
Deng et al. BMC Medicine          (2022) 20:171  
https://doi.org/10.1186/s12916-022-02376-3

RESEARCH ARTICLE

Temporal relationship among adiposity, 
gut microbiota, and insulin resistance 
in a longitudinal human cohort
Kui Deng1,2,3, Menglei Shuai3, Zheqing Zhang1,4, Zengliang Jiang3,5, Yuanqing Fu3,5, Luqi Shen3,5, 
Ju‑Sheng Zheng2,3,5*   and Yu‑ming Chen1* 

Abstract 

Background:  The temporal relationship between adiposity and gut microbiota was unexplored. Whether some gut 
microbes lie in the pathways from adiposity to insulin resistance is less clear. Our study aims to reveal the temporal 
relationship between adiposity and gut microbiota and investigate whether gut microbiota may mediate the associa‑
tion of adiposity with insulin resistance in a longitudinal human cohort study.

Methods:  We obtained repeated-measured gut shotgun metagenomic and anthropometric data from 426 Chinese 
participants over ~3 years of follow-up. Cross-lagged path analysis was used to examine the temporal relationship 
between BMI and gut microbial features. The associations between the gut microbes and insulin resistance-related 
phenotypes were examined using a linear mixed-effect model. We examined the mediation effect of gut microbes on 
the association between adiposity and insulin resistance-related phenotypes. Replication was performed in the HMP 
cohort.

Results:  Baseline BMI was prospectively associated with levels of ten gut microbial species. Among them, results of 
four species (Adlercreutzia equolifaciens, Parabacteroides unclassified, Lachnospiraceae bacterium 3 1 57FAA CT1, Lachno-
spiraceae bacterium 7 1 58FAA) were replicated in the independent HMP cohort. Lachnospiraceae bacterium 3 1 57FAA 
CT1 was inversely associated with HOMA-IR and fasting insulin. Lachnospiraceae bacterium 3 1 57FAA CT1 mediated the 
association of overweight/obesity with HOMA-IR (FDR<0.05). Furthermore, Lachnospiraceae bacterium 3 1 57FAA CT1 
was positively associated with the butyrate-producing pathway PWY-5022 (p < 0.001).

Conclusions:  Our study identified one potentially beneficial microbe Lachnospiraceae bacterium 3 1 57FAA CT1, which 
might mediate the effect of adiposity on insulin resistance. The identified microbes are helpful for the discovery of 
novel therapeutic targets, as to mitigate the impact of adiposity on insulin resistance.

Keywords:  Adiposity, Gut microbiota, Insulin resistance, Longitudinal cohort study, Obesity, Temporal relationship, 
Weight change
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Background
Adiposity/obesity has become a major public health 
issue, with a global prevalence of 13% in 2016 [1]. One 
of the major threats of adiposity is its detrimental impact 
on the insulin resistance [2]. Identification of novel inter-
vention strategies, as to mitigate the strong link between 

Open Access

*Correspondence:  zhengjusheng@westlake.edu.cn; chenyum@mail.sysu.edu.cn
1 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, 
Department of Epidemiology, School of Public Health, Sun Yat-sen 
University, Guangzhou, China
3 Key Laboratory of Growth Regulation and Translational Research 
of Zhejiang Province, School of Life Sciences, Westlake University, 18 
Shilongshan Rd, Cloud Town, Hangzhou, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6560-4890
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-022-02376-3&domain=pdf


Page 2 of 14Deng et al. BMC Medicine          (2022) 20:171 

adiposity and insulin resistance, is an emerging research 
topic.

