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Abstract

There is considerable variability in disease progression for patients with amyotrophic lateral sclerosis (ALS) including
the age of disease onset, site of disease onset, and survival time. There is growing evidence that short structural
variations (SSVs) residing in frequently overlooked genomic regions can contribute to complex disease mechanisms
and can explain, in part, the phenotypic variability in ALS patients. Here, we discuss SSVs recently characterized by
our laboratory and how these discoveries integrate into the current literature on ALS, particularly in the context of
application to future clinical trials. These markers may help to identify and differentiate patients for clinical trials that
have a similar ALS disease mechanism(s), thereby reducing the impact of participant heterogeneity. As evidence
accumulates for the genetic markers discovered in SOSTM1, SCAF4, and STMNZ2, we hope to improve the outcomes

of future ALS clinical trials.
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Background

Many key cellular processes are known to be disrupted
in amyotrophic lateral sclerosis (ALS) such as RNA me-
tabolism, mitochondrial dysfunction, oxidative stress,
protein aggregation, impaired axonal transport, and
cytoskeletal dysfunction, reviewed in [1]. Variation in
the expression of genes involved in these processes may
increase disease risk and/or influence the rate of disease
progression [2—4]. At present, there is a lack of genetic
markers for the different ALS disease subtypes, as well
as a lack of genetic indicators of disease risk and/or tra-
jectory. The heterogeneous clinical presentation and di-
verse rates of progression makes identifying ALS
patients with similar disease mechanisms extremely
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challenging, and undoubtedly contributes to clinical trial
failures [5].

Establishing molecular targets and genetic markers for
ALS can lead to improved patient stratification for clin-
ical trials and might enable positive treatments to be
identified for specific patient subgroups. Van Eijk and
Eijkemans [6] recently demonstrated that genotypic data
for unc-13 homolog a (UNCI3A), myelin-associated
oligodendrocyte basic protein (MOBP), and the repeat
expansion in  c9orf720-SMCR8 complex subunit
(C90rf72) could influence both primary and secondary
outcomes including survival, ALS functional rating scale
(ALFSRS) and forced vital capacity (FVC) measures.
Additionally, a retrospective meta-analysis of three lith-
ium carbonate clinical trials revealed that contrary to the
reported negative outcomes, patients with the LUNCI13A
(C/C) genotype had actually responded to the lithium
carbonate [7]. This study provides evidence that genetic
markers can inform clinical trial outcomes and should
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be incorporated into clinical trial design. Intuitively, gen-
etic regions that are highly variable, known as structural
variants (SVs), will likely be more informative as genetic
markers than single nucleotide polymorphisms (SNP),
due to a larger number of potential genotypes [8]. These
variable regions of the genome have been predominantly
under-characterized [9, 10]; however, the scientific com-
munity is beginning to appreciate the need to investigate
polymorphic loci as potential disease modifying regions.

Structural variants (SVs) have typically been defined as
insertions, deletions, inversions, and microsatellites that
can be repeated hundreds of times within the genome
that are greater than 1 kb in length [11]. Short structural
variants (SSVs) have been predominately overlooked in
the context of ALS and encompass that same class of
variants as the classical definition (e.g., short tandem re-
peat, microsatellite, insertion/deletion, inversion, poly-
nucleotide repeat) but are much shorter in size, typically
<50bp in length [12]. Approximately 4 million SSVs
exist within the human genome and have been previ-
ously described [13, 14]. It is possible that some of the
“missing heritability” in ALS could be explained by more
common SSVs with small effect sizes that have not yet
been identified [13, 15]. Importantly, changes in the size
and composition of both SV/SSVs can have a significant
impact on the binding of regulatory elements that
modulate RNA processing and gene expression [16].
SSVs have been implicated in many complex diseases,
including ALS and other neurodegenerative diseases
[17], such as Parkinson’s and Alzheimer’s disease [18—
20]. The ability of SSVs to alter gene expression is
dependent on their location within and around the gene
or intergenic region, with their effects occurring via sev-
eral mechanisms including the following: influencing the
binding of regulatory elements, mRNA splicing and pro-
cessing, genome folding and higher order structure, and
translation. This may differentiate mechanisms of dis-
ease pathogenesis, including risk of disease, risk for a
specific phenotype, symptom presentation, disease
course, and response to treatment, between individuals
[21].

