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Abstract

Background: There is currently a lack of effective treatments for non-small cell lung cancer (NSCLC) patients harboring
HER2 mutations. We examined the efficacy and safety of, and potential resistance mechanism to, pyrotinib, a pan-HER
inhibitor, in advanced NSCLC carrying HER2 mutations.

Methods: In this multicenter, single-arm, phase II trial, stage IIIB-IV NSCLC patients harboring HER2 mutations, as
determined using next-generation sequencing, were enrolled and treated with pyrotinib at a dose of 400 mg/day.
The primary endpoint was 6-month progression-free survival (PFS) rate, and secondary endpoints were objective
response rate (ORR), PFS, overall survival (OS), disease control rate (DCR), and safety. The impact of different HER2
mutation types on sensitivity to pyrotinib and the potential of utilizing mutational profile derived from circulating
tumor DNA (ctDNA) to predict disease progression were also explored.

Results: Seventy-eight patients were enrolled for efficacy and safety analysis. The 6-month PFS rate was 49.5%
(95% confidence interval [CI], 39.2–60.8). Pyrotinib produced an ORR of 19.2% (95% CI, 11.2–30.0), with median
PFS of 5.6 months (95% CI, 2.8–8.4), and median OS of 10.5 months (95% CI, 8.7–12.3). The median duration of
response was 9.9 months (95% CI, 6.2–13.6). All treatment-related adverse events (TRAEs) were grade 1–3 (all,
91.0%; grade 3, 20.5%), and the most common TRAE was diarrhea (all, 85.9%; grade 3, 16.7%). Patients with exon
20 and non-exon 20 HER2 mutations had ORRs of 17.7% and 25.0%, respectively. Brain metastases at baseline and
prior exposure to afatinib were not associated with ORR, PFS, or OS. Loss of HER2 mutations and appearance of
amplification in HER2 and EGFR were detected upon disease progression.

Conclusions: Pyrotinib exhibited promising efficacy and acceptable safety in NSCLC patients carrying exon 20
and non-exon 20 HER2 mutations and is worth further investigation.

Trial registration: Chinese Clinical Trial Registry Identifier: ChiCTR1800020262
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Background
HER2-mutated non-small cell lung cancer (NSCLC) can
only obtain limited clinical benefit from targeted therapies
such as pan-HER tyrosine kinase inhibitors (TKIs) or TKIs
targeting EGFR/HER1 or HER2 [1–3]. Although ado-
trastuzumab emtansine (T-DM1) and fam-trastuzumab
deruxtecan-nxki (T-DXd) are recommended as treatment
options for advanced HER2-mutant NSCLC patients by
the National Comprehensive Cancer Network (NCCN)
guidelines based on ORRs of 44% (N = 18) and 72.7% (N
= 11), respectively in advanced HER2-mutant lung adeno-
carcinomas, these two drugs have not been approved yet
for treating this subset of patients [4, 5]. Chemotherapy
remains the current standard-of-care for HER2-mutated
NSCLC; however, it typically yields an ORR of 10–43.5%
(1st-line, 43.5%; 2nd-line, 10%) and a PFS of 4.3-6months
(1st-line, 6 months; 2nd-line, 4.3 months) [6, 7]. There-
fore, there exists an unmet need for effective HER2-
targeting therapies to improve patients’ outcomes.
Multiple NSCLC trials are ongoing to evaluate other novel
TKIs, including tarloxotinib (NCT03805841), TAK-788
(NCT02716116), and poziotinib (NCT03318939; NCT04
044170) [8].
Pyrotinib is an oral, irreversible pan-HER TKI, which

