonged to the
high 5mC score group, and the low 5mC score group
belonged to 5mC cluster 2 (Fig. S6G-H).

Next, we compared the differences in the mutation
profiles, hallmark pathways, oncogenic pathways, and
KEGG pathways between the 5mC score groups. A ma-
jority of hallmark pathways were differentially enriched
between the two 5mC score groups (Fig. S7A). Most of
the metabolic hallmark signatures were enriched in the
high 5mC score group. In contrast, most proliferation-
related hallmark signatures, DNA damage-related path-
ways, development-related pathways, and cellular
component-related pathways were significantly enriched
in the low 5mC score group. Meanwhile, all immune-
related hallmark pathways, such as interferon-alpha/
gamma response, were significantly enriched in the low
5mC score group. The results from the PURE-01 study
demonstrated that the activation of the interferon-alpha/
gamma response predicted a higher ICB response rate in
BLCA [61]. Similarly, most of the KEGG pathways were
differentially enriched between the two 5mC score
groups (Fig. S8). In particular, the immune-related
KEGG pathways were significantly enriched in the low
5mC score group. This indicated that the low 5mC score
group (5mC cluster 2) may be more sensitive to ICB. A
previous study suggested that TP53 and RB1 muta-
tions induced genomic instability and promoted the
pathogenesis of BLCA [62]. In this study, the muta-
tion rates of TP53 (55% vs. 40%) and RB1 (27% vs.
9%) were significantly higher in the low 5mC score
group than in the high 5mC score group (Fig. S7B-C,
Fig. 2D, E). Meanwhile, a majority of oncogenic path-
ways were significantly enriched in the low 5mC
score group (Fig. S7D). These results may explain
why the low 5mC score group (5mC cluster 2) had a
poorer prognosis.
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Collectively, the 5mC gene signature and 5mC score
comprehensively reflect the biological characteristics of
BLCA, including TME immunity and prognosis.

5mC clusters are effective alternatives to classical
molecular subtypes and accurately predict therapeutic
opportunities in BLCA

Figure 2A, B displays the correlations between 5mC
clusters, 5mC score groups, and seven classical molecu-
lar subtype classifications. The high 5mC score group
and 5mC cluster 1 represented the luminal subtype,
which was characterized by luminal differentiation,
urothelial differentiation, and the Ta pathway. Con-
versely, the low 5mC score group (5mC cluster 2) indi-
cated the basal subtype, which was characterized by
basal differentiation, EMT differentiation, immune dif-
ferentiation, interferon response, and keratinization.

As shown in Fig. S9A, a majority of BLCA samples
belonged to the basal or luminal subtypes regardless of
the molecular systems, although some other subgroups
(such as the stromal subtype and NE subtype) had a very
low proportion. For instance, two molecular systems
(Baylor and UNC) only included basal and luminal sub-
types. In the TCGA molecular system, only 4% of sam-
ples were NE subtype. Similarly, in the consensus
molecular system, only 10% of samples were classified
into other subtypes (2% NE and 8% stromal subtypes).
These results suggested that the basal and luminal sub-
types may reflect the molecular characteristics of most
BLCA patients.

The ROC curves showed that the 5mC score predicted
classical molecular subtypes with high accuracy ranging
from 0.91 to 1 (Fig. 2C). These results were successfully
validated in several independent external cohorts (Fig.
S10A-D). Therefore, we believed that the binary 5mC
cluster systems could also reflect the molecular charac-
teristics of most BLCA patients. Certainly, there was an
inescapable limitation for binary cluster systems to re-
flect the molecular characteristics of other infrequent
subtypes, such as NE and stromal subtypes. To further
explore the role of the 5mC score in quantificationally
distinguishing the different rare subtypes, we compared
the difference in 5mC score between basal subtype, lu-
minal subtype, and other subtypes. In line with the re-
sults from Fig. 2A, B, basal subtypes had the lowest 5mC
score, while luminal subtypes had the highest 5mC
score. Interestingly, other rare subtypes (stromal and NE
subtypes) had an intermediate score (Fig. S9B). This
phenomenon was observed in all molecular subtype sys-
tems. Therefore, the 5mC score could make up for the
shortcomings of the binary 5mC cluster system to quan-
titatively reflect the biological characteristics of other
rare subtypes.
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DrugBank database