Gut microbiota is closely involved in the etiology of 
adiposity and insulin resistance based on evidence from 
rodent models and human studies [3–5]. Yet, whether 
some gut microbial features lie in the pathways from 
adiposity to insulin resistance is less clear. More funda-
mentally, it has not been clarified in humans whether 
and how adiposity status affects gut microbiota. There 
have been some cross-sectional studies describing the 
correlations between adiposity indicators (BMI, weight, 
etc.) and gut microbial profiles, while few studies tried 
to investigate the direction of the association in humans 
[3, 6–8]. Demonstration of the longitudinal association of 
adiposity with the gut microbiota appears to be an essen-
tial step to understand whether gut microbes could be 
good intervention targets to alleviate the impact of adi-
posity on insulin resistance.

A major challenge in the field is to repeatedly col-
lect adiposity and gut microbiota data over time, which 
would enable temporal analysis between the adiposity 
and gut microbiota. Although such datasets are available 
in several European and American cohorts [9–11], none 
of them reported the temporal bidirectional relationships 
among adiposity and gut microbiota. Moreover, given the 
high heterogeneity in the gut microbiota across different 
populations with diverse dietary cultures and ethnicities 
[12, 13], description of the above relationships in other 
ethnic groups is of important value.

Therefore, in the present study, we aimed to investigate 
the temporal bidirectional relationship between adipos-
ity and gut microbiota (shotgun metagenome) over ~3 
years, and to identify gut microbes that were affected 
by adiposity and long-term weight change among a Chi-
nese middle-aged and elderly population. In addition, we 
aimed to assess whether gut microbiota could mediate 
the association between adiposity and insulin resistance-
related phenotypes.

Methods
Study design and participants
This study was based on the Guangzhou Nutrition and 
Health Study (GNHS), involving 4048 Chinese partici-
pants aged 40–75 years who lived in Guangzhou, China, 
for at least 5 years and were recruited between 2008 and 
2013. Stool samples from 741 GNHS participants were 
collected between 2014 and 2017 (as baseline for the cur-
rent study). Among them, stool samples were repeatedly 
collected in 505 participants between 2018 and 2019 (a 
follow-up collection). The median follow-up time was 
3.15 years. We excluded participants with missing infor-
mation on BMI at baseline or follow-up (n = 37), missing 
follow-up time (n = 2), or who had diabetes medications 

at baseline or follow-up (n = 40). Finally, 426 participants 
remained for subsequent analysis. The study design of 
this study is showed in Fig. 1A. This study was approved 
by the Ethics Committee of the School of Public Health 
at Sun Yat-sen University and Ethics Committee of West-
lake University. All participants involved in this study 
provided written informed consent.

Measurement of BMI, covariates, and insulin 
resistance‑related phenotypes
Anthropometric parameters, including height, weight, 
and waist circumference (WC), were measured by 
trained staff on site, and BMI was calculated as weight 
(kg)/height (m)2. The information of sociodemographic, 
lifestyle covariates, and medication use was collected 
using a structured questionnaire during face-to-face 
interviews. Physical activity was assessed as total meta-
bolic equivalent for task (MET) hours per day by a vali-
dated physical activity questionnaire which included 19 
items [14]. Total energy intake was calculated based on 
the habitual dietary intakes over the past 12 months, 
which were collected using a validated food frequency 
questionnaire including 79 items [15]. Bristol stool score 
was immediately recorded in the stool sampler by the 
participants.

Fasting venous blood samples were drawn at both 
baseline and follow-up. Fasting insulin was measured 
by electrochemiluminescence immunoassay using a 
Roche Cobas 8000/e602 immunoanalyzer (Roche Diag-
nostics, Shanghai, China). Fasting glucose was meas-
ured through colorimetric methods using a Roche cobas 
8000 c702 automated analyzer (Roche Diagnostics, 
Shanghai, China). Glycated hemoglobin A1c (HbA1c) 
was measured by high performance liquid chromatogra-
phy using Bole D-10 Hemoglobin A1c Program on Bole 
D-10 Hemoglobin Testing System. Homeostasis model 
assessment of insulin resistance (HOMA-IR) was calcu-
lated based on fasting insulin and fasting glucose, which 
measures insulin resistance by using the mathematical 
model [16].