Recent in silico mapping of known ALS-linked genes
has predicted a number of as yet unresolved short tan-
dem repeats within each of these genes, that are likely
polymorphic, and could influence gene expression and
contribute to disease risk for ALS [15, 22]. Importantly,
in the most recent ALS genome wide association study
(GWAS) conducted by Van Rheenen and Van der Spek
[23], 15 risk loci were identified, with 8 loci previously
reported in GWAS studies [24—-26]. This GWAS study
was unique; in addition to screening pathogenic rare
burden variants, it also incorporated short tandem re-
peats, RNA-sequencing, and methylation datasets to
prioritize causal genes within identified ALS risk loci.
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Of note, a polymorphic tetra-nucleotide repeat down-
stream of ALS-linked gene NIMA-related kinase 1
(NEKI) was reported to be associated with increased
ALS disease risk. The NEK1 SSV was in linkage dis-
equilibrium with the top hit NEK1 SNP reported in this
study and may help to further explain phenotypic vari-
ability and disease penetrance between patients carrying
different NEK1 mutations, particularly since the SNP
alone could not reliably determine its contribution to
ALS risk [23]. Furthermore, another recent study has
investigated SVs in 6580 whole genome sequences
(4315 ALS and 1880 controls) from the Project MinE
cohort to determine genotype-phenotype correlations
in known ALS genes. Al Khleifat, Iacoangeli [27] re-
ported that structural variants in C9orf72 (repeat ex-
pansion), Valosin containing protein VCP (inversion)
and erb-b2 receptor tyrosine kinase 4, ERBB4 (deletion)
are variously associated with ALS disease risk and
phenotype. The variant caller used in this study de-
tected multiple classes of SVs, however, small inver-
sions and insertion/deletions <200bp could not be
analyzed by the Manta platform [27]. Further investiga-
tion into variants outside of the know ALS genes in
addition to wet lab validation is required to gain a hol-
istic understanding of the contribution of genetic vari-
ation to ALS risk and phenotype [27].

In addition to contributing to disease risk, SSVs can
also be an informative tool for clinical trial participant
selection, as demonstrated in Alzheimer’s disease, in the
case of translocase of outer mitochondrial membrane 40
(TOMMA40) [28]. Although the age-of-onset distributions
for Alzheimer’s disease have been well-established since
1993 [29], the basis of this distribution was only partially
explained by the apolipoprotein E (APOE) genotype,
suggesting that other genetic factors must contribute to
age-of-onset for the disease [30]. In fact, the combin-
ation of the APOE genotype alongside the SSV genotype,
a poly-T repeat in TOMM40, was subsequently shown
to account for >98% of the clinical age-of-onset distri-
butions in the Caucasian population [20, 28]. Combining
these genotypes allowed the generation of the clinical
age-of-onset risk algorithm [31] to be developed to in-
form participant selection for the TOMMORROW clin-
ical trial [32], with selection based on the genotype of
individuals and their corresponding risk of disease/age-
of-onset prediction. Evidently, this finding demonstrates
that informative SSVs can be used as an enrichment tool
for clinical trials, thus informing participant selection.

Innovative approach for SSV discovery

In ALS, the clinical presentation can manifest differently
in family members sharing the same ALS-linked variant
(incomplete penetrance), suggesting multiple factors, in-
cluding both genetic and non-genetic factors, can
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contribute to the progression of the disease [15, 21, 33].
With this in mind, we have used an established struc-
tural variant evaluation system (dbSSV) [22] to identify
candidate SSVs within and around confirmed ALS loci
[15]. Using a systematic approach to candidate GWAS
loci, analysis of SSVs in these genomic regions will likely
identify common variants that subtly influence gene
function, in some cases leading to ALS. The dbSSV soft-
ware [22] focuses specifically on identifying SSVs and
scores them against 24 different properties, including
data describing the location and definition of the vari-
ation, variability indicators, repeat context, gene context,
transcription factor and microRNA binding sites, other
regulatory markers, conservation, position within a link-
age disequilibrium block, GWAS signals, and tissue-
specific regulatory signals. Based on these scores, a short
list of SSVs is generated with each total score suggesting
the likelihood of the variant having significant biological
effects and contributing to disease risk. Using this
method, we have now identified and published several
novel genetic markers, discussed below. Investigating
SSVs in ALS-linked genes will help to better understand
differences between individual patient phenotypes and
disease progression.