Fig. 2 5mC clusters accurately predicted classical molecular subtypes and therapeutic opportunities in the TCGA-BLCA cohort. A, B The
correlations between 5mC clusters, 5mC score, and seven classical molecular subtype classifications. € ROC curves showed the accuracy of the
5mC score in predicting classical molecular subtypes. D, E The overall mutation rates of neoadjuvant chemotherapy-related genes in the 5mC
score groups. F The correlations between the 5mC score and the enrichment scores of several therapeutic signatures, such as targeted therapy
and radiotherapy. G The correlations between the 5mC score and the BLCA-related drug-target genes were screened from the

Several studies demonstrated that tumor purity may
influence the molecular subtypes [32, 63]. Fortunately,
the purity adjusted 5mC clusters were highly consistent
with the original 5mC clusters in this study (Fig. S11A).
Only one patient was reclassified into another subtype
(Fig. S11B, Table S3C). This highlighted the robustness
of our 5mC cluster systems, which the tumor purity may
not influence. There were two possible explanations for
this result. The first one was that 5mC regulators were
specifically overexpressed in cancer cells (Figs. S1C-D,
S3, S4). The second one was that the overall tumor pur-
ity of the TCGA-BLCA samples was satisfied and ac-
ceptable when most samples’ tumor purity (CPE)
(84.67%) was higher than 60% (Table S1H). However,
the 5mC score was positively related to the purity in five
algorithms (Fig. S11C). Patients with a higher 5mC score
had higher tumor purity, which indicated lower immune
and stromal infiltration in the TME. Consistently, sam-
ples with higher 5mC scores represented a luminal sub-
type with lower immune infiltration and stromal
signature enrichment scores (Figs. 2A, 3, 4). The closed
correlation between the 5mC score and purity may be
due to the fact that the 5mC gene signature contained
many immune-related genes. Overall, the tumor purity
was more inclined to be regarded as a TME internal
character, reflecting the stromal and immune-related
features.

The overall mutation rate of neoadjuvant
chemotherapy-related genes was significantly higher in
the low 5mC score group than in the high 5mC group
(48.02% vs. 32.49%) (Fig. 2D, E). This indicated that pa-
tients in the low 5mC score group may be more sensi-
tive to neoadjuvant chemotherapy. Meanwhile, patients
in the low 5mC score group may be more sensitive to
EGEFR targeted therapy and radiotherapy (Fig. 2F). In
contrast, several immunosuppressive oncogenic path-
ways were significantly enriched in the high 5mC score
group, including the WNT-B-catenin network, PPARG
network, FGFR3 network, IDH1, KDM6B, and VEGFA.
Therefore, targeting these oncogenic pathways may offer
promising therapeutic opportunities for BLCA patients
in the high 5mC score group. All of these observations
were revalidated in several external BLCA cohorts (Fig.
S12A-B). Furthermore, we successfully confirmed the
above results in the DrugBank database (Fig. 2G). Pa-
tients in the low 5mC score group (5mC cluster 2) were

more sensitive to chemotherapy drugs (cisplatin, doce-
taxel, and gemcitabine), ERBB therapy (cetuximab), and
immunotherapy (atezolizumab). However, patients in
the high 5mC score group (5mC cluster 1) may be more
sensitive to antiangiogenic therapy drugs (sorafenib and
bevacizumab).

Collectively, 5mC clusters may be economical and
simpler alternatives to classical molecular subtypes.
Meanwhile, 5mC clusters and 5mC scores could predict
the response to several treatments in BLCA.

The distinct methylation patterns between 5mC clusters
We firstly screened 49904 DMPs (adj P < 0.01) between
5mC clusters (Table S3D). Among these, 142 5mC
cluster-specific DMPs were defined (Table S3E). Inter-
estingly, almost all of these DMPs (141/142) were 5mC
cluster 2 specific. Only one DMP (cg23507945) was
5mC cluster 1 specific. Meanwhile, the 5mC score was
negatively related to the methylation levels of these
cluster-specific DMPs (Table S3F). Overall, there was a
significantly distinct methylation pattern between 5mC
clusters (Fig. S13A). In addition, we explored the associ-
ations between the 5mC score and the promoter methy-
lation levels of certain critical cancer-associated genes,
such as oncogenes and driver genes . Similarly, the 5mC
score was negatively related to most promoter methyla-
tion levels of those genes (Table S3G-K). For example,
among 1268 promoter methylation probes of oncogenes,
667 probes were negatively related to the 5mC score,
while only 94 probes were positively related to the 5mC
score. These data further confirmed a higher methyla-
tion status in 5mC cluster 2 compared to 5mC cluster 1.
Based on these 5mC cluster-specific DMPs, we identified
130 5mC cluster-specific DMGs (Table S3E). Results of
GO and KEGG analyses based on 130 5mC cluster-
specific DMGs were shown in Table S3L. Among these
enriched pathways, 11 GO pathways and 1 KEGG path-
way were immune-related (Fig. S13B-C), which sug-
gested that 5mC cluster 2 may be an immune infiltrated
phenotype.