has been adopted as the combination partner of capecit-
abine for treating advanced HER2- positive breast cancer
in China [9]. In patient-derived lung cancer xenograft
mouse models harboring HER2 exon 20 insertions, pyro-
tinib demonstrated stronger antitumor activities than T-
DM1 or afatinib [10]. In a phase II study (N = 60) con-
ducted by Zhou C et al., chemotherapy-treated NSCLC
patients with HER2 mutations within exon 20 and 19
achieved an ORR of 30% upon pyrotinib, with mPFS of
6.9 months and median overall survival (mOS) of 14.4
months [11]. Evidence regarding efficacy and safety of
pyrotinib remains to be confirmed in larger sample sizes,
particularly in patients with HER2 mutations outside of
exon 20. Moreover, the underlying mechanism of resist-
ance to pyrotinib and its efficacy in patients who had
brain metastases and prior exposure to anti-HER2 ther-
apy has not been well elucidated.
The aim of this study was to evaluate the efficacy and

safety of pyrotinib in advanced NSCLC patients harbor-
ing HER2 mutations. The impact of different HER2 mu-
tation types on sensitivity to pyrotinib, the association
between baseline characteristics and response, and the
potential of utilizing mutational profile information de-
rived from circulating tumor DNA (ctDNA) to predict
disease progression were also explored.

Methods
Patients
Patients were recruited at 11 Chinese hospitals from De-
cember, 2018 until April, 2020. Patients were enrolled if

they were 18 years or older and had histocytologically
confirmed unresectable stage IIIB or IV NSCLC, HER2
mutations as determined using next-generation sequen-
cing (NGS), an Eastern Cooperative Oncology Group
(ECOG) performance status (PS) of 0-2, and at least one
radiographically measurable lesion per Response Evalu-
ation Criteria in Solid Tumors (RICIST) version 1.1 [12].
Exclusion criteria included having had undergone sur-
gery, chemotherapy, or radiotherapy for NSCLC within
4 week before the study treatment. Written informed
consent was provided by each patient before the onset of
any trial-related treatment. The study protocol was
approved by each site’s institutional review board in ac-
cordance with the Declaration of Helsinki and Good
Clinical Practice guidelines.

Study design and treatment
This is a multi-center, single-arm, phase II trial (Clinical
trial registration: ChiCTR1800020262). Pyrotinib was ad-
ministrated orally at 400mg/day within 0.5 h after break-
fast until intolerable toxicity, disease progression, or
discontinuation at the patient’s request. In case of intoler-
able toxicity, the dose of pyrotinib was reduced to 320mg
daily. Depending on sample availability, biopsy tissue sam-
ple or blood sample was obtained from each patient at
baseline, followed by NGS analysis. Under patients’ con-
sents, blood samples were also collected from some pa-
tients upon disease progression for NGS analysis.

Outcome assessment
The primary end point was 6-month PFS rate, which
was defined as the proportion of PFS at 6 months after
the first dose of pyrotinib. Secondary endpoints included
safety, ORR (the frequency of patients who have had ob-
tained partial response [PR] or complete response [CR]
at two consecutive evaluations at least 4 weeks apart),
PFS (the time between the first dose of pyrotinib and
disease progression or death due to any reason), OS (the
time between the first dose of pyrotinib and death due
to any reason), and disease control rate (DCR, the fre-
quency of patients who have had achieved a stable
disease or PR or CR for ≥ 6 weeks before disease pro-
gression). Radiological assessment was conducted every
six weeks in the first year, and every 9 weeks thereafter.
Adverse events were assessed according to the National
Cancer Institute Common Terminology Criteria for Ad-
verse Events version 4.0. Upon disease progression, pa-
tients were followed up every 3 months until death.
Exploratory endpoints included the association between
different HER2 mutation types and ORR, PFS, OS, or
DCR and the feasibility of using ctDNA to monitor dis-
ease progression.
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Next-generation sequencing
Baseline tissue or blood samples were subjected to NGS-
based molecular profiling to identify gene aberrations in-
cluding alterations in the driver genes (EGFR, ALK,
ROS1, MET, BRAF, RET, HER2, and KRAS) recom-
mended by NCCN guidelines for NSCLC, while blood
samples obtained from patients at disease progression
were analyzed using a panel spanning 150 cancer-related
genes at 3D Medicines, Inc., a clinical laboratory accre-
dited by the College of American Pathologists (CAP)
and certified by the Clinical Laboratory Improvement
Amendments (CLIA) laboratory (Additional file 1: Sup-
plementary Method for NG S[13, 14], Additional file 2:
Table S1).