Insertion/deletion in SQSTM1 is associated with
disease in familial SOD1 patients

Sequestosome 1 (SQSTMI) encodes P62, an adaptor
protein that binds ubiquitylated protein aggregates and
delivers them to the autophagosome for degradation.
With an essential role in protein clearance, it is not sur-
prising that P62 dysfunction is implicated in neurode-
generative diseases that are governed by abnormal
protein inclusions. Thus, SSVs within SQSTMI may
contribute to the diverse presentations observed between
ALS patients by influencing P62 expression and autoph-
agic clearance. In our recently published association
study of a North American cohort of familial ALS (fALS)
and sporadic (sALS) patients (n = 403) and age matched
controls (n = 562), a small cytosine/adenine (CAAA) in-
sertion deletion (I/D) was associated with fALS, particu-
larly in familial superoxide dismutase 1 (SODI)
mutation positive patients, but not with sALS patients
[34]. Furthermore, the presence of the insertion variant
appears to translate to a stepwise decrease in SQSTM1
expression in healthy olfactory neurosphere-derived
cells, with the I/I genotype resulting in a 2.5-fold reduc-
tion in transcript levels [34]. The observations of the in-
sertion/deletion influencing SQSTMI expression has
previously been reported by an independent study in a
screen of 17 different healthy tissue types [35]. By this
weight of evidence, the CAAA variant needs to be fur-
ther examined as a contributor to ALS disease mecha-
nisms, particularly since SQSTM1 plays a critical role in
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autophagy, and mutations in this gene can be a direct
cause of ALS and other neurodegenerative diseases [36,
37]. Future therapeutic studies to modulate autophagy
should take into consideration the potential impact of
this SSV on P62 expression.

Poly-T repeat in SCAF4 is a genetic marker for
disease risk and survival in familial ALS

Studies of common SODI-ALS mutations have sug-
gested that a disease modifying factor located nearby
SODI may influence the penetrance of SODI p.D91A
(D90A) and p.A5V (AV4) mutations (historical names
noted in brackets are not reflective of the amino acid
position), thus contributing broadly to ALS risk [38, 39].
Our laboratory reported an 11-18 thymine repeat, lo-
cated within the 3'UTR of the neighboring gene, SR-
related CTD associated factor 4 (SCAF4) [40]. The func-
tion of SCAF4 has recently been elucidated, with an es-
sential role in RNA processing through regulating
transcript elongation [41]. Variants in SCAF4 have been
reported to cause impaired RNA processing and can re-
sult in neurodevelopmental disorders [42]. Interestingly,
the poly-T variant in SCAF4 is flanked by two binding
sites for transcription factor RNA polymerase II subunit
A (POLR2A); therefore, changes in the length of this
variant may influence the binding of POLR2A, thus af-
fecting transcription of nearby genes (SODI) and may
therefore play a role in ALS related neurodegeneration.
A case control association study in fALS patients (1 =
190) and healthy age matched controls (n = 560) re-
vealed that the 18 T repeat is associated with ALS risk
for the entire cohort, including those without SODI-
linked mutations (n = 27). The 18 T allele was also asso-
ciated with a 26 month reduction in survival time but
was not associated with age at disease onset [40]. Future
studies should investigate the functional impact of this
variant and determine whether thymine repeat length in-
fluences transcript elongation of genes that are regulated
by SCAF4. Additionally, this SSV may also help to iden-
tify patients that could benefit from a SODI targeted
therapy, such as the SOD1 suppressing antisense therapy
Tofersen (currently in phase III extension study) [43].