Robertson et al. identified several methylation subtypes
based on the BLCA-specific hypermethylated or hypo-
methylated probes [8]. Though these methylation sub-
types were related to different clinicopathological
features, there was no significant difference in prognosis
between these subtypes. Here, we identified 592 BLCA-
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Fig. 3 The 5mC clusters and 5mC score correlated with immune phenotypes in the TCGA-BLCA cohort. A The differences in cancer immunity
cycles between 5mC clusters. B, C The differences in infiltration levels of TIICs between 5mC clusters in the TIMER and MCP-counter algorithms.
The asterisks indicate a statistically significant p value calculated using the Mann-Whitney U or t-test (*P < 0.05; **P <0.01; ***P < 0.001). D The
lower left part indicates the correlations between the 5mC score and cancer immunity cycles; the upper right part shows the correlations
between the 5mC score and effector genes of several anticancer TIICs, including CD8+ T cells, NK cells, macrophages, Th1 cells, and dendritic
cells. E The correlation between the 5mC score and the infiltration levels of five anticancer TIICs (CD8+ T cells, NK cells, macrophages, Th1 cells,
and dendritic cells), which were calculated using seven independent algorithms.

specific hypermethylated probes and 465 BLCA-specific
hypomethylated probes using more stringent criteria
(see “Methods” part) (Table S3M-N). We then per-
formed unsupervised clustering based on both BLCA-
specific hypermethylated and hypomethylated probes.
Unfortunately, the BLCA-specific DMPs clusters were
not related to prognosis (Fig. S14). Moreover, there was
no association between the BLCA-specific DMPs clus-
ters and the 5mC clusters (Fig. S14). Finally, we per-
formed unsupervised clustering based on 5mC cluster-
specific DMPs (Fig. S13D-I). Interestingly, the binary
5mC-specific DMPs clusters were related to prognosis
(Fig. S13D). Meanwhile, there was a closed matching re-
lation between the 5mC-specific DMPs clusters and the
5mC clusters (Fig. S13E). 5mC-specific DMPs cluster 1
indicated 5mC cluster 2.

5mC clusters (5mC score) predicted immune phenotypes
and clinical response of ICB in BLCA

A majority of immunomodulators were downregulated
in 5mC cluster 1 (Fig. S15A). Because the activities of
cancer immunity cycles are directly determined by the
comprehensive performance of immunomodulators, the
activities of most cancer immunity cycles were downreg-
ulated in 5mC cluster 1, such as the release of cancer
cell antigens (Step 1), trafficking of immune cells to tu-
mors (Step 4) (CD8 T cell recruitment, CD4 T cell re-
cruitment, macrophage recruitment, Thl cell
recruitment, NK cell recruitment, DC recruitment), and
killing of cancer cells (Step 7) (Figs. 3A, S15C). Conse-
quently, the downregulated activities of these cycles re-
sulted in decreased infiltration levels of corresponding
TIICs (including CD8 T cells, CD4 T cells, NK cells,
Thl cells, macrophages, and DCs) in the BLCA TME
(Fig. 3B, C, S15D-E). These findings suggested that 5mC
cluster 1 may be a noninflamed phenotype. We further
analyzed the correlations between 5mC clusters and ICB
response predictors. First, most of the immune check-
points, such as PD-L1, PD-1, and CTLA-4, were down-
regulated in 5mC cluster 1 (Fig. 4A). Second, the
enrichment scores of positive ICB response-related sig-
natures and the TIS were significantly lower in 5mC
cluster 1 than in 5mC cluster 2 (Fig. 4B, C). Therefore,
5mC cluster 1 may not be sensitive to ICB.