Statistical analysis
According to previous study [15, 16], the 6-month
progression-free rate of chemotherapy is hypothesized to
be 30%, then 67 patients would provide 80% power to
detect a 6-month progression-free rate of 45% at 5%
alpha level. A total of 75 patients would need to be en-
rolled with the consideration of a dropout rate of 10%.

All statistical analyses were performed using the SPSS
statistical software (version 20.0) and GraphPad prism
(version 7). PFS and OS were estimated using Kaplan-
Meier curves, with P value determined by a log-rank
test. The difference in ORR and DCR between different
groups were analyzed using the Fisher’s exact test. Cox
regression was applied for calculating hazard ratio (HR)
and 95% confidence intervals (CIs). A two-tailed P < 0.05
was defined as statistically significant.

Results
Patients
Between December, 2018 and April, 2020, 80 patients
with HER2 mutations were screened for eligibility. Two
patients were excluded for withdrawing informed con-
sents before study treatment; hence, a total of 78 pa-
tients were enrolled in this study and were included in
the efficacy and safety analyses (Fig. 1). As data cut-off
(December 30, 2020), the median duration of follow-up
time was 10.5 months (range, 1.0–21.4 months). A total
of 19 patients were still on treatment and 59 patients
discontinued treatment, among which 50 for disease

Fig. 1 Study flow. We screened 80 patients and two patients were excluded due to withdrew informed consent before treatment. Hence the intention-to-
treat population consisted of 78 patients, in which the efficacy and safety analyses were performed. As of December 2020, fifty-nine patients discontinued the
study treatment for disease progression and intolerable adverse effect. The remaining 19 patients continued to receive pyrotinib
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progression, 4 for intolerable adverse events, and the rest
for other reasons.
Baseline characteristics were summarized in Table 1.

The median age of the 78 patients was 62 years (range,
31–85 years). All patients had stage IV adenocarcinoma
and 20 (25.6%) had brain metastases. Seven patients
(9.0%) had an ECOG PS of 2 and the rest were 0–1.
Most patients were non-smokers (65.4%). Twenty-one

patients had a prior exposure to afatinib (first-line, N =
3; second-line or higher, N = 18). The majority of the
patients received pyrotinib in the second-line or higher
(first-line, 29.5%; second-line or higher, 70.5%). Among
the enrolled patients, 62 carried HER2 exon 20 muta-
tions (79.5%) while the other 16 patients (20.5%) har-
bored mutations outside of exon 20. Of the 62 patients
carrying exon 20 mutations, 42 and 11 patients had
Y772_A775dup and G776delinsVC, respectively, and 9
carried other types of exon 20 mutations. Among the 78
patients, two patients harbored ≥ two HER2 mutations.
A total of 81 HER2 mutations were detected at baseline,
73 fell in the kinase domain, three were in the trans-
membrane domain (TMD), three in extracellular do-
main, and the other two in other region of the coding
region (Additional file 2: Fig. S1). HER2 mutation types
identified at baseline were summarized in Additional file
2: Table S2.