Short tandem repeat in STMN2 is associated with

sporadic ALS disease risk and clinical phenotype

The microtubule regulator stathmin-2 (STMN2) was re-
cently identified as a gene with strong therapeutic poten-
tial for ALS [44, 45]. STMN2 is involved in axonal
grown and repair and is directly regulated by the ALS-
linked gene TAR DNA-binding protein 43 (TARDBP).
When TARDBP protein TDP-43 is depleted or mislocal-
ized, as occurs in ALS, STMN2 protein is also depleted
[44, 45]. To understand the implications of this TDP-
43:STMN2 relationship and ALS phenotype, it is
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essential to characterize the natural variation in STMN2
expression.

We recently examined the STMN2 gene for candidate
SSVs that may affect the binding of regulatory elements
and, therefore, influence gene expression. We identified
a variable length cytosine/adenine (CA) short tandem re-
peat within STMN2 in a cohort of Caucasian sALS pa-
tients (n = 321) and healthy age matched controls (n =
332). We have identified the first genetic association
with STMN2 and both sALS disease risk and age-at-
disease onset [46]. In 143 patients where end-point sur-
vival data was available, when categorized according to
site of disease onset (bulbar vs spinal), the bulbar cases
carrying the risk genotype had significantly shorter sur-
vival times than other bulbar cases. Moreover, this effect
on survival was not abrogated when controlling for sex
or age. Furthermore, in an Australian longitudinal sALS
cohort (n = 67), ALSERS scores were significantly lower
in patients carrying the risk genotype. Following these
clinical associations, stathmin-2 mRNA expression was
shown to be reduced in sALS patient olfactory
neurosphere-derived cells. When accounting for CA
genotype, a trend for reduced expression of stathmin-2
mRNA was also observed in sALS patients and control
laser-captured spinal motor neurons [46].

This work points to a novel mechanism by which this
SSV may regulate STMN2 gene expression and could
further explain the recently elucidated STMN2 cryptic
exon mechanism [44, 45] and its influence on neurode-
generative disease phenotype [47, 48]. The genetic valid-
ation of STMN2 significantly adds to the weight of
evidence that this gene is important in ALS [46]. The
STMN?2 genetic marker may therefore be a useful tool
for cohort selection in clinical trials or to stratify patient
response. Further, this discovery has broad implications
for clinical assessment and therapeutic development and
should be incorporated in future clinical trials targeting
this gene.

Application of SSVs to clinical trials

Recently, the Treatment Research Initiative to Cure ALS
(TRICALS) has brought the urgent need to reform ALS
clinical trial design to the forefront of the literature [5,
49]. In particular, the major concerns raised are related
to the stringent patient selection criteria and analytical
strategy of phase 3 clinical trials. Van Eijk and Nikolako-
poulos [49] highlight the use of patient risk profiles as a
strategy to provide more informative selection criteria
that will help to improved randomization, enable risk-
based subgroup analyses, and increase the statistical
power of clinical trials. Patient risk profiles are based on
a multivariate analysis of several patient characteristics
(i.e., age of onset, site of onset, vital capacity, diagnostic
delay, ALSFRS etc.), creating a “prognostic summary” for
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each patient [49]. This is likely to help increase the num-
ber of eligible patients for trials, while reducing patient
drop out and exclusion rates, thus increasing the
generalizability of the trial [49]. The authors noted that
they did not include C90rf72 repeat expansion as a fac-
tor in their predictive model, as it did not significantly
improve the predictive power of the model and may
pose additional logistical constraints (i.e., genotyping
and counseling patients) prior to clinical trial
randomization [49]. However, one must consider that al-
though the C9orf72 repeat expansion is applicable to
40% of fALS patients and 6% sALS patients [50], incom-
plete penetrance is likely to be the complicating factor
that influences the predictive capacity of this variant. In-
corporating genetic variants into the prognostic sum-
mary may not improve prognostic predictions, since the
clinical characteristics that the variant may be associated
with are already individually incorporated into the
model. The true value of patient genotype information is
in balancing the clinical trial treatment arms, allowing
sub-group analyses for patients that may have similar
underlying disease mechanisms or ALS risk factors. It is
likely that the eligibility window for patient risk profiles
will need evaluation on a study-by-study basis, particu-
larly since this will be influenced by the type of trial, i.e.,
broad vs genotype targeted treatment [49]. However, the
use of patient genotype information will be pertinent to
maximizing the information gained from a prospective
clinical trial on potential responders. Across the most
frequently studied indications, it has been shown that
genetically validated targets are twice as likely to succeed
in clinical development, transitioning from phase 1 to
approval [51]. Therefore, the use of association studies
to identify ALS genetic markers will help to guide selec-
tion of appropriate drug targets for sub-populations and
help lower the rate of failure in clinical development
programs.