The 5mC score was negatively related to anticancer
immunity in the BLCA TME. Most immunomodulators
were downregulated in the high 5mC score group (Fig.
S15B). Consistently, the 5mC score negatively correlated
with the activities of most cancer immunity cycles (Fig.
3D, Table S4A). As a result, the 5mC score negatively
correlated with many anticancer TIICs (including CD8
T cells, CD4 T cells, NK cells, Thl cells, macrophages,
and DCs) and their effector genes, which were cross vali-
dated in seven independent algorithms (Fig. 3D, E, Table
S4B-C). Furthermore, there were significant adverse cor-
relations between the 5mC score and TIS, enrichment
scores of positive ICB response-related signatures, and
immune checkpoints (Fig. 4D, E, Table S5).

An inflamed TME was infiltrated by more immune
cells and stromal cells. Consistently, the enrichment
scores of four stromal signatures, including EMTI,
EMT?2, EMTS3, and F-TBRS, were significantly higher in
the 5mC cluster 2 (low 5mC score group) (Fig. S16A-B).
In addition, the enrichment score of proliferation was
also higher in the low 5mC score group (Fig. S16C).

In summary, 5mC cluster 1 and a high 5mC score pre-
dicted a noninflamed phenotype and lower ICB response
in BLCA, which was successfully confirmed in several
external cohorts (Figs. S17, S18). Moreover, the inci-
dence of ICB-associated hyperprogression may be higher
in the high 5mC score group. The mRNA expression
and copy number amplification rates of genes positively
correlated with ICB-associated hyperprogression, includ-
ing MDM2, MDM4, DNMT3A, CCND1, FGF3, FGF4,
and FGF19, were significantly higher in the high 5mC
score group (Fig. 4F, G). In contrast, genes negatively
correlated with hyperprogression, such as CDKN2A and
CDKN2B, were significantly downregulated in the high
5mC score group.

A distinct gene fusion patterns and regulon expression
profiles between 5mC clusters

In TCGA-BLCA cohort, the most common gene fusions
included 10 FGFR3-TACC3 fusions, 9 ITGB6-
LOC100505984 fusions, 5 AFF1-PTPN13 fusions, 4
PPARG-SYN2 fusions, 4 GPR110-TNFRSF21 fusions,
and 4 TSEN2-PPARG fusions (Fig. S16D). Notably, the
FGFR3-TACC3 fusions and AFF1-PTPN13 fusions
mainly occurred in the high score group, while ITGB6-
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was calculated with the Fisher t-test

Fig. 4 The 5mC clusters and 5mC score correlated with predictors of ICB response in the TCGA-BLCA cohort. A The differences in the expression
of 22 immune checkpoints between 5mC clusters. B, C The differences in the enrichment scores of positive ICB response-related signatures and
the TIS between 5mC clusters. D The correlations between the 5mC score and TIS. E The lower left part indicates the correlations between the
5mC score and the enrichment scores of positive ICB response-related signatures; the upper right part shows the correlations between the 5mC
score and the expression of 22 immune checkpoints. F The difference in mRNA expression of hyperprogression-associated genes between the
5mC score groups. The asterisks indicate a statistically significant p value calculated using the Mann-Whitney U or t-test (*P < 0.05; **P < 0.01; ***P
< 0.001). G The difference in copy number variation patterns of hyperprogression-associated genes between the 5mC score groups. The p value

LOC100505984 fusions mainly occurred in the low score
group. In addition, 7 of 8 PPARG associated fusions oc-
curred in the high score group. In addition, we observed
a distinct regulon expression pattern across 5mC clus-
ters. As for 11 luminal subtype-specific regulons, such as
RARG, FGFR3, and ERBB2, they were highly expressed
in the high 5mC score group (Fig. S16E). This result was
similar to the hypothesis that GATA3, FOXAI, and
PPARG lead to luminal cell biology for BLCA [64]. In
contrast, the expression of 12 basal subtype-specific reg-
ulons was significantly higher in the low 5mC score
group. Collectively, the distinct gene fusion patterns and
regulon expression profiles between 5mC clusters may
drive the differences in biological phenotypes between
5mC clusters.