Efficacy
As of December, 2020, the median duration of drug ex-
posure was 5.6 months. A total of 50 PFS events and 40
deaths had occurred. The 6-month PFS rate was 49.5%
(95% CI, 39.2–60.8%, Fig. 2). The 12-month PFS and OS
rates were 28.4% and 38.6%, respectively. The mPFS and
mOS were 5.6 months (95% CI, 2.8–8.4 months) and
10.5 months (95% CI, 8.7–12.3 months), respectively.
Overall, 15 patients had a PR, for an ORR of 19.2% (15/
78; 95% CI, 11.2–30.0%), including 11 patients with
HER2 mutations in exon 20, three in exon 19, and one
in exon 17 (Table 2, Fig. 3). The median duration of re-
sponse was 9.9 months (95% CI, 6.2–13.6 months), and
the disease control rate was 74.4% (58 of 78; 95% CI,
63.2–83.6%). Of these 15 patients who responded to pyr-
otinib, seven received pyrotinib as the first-line treat-
ment, two were previously treated with afatinib, and
three had brain metastases. All these 15 patients had a
PS score of 0–1.
When patients were stratified by baseline characteris-

tics into comparison groups, we found that patients with
a PS score of 2 displayed significantly worse OS than
those with a PS score of 0–1 (mOS, 10.7 vs. 6.1 months;
HR, 0.28; 95% CI, 0.11–0.75; P = 0.007) (Additional file
2: Fig. S2). The ORRs of patients who received pyrotinib
in the first-line and secondary-line or higher were 30.4%
and 14.5%, respectively (Additional file 2: Fig. S3). No
significant difference in PFS or OS was observed among
patients who received pyrotinib as the first-line treat-
ment and those receiving pyrotinib in the secondary-line
or higher setting (mPFS, 8.9 vs. 4.0 months; HR, 0.63;
95% CI, 0.33–1.18; P = 0.144; OS = 12.5 vs. 8.7 months;
HR, 0.58; 95% CI, 0.28–1.18; P = 0.125) (Additional file
2: Fig. S4). The brain metastases at baseline and prior

Table 1 Baseline characteristics

Characteristic

Age, years

Median (range) 62 (31–85)

Sex, n (%)

Male 37 (47.4)

Female 41 (52.6)

ECOG performance status, n (%)

0 15 (19.2)

1 56 (71.8)

2 7 (9.0)

Histology, n (%)

Adenocarcinoma 78 (100)

Stage, n (%)

IV 78 (100)

Brain metastases, n (%)

No 58 (74.4)

Yes 20 (25.6)

Smoking status, n (%)

Former 22 (28.2)

Never 51 (65.4)

Unknown 5 (6.4)

EGFR mutation status, n (%)

Positive 6 (7.7)

Negative 72 (92.3)

ALK fusion status, n (%)

Positive 0

Negative 78 (100)

Pyrotinib treatment line, n (%)

1 23 (29.5)

2 15 (19.2)

≥ 3 40 (51.3)

Previous afatinib therapy

Yes 21 (26.9)

No 57 (73.1)

HER2 mutation, n (%)

Exon 20 mutation 62 (79.5)

Non-exon 20 mutation 16 (20.5)

ECOG Eastern Cooperative Oncology Group
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exposure to afatinib were not significantly associated
with ORR, PFS, or OS (Additional file 2: Fig. S2-Fig. S4).
Upon dissection by HER2 mutation types, the 62 pa-

tients harboring exon 20 mutations showed an ORR of
17.7% (95% CI, 9.2–29.5%) (Additional file 2: Fig. S3,
Table S3). The ORRs for the patients harboring Y772_
A775duplication, G776delinsVC, and other exon 20 mu-
tations were 23.8% (95% CI, 12.1–39.5), 0.0% (95% CI,
0–28.5), and 11.1% (95% CI, 0.3–48.3), respectively. It
was noteworthy that the ORR of the patients with non-
exon 20 mutations reached 25.0%, which was compar-
able as seen in the patients harboring exon 20 mutations
(25.0% vs. 17.7%; P = 0.495 ). Particularly, among the six
patients with exon 19 mutations, three achieved PR,
reaching an ORR to 50%. Of these three PR patients