Shotgun metagenomic sequencing, and taxonomic 
and functional profiling
The same protocol for stool sample collection and pro-
cessing was used at baseline and follow-up visits. Fecal 
samples from all participants were collected on the 
examination day at the site, and then stored at – 80 °C 
within 4 h. Fecal DNA extraction and metagenomic 
sequencing followed the same protocol at the two time 
points. Microbial DNA was isolated using the QIAamp 
DNA Stool Mini Kit (Qiagen, Hilden, Germany) based 
on the manufacturer’s instruction. DNA concentra-
tions were determined by the Qubit quantification 
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system (Thermo Scientific, Delaware, USA). The shotgun 
metagenome was sequenced through the Illumina HiSeq 
platform (Illumina Inc., CA, USA) using the 2 × 300-bp 
paired-end read protocol. We obtained an average of 44.6 
million (min, 22.1 million; max, 100 million) paired-end 
raw reads for each sample. The detailed information on 

bioinformatics analysis of the metagenome data could 
be found in our previous paper [17]. PRINSEQ (version 
0.20.447) was employed to filter the reads with low-
quality scores, with the following filtering parameters: 
(1) trim the reads by quality score from the 5′ end and 
3′ end with a quality threshold of 20; (2) remove read 

Fig. 1  Study design and analytical method. A This study was based on the Guangzhou Nutrition and Health Study. A total of 741 stool 
samples were first collected between 2014 and 2017. Among them, 505 follow-up stool samples were repeatedly collected between 2018 and 
2019. Metadata including sociodemographic factors, anthropometric parameters, lifestyle factors, medication use, habitual diet, and insulin 
resistance-related phenotypes were collected for the 505 participants. Shotgun metagenomic sequencing was performed for these 505 paired 
stool samples. After excluding participants who met the exclusion criterion and performing quality control for species, 426 participants with 
171 species remained for subsequent analysis. B The cross-lagged panel analysis of BMI and gut microbiota. ρ1 and ρ2 are cross-lagged path 
coefficients; r1 and r2 are tracking correlations; r3 is the synchronous correlation between BMI and gut microbiota at baseline. C Gut microbiota 
mediates the association between overweight/obesity and insulin resistance
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pairs when either read was < 60 bp, contained “N” bases 
or quality score mean bellow 30; and (3) deduplicate the 
reads. Reads that could be aligned to the human genome 
(H. sapiens, UCSC hg19) were removed (aligned with 
Bowtie2 v2.2.5 using –reorder –no-contain –dovetail) 
[18]. Taxonomic profiling of the metagenomic samples 
was performed using MetaPhlAn2 (version 2.6.02) which 
used a library of clade-specific markers to provide pan-
microbial (bacterial, archaeal, viral and eukaryotic) quan-
tification at the species level [19]. MetaPhlAn2 was run 
using default settings. Microbial species with a minimum 
detective relative abundance of 0.01% in at least 10% of 
the samples were included, which yielded 171 species. 
Functional profiling of the metagenomic samples was 
performed using HUMAnN2 (version 2.8.1) using default 
settings [20], which generated microbial pathways based 
on MetaCyc metabolic pathway database [21, 22]. We 
applied log-transformation for the relative abundances 
of both species and pathway features before subsequent 
analysis. Before log-transformation, we replaced the 
zeros with a very small value (0.00001 for gut microbiota 
data and 1e−09 for functional pathway data), which may 
not substantially change the distribution of the data.

Statistical analysis
The characteristics of the participants were presented as 
mean (SD) and median (quartile 1 [Q1], quartile 3 [Q3]) 
for continuous variables with normal and skewed distri-
bution, respectively, and as frequency (percentage) for 
categorical variables. The differences of participant char-
acteristics between baseline and follow-up were tested 
using paired t test and Wilcoxon signed rank test for con-
tinuous variables with normal and skewed distribution, 
respectively, and using the chi-squared test for categori-
cal variables.