Validating the role of the 5mC score in stratifying
immune phenotypes and clinical response to ICB in a
BLCA immunotherapy cohort (IMvigor210)

In the IMvigor210 cohort, patients with higher 5mC
scores had better prognoses (Fig. S19A). Patients were
divided into several subgroups based on PD-L1 expres-
sion on immune cells (ICO, IC1, and IC2+ subgroups) or
tumor cells (TCO, TC1, and TC2+ subgroups) and the
infiltration status of CD8 T cells in the TME (deserted,
excluded, and inflamed subgroups) [54]. Obviously, the
5mC score was the highest in the ICO (immune cells
with the lowest PD-L1 expression) and TCO (tumor cells
with the lowest PD-L1 expression) subgroups and
deserted phenotypes (Fig. S19B-D). Additionally, the
5mC score was negatively related to TIS and most of the
immune checkpoints, such as PD-L1, PD-1, CTLA-4,
and TIM-3 (Fig. S19E-F). Meanwhile, the effector genes
of several anticancer TIICs were significantly downregu-
lated in the high 5mC score group (Fig. S19G). These re-
sults confirmed that the high 5mC score group
represented a noninflamed phenotype.

Next, we analyzed the correlations between the 5mC
score and ICB response in three different immune
phenotype subgroups. As expected, in the deserted
phenotype subgroup, the ICB response rate in the high
5mC score group was significantly lower than that in the
low 5mC score group (Fig. SI9H). This result indicated
that the high 5mC score group represented a

noninflamed phenotype. Naturally, the prognosis of pa-
tients in the high 5mC score group was poorer due to a
lower ICB response rate (Fig. S191). Interestingly, we ob-
served opposite results in the excluded and inflamed
phenotype subgroups. In these two subgroups, the ICB
response rates in the high 5mC score group were higher
than those in the low 5mC score group (Fig. S19J, L).
Certainly, the prognosis of patients in the high 5mC
score group in these subgroups was better due to higher
ICB response rates (Fig. S19K, M). Such opposite results
could be explained by the comprehensive cross-talk be-
tween the 5mC score and other ICB response determi-
nants, such as the panfibroblast TGFp response
signature (F-TBRS). F-TBRS attenuated the clinical re-
sponse to PD-L1 blockade by contributing to T cell ex-
clusion in BLCA [54]. Previous results from the
IMvigor210 cohort indicated that the enrichment score
of F-TBRS was the lowest in the deserted phenotype
subgroup compared with that in the excluded or in-
flamed phenotype subgroup. In our study, the 5mC
score was the highest in the deserted phenotype sub-
group (Fig. S19D). Therefore, the ICB response in the
deserted phenotype subgroup may be mainly determined
by the 5mC score rather than F-TBRS. Conversely, the
5mC score was obviously lower in the excluded and in-
flamed phenotype subgroups, but the enrichment score
of F-TBRS was significantly higher. Thus, the ICB re-
sponse in these two subgroups may be determined by
other factors, such as F-TBRS, instead of the 5mC score.
Of course, further research is needed to demonstrate the
importance of interactions between the 5mC score and
E-TBRS in determining the clinical response to ICB.

Validating the roles of the 5mC score in the Xiangya
cohort

In our own cohort (Xiangya cohort), we found that the
5mC score could accurately predict classical molecular
subtypes (Fig. 5A). The AUC ranged from 0.99 to 1, ex-
cept in the Baylor subtype system (AUC = 0.9) (Fig. 5B).
In addition, the 5mC score was negatively correlated
with the activities of many anticancer immunity steps
(Fig. 5C, Table S6A). Subsequently, the 5mC score was
also negatively related to the infiltration levels of CD8 T
cells, NK cells, Thl cells, DCs, and macrophages in
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Fig. 5 Validating the roles of the 5mC score in the Xiangya cohort. A The correlations between the 5mC score and seven classical molecular
subtype classifications. (B) ROC curves showed the accuracy of the 5mC score in predicting classical molecular subtypes. C The correlations
between the 5mC score and the cancer immunity cycles. D The correlations between the 5mC score and the enrichment scores of positive ICB
response-related signatures. E The correlations between the 5mC score and 22 immune checkpoints. F The correlation between the 5mC score
and the infiltration levels of five anticancer TIICs (CD8+ T cells, NK cells, macrophages, Th1 cells, and dendritic cells), which were calculated using
seven independent algorithms. G The correlations between the 5mC score and TIS. H The differences in the enrichment scores of several
therapeutic signatures, such as targeted therapy and radiotherapy, between the 5mC score groups