carrying exon 19 mutations, two were treated with pyro-
tinib as first-line treatment. In addition, among the three
patients with TMD mutations, the two patients carrying
V658E substitution showed PFS of 2.9–5.6 months and
OS of 5.3–5.6 months, while the patient harboring I655V
had PFS and OS of 0.8 and 1.13 months, respectively
(data not shown). No significant differences in PFS or
OS were observed between patients who had exon 20
and non-exon 20 mutations (Additional file 2: Fig. S5).
Patients harboring co-mutations in driver genes

such as EGFR, KRAS, BRAF, and ROS1 at baseline ex-
hibited similar ORR (30.0% vs. 17.6%, P = 0.434) and
mPFS (3.0 vs. 6.7 months; P = 0.294) to and a poorer
mOS (6.8 vs. 11.0 months; P = 0.017) than their wild-
type counterparts (Additional file 2: Fig. S3, Fig. S6).
Patients with EGFR mutations had numerically infer-
ior clinical outcomes than the EGFR-wild-type pa-
tients (ORR, 0 vs. 20.8%, P = 0.590; PFS, 3 vs. 6.4
months, P = 0.185). No difference was seen in ORR
(19.4% vs. 16.7%; P = 1.000), PFS (5.4 vs. 14.0 months;
P = 0.421), or OS (10.5 vs. NR months; P = 0.558)
between patients without and with HER2 copy num-
ber amplification (CNA) at baseline (Additional file 2:
Fig. S3, Fig. S6).

Safety
Treatment-related adverse events (TRAEs) of any grade
occurred in 71 of 78 patients (91.0%), most of which
were grade 1 or 2 (Table 3). Diarrhea was the most com-
mon TRAE (85.9%), followed by fatigue (57.7%), anemia
(35.9%), dizziness (33.3%), decreased appetite (32.1%),
hand-foot syndrome (32.1%), and nausea (32.1%). Six-
teen patients suffered from grade 3 TRAEs (20.5%), in-
cluding 13 diarrhea (16.7%), 2 anemia (2.6%), and 1
fatigue (1.3%). No grade 4 or higher TRAEs were

Fig. 2 Kaplan-Meier survival curves of PFS and OS in pyrotinib treated NSCLC patients. PFS, progression-free survival; OS, overall survival; 95%CI,
95% confidence interval

Table 2 Clinical response to pyrotinib in NSCLC patients with
HER2 mutation

Variable

Best response, n (%)

Partial response 15 (19.2)

Stable disease 43 (55.1)

Progressive disease 20 (25.6)

Objective response rate, % (95% CI) 19.2 (11.2–30.0)

Disease control rate, % (95% CI) 74.4 (63.2–83.6)

Duration of response, median (95% CI) 9.9 (6.2–13.6)

Progression-free survival

Events, n (%) 50 (64.1)

Median, months (95% CI) 5.6 (2.8–8.4)

Overall survival

Events, n (%) 40 (51.3)

Median, months (95% CI) 10.5 (8.7–12.3)

CI confidence interval
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observed. Four patients discontinued treatment as a re-
sult of TRAEs, two for grade 3 diarrhea, one for grade 2
fatigue, and one for grade 2 decreased appetite, nausea,
and vomiting. Two patients had a dose reduction due to
intolerable toxicity.

Feasibility of using ctDNA to monitor disease progression
upon pyrotinib treatment
Of the 78 patients in the analysis cohort, twelve patients
who acquired resistance to pyrotinib had blood samples
available both at baseline and upon disease progression.
These blood samples were subjected to NGS analysis to
monitor disease progression. Concurrent HER2 CNA
and EGFR CNA, which were not presented at baseline
blood samples, were detected from two patients upon
PD, suggesting that co-occurrence of HER2 CNA and
EGFR CNA may have played a role in resistance to pyro-
tinib. One of these two patients’ representative CT im-
ages captured at baseline, best response, and PD are
shown in Additional file 2: Fig. S7. Another four patients
had a loss of HER2 mutation upon PD, rending it ra-
tional to speculate that the loss of HER2 mutations may
confer resistance to pyrotinib. In addition, appearance of
EGFR (p.E330K), KRAS (p.G12D), MET CNA, and BRAF
CNA were also detected in three patients at PD (Add-
itional file 2: Table S4). Since KRAS and BRAF are both
downstream of HER2 in the RAS/RAF signaling path-
way, our results suggested that gene alterations in the
RAS/RAF pathway may serve as a potential mechanism
of resistance to pyrotinib.