We used a cross-lagged panel design to investigate the 
bidirectional relationship between BMI and gut micro-
bial features (Fig.  1B). Cross-lagged path analysis is a 
form of path analysis that examines reciprocal, longitu-
dinal relationships among a set of inter-correlated vari-
ables [23–25]. This method tested the effect of baseline 
gut microbiota on subsequent BMI (ρ1 in Fig.  1B) and 
the effect of baseline BMI on subsequent gut microbiota 
(ρ2 in Fig.  1B) simultaneously, adjusted for autoregres-
sive effects. Before performing the cross-lagged path 
analysis, we performed the linear regression analysis and 
got the residual of the baseline and follow-up values of 
BMI, adjusted for potential confounders, including age, 
sex, smoking status, alcohol status, education, income, 
physical activity, and total energy intake and then stand-
ardized the residual into Z-scores; gut microbial features 
were processed in the same manner with an additional 
adjustment for Bristol stool score. Pearson correlation 

coefficients of Z-transformed BMI and gut microbial fea-
tures at baseline and follow-up were calculated, adjusted 
for the time interval (years) between two time points. The 
cross-lag path coefficients (ρ1 and ρ2) showed in Fig. 1B 
were estimated simultaneously based on the correlation 
matrix. All parameters in the cross-lagged path analysis 
were estimated through constructing structural equa-
tion model by R package lavaan (version 0.6–8) [26]. The 
validity of model fitting was evaluated by the standard-
ized root mean square residual (SRMR) and comparative 
fit index (CFI) [27].

We performed a principal coordinates (PCo) analysis 
based on Bray-Curtis dissimilarity using metagenomic 
data at the species level, and the first two PCo (PCo1 and 
PCo2) were obtained to reflect the β-diversity of the gut 
microbiota. We calculated α-diversity indices (Observed 
species, Shannon index, Simpson index, Pielou’s even-
ness) based on the relative abundance of the species 
by using the R package vegan (version 2.5-7) [28]. We 
examined the temporal relationships between BMI and 
α-diversity, β-diversity, and individual microbes using 
the cross-lagged path analysis. The Benjamini-Hochberg 
(BH) method was used to control the false discovery 
rate (FDR). Given that high-dimensional tests were per-
formed, associations with FDR < 0.25 were considered 
statistically significant for per-species test. The identi-
fied BMI-associated species were selected for subsequent 
analysis. The stratified analysis by sex for the association 
of BMI with  the identified species was performed, and 
the heterogeneity in the effect sizes between females and 
males were tested using the Cochran-Q test [29]. We 
further did sensitivity analysis to investigate the tempo-
ral relationship between WC and gut microbiota. We 
assessed the prospective associations between dietary 
factors (vegetable intake, fruit intake, fish intake, red 
and processed meat intake, and dairy intake) and iden-
tified gut microbes using the multivariable linear regres-
sion models, adjusted for age, sex, BMI, smoking status, 
alcohol status, education, income, physical activity, total 
energy intake, Bristol stool score, time interval, and cor-
responding baseline microbe abundance. Each dietary 
factor was divided into higher and lower groups based on 
the median value.

To replicate the results from the above GNHS partici-
pants, we used the repeated-measured fecal metagenome 
data available 1 year apart from 43 healthy participants 
aged 18–40 years in the HMP cohort [9, 11]. We obtained 
the relative abundance of microbiota data through the 
R package curatedMetagenomicData (version 1.10.2) 
[30], and the corresponding phenotype data from the 
dbGaP (https://​dbgap.​ncbi.​nlm.​nih.​gov/; study accession: 
phs000228.v4.p1) [31, 32]. The relative abundances of 
the species were log-transformed before formal analysis. 