seven independent algorithms (Fig. 5F, Table S6B).
Meanwhile, there were significantly negative correlations
between the 5mC score and immune checkpoints, TIS,
and enrichment scores of positive ICB response-related
signatures (Fig. 5D, E, G, Table S6C). These data dem-
onstrated that the 5mC score could effectively stratify
the immune phenotypes of BLCA. In addition, the 5mC
score was able to predict the clinical response to other
treatments, including EGFR targeted therapy, radiother-
apy, and several therapies targeting immune-inhibited
oncogenic pathways (Fig. 5H).

Pancancer analyses of the 5mC score

We further evaluated the role of the 5mC score across
cancers. Notably, the 5mC score was related to progno-
sis in many cancers, such as thymoma, lower-grade gli-
oma, and kidney renal clear cell carcinoma (Fig. S20A,
Table S7B). In addition, the 5mC score was negatively
correlated with the expression of four critical immune
checkpoints, PD-L1, PD-1, CTLA-4, and LAG-3, in most
cancers (Fig. S20B-E, Table S7C-F). Aberrant DNA
methylation may influence cancer immunogenicity, such
as TMB and MSI [65]. Here, we revealed that the 5mC
score was related to the TMB and MSI in many cancers
(Fig. S20F-G, Table S7G-H). Moreover, the 5mC score
was significantly related to the stemness indices of many
cancers, such as testicular germ cell tumors and lung
squamous cell carcinoma (Fig. S21, Table S7I-N). There-
fore, the 5mC score reflected many biological character-
istics of the TME, such as anticancer immunity,
immunogenicity, and cancer stemness, in pancancer ana-
lyses. It may be a generalizable predictor of prognosis
and ICB response across cancers.

The 5mC score was a valuable predictor of the response
to immunotherapy in multiple immunotherapy cohorts
Here, we explored the role of the 5mC score in predict-
ing the ICB response in other cancers (including melan-
oma, non-small cell lung cancer, and gastric cancer)
from nine immunotherapy-related cohorts (eight ICB
cohorts and one adoptive T cell therapy cohort). First,
we found that the 5mC score was negatively correlated
with most immune checkpoints in eight ICB cohorts
(Figs. S22, S23, S24A). In line with this, the ICB re-
sponse rates were obviously lower in the high 5mC score

group than in the low 5mC score group (Figs. 6A—G,
S24B). The prognosis of the high 5mC score group was
also poorer due to lower ICB response rates (Fig. 6A—
G). Similar results were observed in the adoptive T cell
therapy cohort (Fig. 6H). This evidence reconfirmed that
the 5mC score was a valuable predictor of immunother-
apy response across Cancers.

Discussion

Depicting TME heterogeneity is necessary to achieve
precision medicine for BLCA. Although classical mo-
lecular subtypes can effectively reflect TME heterogen-
eity [4], their clinical application may be limited by
several issues, such as the complex sequencing method,
high economic burden, and long detection period. Here,
we first developed a novel 5mC regulator-mediated mo-
lecular subtype system that could accurately predict clas-
sical molecular subtypes, immune phenotypes, clinical
outcomes, and therapeutic opportunities in BLCA. Fur-
thermore, we developed the 5mC score to quantify an
individual’s 5mC subtype.