Discussion
HER2 mutations are rarely observed in NSCLC. There
exists little evidence regarding effective treatment of
NSCLC patients with HER2 mutations, especially those
with non-exon 20 mutations. Herein, we reported the ef-
fect of pyrotinib in 78 advanced lung adenocarcinoma
patients harboring different types of HER2 mutations. In
the total population, pyrotinib produced 6-month PFS
rate of 49.5%, mPFS of 5.6 months, mOS of 10.5 months,
and ORR of 19.2%. In line with previous studies, the
most common TRAE was diarrhea, and grade 3 diarrhea
occurred in 16.7% of the patients. Among patients with

Fig. 3 Tumor regression from baseline in primary lesions. Different colors demote mutations in different exons

Table 3 Treatment-related adverse events

Adverse event Pyrotinib (n = 78), n (%)

All Grades Grade 1 Grade 2 Grade 3

Any 71 (91.0) 70 (89.7) 45 (57.7) 16 (20.5)

Occurring in ≥ 10% of patients

Diarrhea 67 (85.9) 25 (32.1) 29 (37.2) 13 (16.7)

Fatigue 45 (57.7) 39 (50.0) 5 (6.4) 1 (1.3)

Anemia 28 (35.9) 18 (23.1) 8 (10.3) 2 (2.6)

Dizziness 26 (33.3) 25 (32.1) 1 (1.3)

Decreased appetite 25 (32.1) 22 (28.2) 3 (3.8)

Hand-foot syndrome 25 (32.1) 22 (28.2) 3 (3.8)

Nausea 25 (32.1) 24 (30.8) 1 (1.3)

WBC decreased 19 (24.4) 13 (16.7) 6 (7.7)

Blood creatinine increased 19 (24.4) 19 (24.4)

Cough 18 (23.1) 18 (23.1)

ALT increased 17 (21.8) 17 (21.8)

Vomiting 16 (20.5) 13 (16.7) 3 (3.8)

Headache 16 (20.5) 16 (20.5)

AST increased 15 (19.2) 15 (19.2)

Hypokalemia 14 (17.9) 14 (17.9)

Weight decreased 12 (15.4) 11 (14.1) 1 (1.3)

Pain 12 (15.4) 12 (15.4)

Hyponatremia 11 (14.1) 11 (14.1)

Chest distress 10 (12.8) 9 (11.5) 1 (1.3)

ALT alanine aminotransferase, AST aspartate aminotransferase, WBC white
blood cell
*No grade 4 or higher adverse events occurred
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HER2 mutations in different exons, patients harboring
non-exon 20 aberrations achieved comparable ORR than
those with exon 20 mutations. Patients who had brain
metastases and prior exposure to anti-HER therapy
could benefit from pyrotinib. Moreover, loss of HER2
mutations, appearance of HER2 amplification, and aber-
rations in EGFR, MET, KRAS, and BRAF were detected
upon disease progression, suggesting their potential roles
in the resistance to pyrotinib.
Chemotherapy, the current standard treatment for ad-