Tofersen is currently the most promising disease
modifying therapeutic for ALS and recently completed
phase III (NCT02623699) with its long-term extension
study currently postponed (NCT03070119) [43]. Tofer-
sen was initially designed as a genetically targeted thera-
peutic for SODI mutation positive patients [43];
however, evidence is accumulating that this therapy may
also benefit other forms of sALS, where SOD1 misfold-
ing and aggregation is also a pathological feature [52,
53]. The use of genetic information in identifying the
target population (mutation positive patients) in its ini-
tial early trial stage was integral to the phase I/II trial
success [43]. Incorporation of genetic information in
early-stage clinical development allowed initial efficacy
to be shown and can be built upon in the hope of treat-
ing a broader patient population. Genetic variants that
are associated with SODI1 aggregation within sALS
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cohorts will be necessary to identify those sALS patients
who are likely to respond to a SOD1 targeting therapy.
With the evolution of personalized treatment ap-
proaches using antisense oligonucleotides for neurode-
generative disorders [54], there is an absolute need to
incorporate informative SSV genetic markers into early
stage drug development. This will help to identify pa-
tients that have similar ALS disease mechanisms that
would benefit from a targeted antisense therapy.

Conclusion

Currently, there is no effective treatment for ALS, and
over the past 20 years, more than 60 controlled trials of
putative ALS therapeutics have failed to demonstrate
clinical efficacy [55, 56]. Current treatment options are
non-specific and only extend survival by-3 months in
some patients, and furthermore, at present, there is no
method to determine which patients are more likely to
respond to a particular ALS therapeutic.

The continued discovery and evaluation of novel SSVs
will undoubtedly shed light on the pathogenic mecha-
nisms of ALS neurodegeneration. At present, there are
few biomarkers/genetic markers that allow patient strati-
fication according to disease mechanism [57-60] and
treatment efficacy can only be evaluated by clinical mea-
sures during current clinical trials [34, 38]. With increas-
ing evidence from our laboratory that SSVs do
contribute to ALS risk and have disease-modifying ef-
fects [15, 34, 40, 46], investigations need to incorporate
SSVs into genetic studies and clinical trial design [5].
There is an urgent need to establish well-characterized
genetic markers that can be used to inform on the valid-
ity of certain treatment approaches. As ALS is a complex
and heterogeneous disorder, with a varied clinical
phenotype and disease trajectory, personalized medicine
approaches will be more likely to result in successful
treatments because they can directly target the under-
lying disease mechanism [54]. Therefore, it is crucial to
be able to identify patient subgroups and develop com-
pounds that are more likely to be effective in genetically
defined subgroups of patients, thus reducing the impact
of participant heterogeneity.

The authors recognize the challenges we face in
current ALS clinical trials. Moving forward, we must
examine the potential of these SSVs as a tool for patient
stratification in retrospective clinical trials cohorts. This
will result in the accelerated development of these gen-
etic markers, fast tracking them into current and future
clinical trials. Undoubtedly, as the data accumulates for
these genetic markers, we are hopeful this will translate
into identifying responder populations of ALS patients,
allowing drug development to continue for specific sub-
sets of patients. This is likely to significantly change the
way clinical trials are conducted in ALS moving forward.
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