Several molecular subtype predictors were developed
previously, such as BASE47 [11]. However, the value of
BASE47 in guiding clinical decision making has not been
evaluated. Other simplified molecular subtype systems
have been developed based on immunohistochemical
markers or histological images [66, 67]. However, the ac-
curacy of these simplified systems should be further im-
proved. Compared to previous systems, the 5mC score
can stratify basal and luminal subtypes with high accur-
acy, ranging from 0.98 to 1, in several independent algo-
rithms. More importantly, the 5mC score can predict
the clinical response to several treatment options, in-
cluding neoadjuvant chemotherapy, targeted therapy,
radiotherapy, and ICB. A high 5mC score represented a
luminal subtype characterized by high urothelial differ-
entiation. The mutation rate of RB1 was significantly
lower in the high 5mC score group, which indicated that
the high 5mC score group (5mC cluster 1) may not be
sensitive to neoadjuvant chemotherapy. Meanwhile, the
high 5mC score group (5mC cluster 1) was not sensitive
to ERBB therapy and radiotherapy. Fortunately, several
immune-inhibited oncogenic pathways were enriched in
the high 5mC score group (5mC cluster 1). Therefore,
targeting these pathways may offer promising treatment
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Fig. 6 The 5mC score predicted the response to immunotherapy in several immunotherapy cohorts. A Non-small-cell lung cancer (GSE135222
cohort): The upper part indicates the proportion of patients who responded to ICB in the low and high 5mC score groups; the lower part shows
the survival analysis of the 5mC score groups. B-H Melanoma (Six ICB cohorts: GSE78220, Nathanson2017 pre, Nathanson2017 post,
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patients with responses to immunotherapy in low and high 5mC score groups; lower part shows the survival analysis of 5mC score groups
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options for patients in the high 5mC score group. As
noted in our previous study, these immune-inhibited
oncogenic pathways may lead to a noninflamed TME
[45]. In line with this, we found that the high 5mC score
group had a noninflamed phenotype characterized by
low anticancer immunity. Therefore, targeting these
pathways may convert the high 5mC score group (5mC
cluster 1) into an inflamed phenotype, which may be
sensitive to ICB again. In general, the ability to accur-
ately discriminate distinct molecular subtypes and guide
precision medicine may promote the widespread clinical
application of the 5mC score in BLCA.

DNA methylation plays critical roles in modifying the
anticancer immune response in two main ways: directly
affecting tumor cells or directly regulating the differenti-
ation and maturity of TIICs [65, 68—71]. In addition, ab-
errant DNA methylation may lead to ICB resistance.
Hypomethylating agents could enhance the recruitment
of anticancer TIICs to reverse ICB resistance by promot-
ing the type I interferon response [72]. In this study, the
5mC clusters and 5mC score reflected many of the im-
mune hallmarks of the BLCA TME. The differentially
expressed genes between 5mC clusters were significantly
enriched in immune-related pathways, such as leukocyte
chemotaxis and cytokine/chemokine signaling pathways.
The 5mC score was negatively related to most of the im-
munomodulators, such as CXCL9, CXCL10, and
CXCR3, which were critical for the infiltration of anti-
cancer TIICs. In line with this, the 5mC score was nega-
tively correlated with the activities of several cancer
immunity cycles, such as the release of cancer cell anti-
gens, priming and activation, and trafficking of immune
cells to tumors. Consequently, the 5mC score negatively
correlated with several anticancer TIICs, including CD8
T cells and NK cells. In general, a high 5mC score (5mC
cluster 1) indicated a noninflamed phenotype character-
ized by low pre-existing anticancer immunity. It is well
accepted that a noninflamed phenotype is not sensitive
to ICB [45]. Consistently, we found that the 5mC score
was negatively related to TIS, ICB response positively re-
lated signatures, and immune checkpoints. Furthermore,
in the IMvigor210 cohort, we confirmed that a high
5mC score was negatively related to the response to
ICB. Moreover, a higher 5mC score indicated a higher
incidence of ICB-associated hyperprogression. Therefore,
the 5mC score was a potential predictor of ICB response
in BLCA.

Malta et al. calculated cancer stemness indices based
on DNA methylation profiles and mRNA expression
matrices to assess the degree of oncogenic dedifferenti-
ation [29]. The stemness indices can reflect TME hetero-
geneity. Here, we found that the 5mC score was
significantly related to the cancer stemness indices in
pancancer analyses, which again demonstrated that the
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5mC score could reflect TME heterogeneity. Further-
more, Malta et al. revealed that cancer stemness indices
were negatively correlated with TIIC infiltration and PD-
L1 expression across cancers. Consistently, the 5mC
score was negatively related to PD-L1, PD-1, CTLA-4,
and LAG-3 in all cancers in our study. These findings
suggested that a higher 5mC score may predict a lower
ICB response in pancancers, caused by higher cancer
stemness indices and lower anticancer immunity. Fur-
thermore, we directly validated the role of the 5mC
score in predicting ICB response in nine independent
immunotherapy cohorts. As expected, a higher 5mC
score predicted a lower ICB response. Therefore, the
5mC score may be a potential generalizable predictor of
ICB response across cancers.