vanced NSCLC patients with HER2 mutations, typically
elicits an ORR of 10% and an mPFS of 4.3 months in a
second-line setting (6). TKIs targeting HER2 or pan-HER
have been investigated for treating HER2-mutated lung
cancer patients. However, afatinib, neratinib, and dacomi-
tinib only elicited ORR of 7.7%, 3.8%, and 12% [1–3]. The
ORRs upon T-DM1 and T-DXd treatment could reach up
to 44% (8/18) and 72.7% (8/11), respectively [4, 5]. The
mPFS of T-DM1-treated NSCLC patients as previously re-
ported was 5.0 months, which was similar to that observed
in the present study (5.0 vs. 5.6 months). Most recently,
the results of the phase II study DESTINY-Lung trial were
released in which T-DXd showed an ORR of 55% (50/91)
and mPFS of 8.2 months in patients with previously
treated NSCLC with HER2 mutation [17]. Albeit encour-
aging anti-tumor activity, grade 4 and 5 TRAEs occurred
upon T-DXd, whereas in our study, no grade 4 or 5
TRAEs were observed, suggesting that pyrotinib is safer
than T-DXd [5, 17]. Poziotinib, another promising anti-
HER2 TKI, has exhibited an ORR of 42% in HER2-mu-
tated NSCLC patients (N = 12), causing grade 3 or 4 AEs
in 66.7% of the patients [18].
Treatment of HER2-mutated NSCLC with pyrotinib

has been previously reported. In phase II trials con-
ducted by Wang Y et al. and Zhou C et al., treatment
with pyrotinib was associated with ORRs of 53.3% and
30%, and mPFSs of 6.4 months and 6.9 months in co-
horts of 15 and 60 HER-mutated advanced NSCLC pa-
tients [10, 11]. Both studies reported better efficacy than
our observations (ORR, 19.2%; PFS, 5.6 months). This
could have been explained by the fact that our study en-
rolled patients with a PS score of 2 (7/78, 9%) whereas
Zhou C’s study only included patients with a PS score of
0–1. A higher percentage of patients in our cohort had
brain metastases at baseline (25.6% vs. 20%) and more
patients received pyrotinib in the third line or higher
(51.3% vs. 41.6%) than in their study. In addition, pa-
tients who had prior exposure to HER2-targeted drugs
were also included in our study. Of note, the duration of
response in the present study was 9.9 months, which was
longer than 6.9 months documented in Zhou C’s study.
The sensitivities to anti-HER2 TKIs in patients bearing

different HER2 mutations were also distinct. In patients
with HER2-mutated NSCLC, the major HER2 mutation

type was exon 20 insertions, occurring in 1.5% of NSCL
C and accounting for 90% of all NSCLC with HER2 mu-
tations [19–22]. Previous studies have been mainly fo-
cusing on these insertions. Two prospective studies
investigating pyrotinib employed the ADx HER2 Muta-
tion Detection Kit for HER2 genotyping, which only al-
lows for detection of exon 20 and 19 mutations [10, 11].
In our study, we utilized NGS to detect HER2 mutations,
which was capable of identifying mutations outside of
exons 20 and 19. Indeed, patients carrying mutations
outside of exon 20 were also able to benefit from pyroti-
nib. A numerically higher ORR was observed among pa-
tients carrying non-exon 20 mutations, especially those
carrying exon 19 mutations. These observations were
consistent with previous findings that HER2 exon 20 in-
sertions are less sensitive to currently available TKIs
than mutations in other exons, potentially due to the
structural difference of mutant in this exon from in
others [19]. HER2 exon 20 insertions primarily affected
two structural regions: the αC- helix, comprising resi-
dues 770–774, and the loop region at residues 775–783
[20, 21, 23]. Structure-based comparison of behaviors
between these variant types needs to be further studied.
Patients with HER2 exon 20 mutation Y772_A775dup,

the most common HER2 mutation in NSCLC, failed to
respond to afatinib and dacomitinib as reported [1, 24,
25]. Surprisingly, pyrotinib produced an ORR and a
DCR of 23.8% and 78.6%, respectively, in 42 patients
harboring Y772_A775dup in our study [24, 25]. Consist-
ent with the results of Zhou C’s study, although none of
the 11 patients carrying G776delinsVC achieved PR in
our study, the DCR of this subset reached 63.6%, which
was similar to that of the other mutation types [11].
Clinical efficacy regarding anti-HER2 TKIs has been
poorly investigated in patients with HER2 TMD muta-
tions [26, 27]. In our study, three patients harbored
HER2 TMD, including two with V659E and one with
I655V. The PFS and OS of the patients with V659E was
2.9–5.6 months and 5.3–5.6 months, respectively. The
other patient bearing I655V, however, experienced PD
three weeks after initiation of pyrotinib. Collectively, our
results revealed variable efficacy of pyrotinib in NSCLC
patients with different HER2 mutations and warrant fur-
ther validation in larger randomized clinical trials.
Another point to be noted was the monitoring of