Certainly, there were several drawbacks in this study.
First, the sample size of the Xiangya cohort should be
further enlarged in the future. Second, there were no
survival data of the Xiangya cohort because the follow-
up period was not sufficient. Third, we did not analyze
the differences in the overall DNA methylation profiles,
including hyper- or hypomethylated CpG sites, between
the 5mC clusters.

Conclusions

The novel 5mC regulator-based subtype system reflects
many aspects of bladder cancer biology and provides
new insights into bladder cancer treatment. The 5mC
score was capable of quantifying the 5mC subtype, iden-
tifying distinct molecular subtypes, and stratifying thera-
peutic opportunities in BLCA. Meanwhile, the 5mC
score may be a generalizable predictor of ICB response
and prognosis across cancers.
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and their prognostic value. Table $3. (A) GO analysis of 5mC gene signa-
ture. (B) KEGG analysis of 5mC gene signature. (C) The purity adjusted
5mC clusters. (D) Differential analysis of methylation probes between
5mC clusters. (E) The 5mC clusters specific differential methylation probes
and genes. (F) The correlations between 5mC score and the 5mC cluster
differential methylation probes. (G) Correlations between the 5mC score
and the probes of 5mC genes. (H) Correlations between the 5mC score
and the probes of Oncogenes. () Correlations between the 5mC score
and the probes of Tumor suppressor genes. (J) Correlations between the
5mC score and the probes of Driver genes. (K) Correlations between the
5mC score and the probes of Kinase genes. (L) GO and KEGG analysis of
the 5mC cluster specific genes. (M) Cancer specific hypermethylation
sites. (N) Cancer specific hypomethylation sites. Table S4. (A) Correlations
between the 5mC score and anticancer immunity cycles. (B) Correlations
between the 5mC score and effector genes of several anticancer TIICs. (C)
Correlations between the 5mC score and TIICs in six algorithms. Table
S5. (A) Correlations between the 5mC score and 22 immune checkpoints;
(B) Correlations between the 5mC score and enrichment scores of posi-
tive ICB response-related signatures. Table S6. (A) Correlations between
the 5mC score and anticancer immunity cycles in the Xiangya cohort. (B)
Correlations between the 5mC score and TIICs in six algorithms in the
Xiangya cohort. (C) Correlations between the 5mC score and ICB
response-related signatures in the Xiangya cohort. Table S7. (A) The cal-
culated 5mC score in pancancers. (B) The prognostic analyses of the 5mC
score across cancers using a univariate Cox regression model. (C) Correla-
tions between the 5mC score and PD-L1 across cancers. (D) Correlations
between the 5mC score and PD-1 in all cancers. (E) Correlations between
the 5mC score and CTLA-4 across cancers. (F) Correlations between the
5mC score and LAG-3 in all cancers. (G) Correlations between the 5mC
score and TMB in all cancers. (H) Correlations between the 5mC score
and MSI in pancancers. (1) Correlations between the 5mC score and
mRNAsi across cancers. (J) Correlations between 5mC score and
EREG.mRNA in pancancers. (K) Correlations between the 5mC score and
mDNASsi in pancancers. (L) Correlations between the 5mC score and EREG
mMDNA across cancers. (M) Correlations between the 5mC score and
DMPsi in pancancers. (N) Correlations between the 5mC score and ENHsi
in all cancers.
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Fig. S17. The 5mC score correlated with immune phenotypes and ICB
response in the GEO BLCA meta-cohort (GSE48075, GSE32894). Fig. S18.
The 5mC score correlated with immune phenotypes and ICB response in
the E-MTAB-4321 cohort. Fig. $19. 5mC score stratified immune pheno-
types and clinical response of ICB in the IMvigor210 cohort. Fig. $20.
Pancancer analyses of the 5mC gene signature (5mC score). Fig. S21.
Correlations between the 5mC gene signature (5mC score) and cancer

stemness indices across cancers. Fig. S22. Correlations between the 5mC
score and 22 immune checkpoints in four immunotherapy cohorts. Fig.
$23. Correlations between the 5mC score and 22 immune checkpoints
in four immunotherapy cohorts. Fig. S24. Correlations between the 5mC
score and 22 immune checkpoints and ICB response in the Kim 2018 co-
hort (gastric cancer).
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