acquired resistance to pyrotinib by using blood sam-
ple profiling, highlighting the importance of liquid bi-
opsy in this setting. In this study, we also explored
potential resistance mechanisms underlying disease
progression upon pyrotinib. HER2 CNA was identified
from two patients upon PD, consistent with a previ-
ous report that HER2 CNA conferred resistance to
anti-HER2 TKIs in HER2-mutated NSCLC patients
[28]. Of note, EGFR CNA was also detected from
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these two patients upon PD, indicating the concurrent
HER2 CNA and EGFR CNA may engender resistance
to pyrotinib. In another four PD patients, HER2
mutation, which existed at baseline, was not detected
from the blood sample at PD, rending it rational to
speculate that the loss of HER2 mutations may engen-
der resistance to pyrotinib as well. In addition, MET
CNA, KRAS (p.G12D), BRAF CNA, and EGFR
(p.E330K) were also detected from patients at PD.
MET CNA has been reported to be associated with
resistance to anti-HER2 TKIs in EGFR-mutant NSCL
C, HER2-amplified breast cancer, and HER2-mutated
NSCLC [28–30]. Based on these results, we propose
that strategies combining pyrotinib and EGFR TKI or
other TKIs targeting the above alternations might be
a potential treatment option to vanquish resistance or
potentiate the antitumor activities in treating this sub-
set of patients.
Indeed, Rolfo C et al. summarized a series of novel

agents that has potential against HER2-mutated NSCL
C [8]. Interestingly, the combinational treatment of a
pan-HER inhibitor (neratinib) and T-DM1 or T-DXd
induced a superior activity compared with T-DM1
alone [31]. Similarly, preclinical studies revealed that
the novel pan-HER TKI poziotinib could up-regulate
HER2 cell-surface expression and increase the activity
of T-DM1 in tumors with HER2-mutation [32]. In
addition, Bob T. Li et al. reported that the combin-
ation of T-DM1 and irreversible pan-HER inhibitors
(neratinib or afatinib) could enhance the duration of
the responses in HER2-altered lung cancers [31]. Pyr-
otinib is an irreversible pan-HER inhibitor, also pre-
senting promising activity in HER2-mutated NSCLC
as observed in our study. Part of data of this trial
(ChiCTR1800020262) was published recently which
has shown the efficacy of pyrotinib in NSCLC pa-
tients with HER2 amplification (6-month PFS rate:
51.9%, ORR: 22.2%, mPFS: 6.3 months, mOS: 12.5
months) [33]. Therefore, a combination of T-DM1/T-
DXd and pyrotinib may become a potentially effective
therapy for these HER2-altered patients. These results
indicate that combining T-DM1/T-DXd and anti-
HER2 TKI might be a potential treatment option to
increase antitumor activity or conquer resistance to
targeted therapies. The above proposals are a ray of
hope shining the future of patients with HER2
alternations.
Despite being the largest prospective study investigating

pyrotinib effects in NSCLC, our study is still limited by
the small sample size due to the low prevalence of HER2
mutations in NSCLC. Second, comparison with chemo-
therapy or other targeted therapies was not feasible due to
a lack of control arm. The findings of the current study
should be examined in larger randomized clinical trials.

Conclusions
Pyrotinib exhibited promising efficacy and acceptable
safety in treating NSCLC patients with both exon 20 and
non-exon 20 HER2 mutations.
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