https://dbgap.ncbi.nlm.nih.gov/
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Since BMI was only available at baseline, we assessed the 
prospective association of baseline BMI with follow-up 
microbes using multivariable linear regression models, 
adjusted for age, sex, race (white/not white), time inter-
val, and corresponding baseline microbe abundance. We 
used the meta-analysis with a random effects model and 
inverse-variance weights to integrate the results from 
GNHS and HMP cohorts, and assessed the heterogene-
ity between them using I2 and Cochran-Q test [29]. We 
considered the association between baseline BMI and 
follow-up microbes to be replicable if pmeta<0.05, phet-

erogeneity>0.05, I2<50%, and the same direction of associa-
tions between the two cohorts. The meta-analysis and 
Cochran-Q test were conducted using the R package 
metafor (version 3.0-2) [33].

In the GNHS, to explore the impact of long-term 
weight change on gut microbiota, participants were 
divided into four weight change patterns: stable normal 
(n = 205), normal to adiposity (n = 23), adiposity to 
normal (n = 21), and stable adiposity (n = 156). Partic-
ipants who were underweight at either time point were 
excluded (n = 21). Adiposity was defined as overweight 
or obesity in this study. According to the suggestion of 
Working Group On Obesity In China for Chinese popu-
lations [34], underweight, normal weight, overweight, 
and obesity were defined as BMI<18.5, 18.5≤BMI≤23.9, 
24≤BMI≤27.9, and BMI≥28, respectively. The influ-
ence of weight change pattern on follow-up microbial 
features (α-diversity: Observed species, Shannon index, 
Simpson index, Pielou’s evenness; β-diversity: PCo1 and 
PCo2; and microbes) was assessed using multivariable 
linear regression models, adjusted for age, sex, smoking 
status, alcohol status, education, income, physical activ-
ity, total energy intake, Bristol stool score, time interval, 
and corresponding baseline microbial features. We only 
included BMI-associated microbes in the analysis of 
the association between weight change pattern and gut 
microbes. The stable normal group was served as the ref-
erence group when conducting the above analyses. The 
potential collinearity among covariates was assessed by 
variance inflation factor (VIF) using R function vif in R 
package car (version 3.0-12), and VIF > 10 indicates col-
linearity among variables. After fitting 16 multivariable 
linear regression models for microbial features (10 iden-
tified BMI-associated microbes plus Observed species, 
Shannon index, Simpson index, Pielou’s evenness, PCo1 
and PCo2), we obtained 16 VIF for each covariate and 
the ranges of them were as follows: age (1.175–1.187), 
sex (1.486–1.525), smoking status (1.336–1.343), alcohol 
status (1.167–1.180), education (1.306–1.321), income 
(1.384–1.408), physical activity (1.068–1.074), total 
energy intake (1.130–1.137), Bristol stool score (1.086–
1.124), time interval (1.064–1.077), corresponding 

baseline microbial features (1.029–1.102), which con-
firmed that there was no collinearity among covariates.

We explored the associations between the above 
identified species and HOMA-IR using linear mixed-
effect models by R package lme4 (version 1.1-27.1) [35], 
adjusted for age, sex, smoking status, alcohol status, edu-
cation, income, physical activity, and total energy intake. 
In the secondary analyses, we analyzed the association 
of identified species with fasting insulin, fasting glucose, 
and HbA1c using linear mixed-effect models, adjusted 
for the same covariates. We log-transformed insulin 
resistance-related phenotypes with skewed distribution 
(HOMA-IR, fasting insulin, and fasting glucose) before 
analysis. All phenotypes and microbes were then stand-
ardized into Z-scores. We also assessed whether dietary 
factors (vegetable intake, fruit intake, fish intake, red and 
processed meat intake, and dairy intake) contributed to 
the  insulin resistance-related phenotypes by using mul-
tivariable linear regression models, adjusted for age, sex, 
BMI, smoking status, alcohol status, education, income, 
physical activity, total energy intake, time interval, and 
corresponding baseline levels of insulin resistance-
related phenotypes. Each dietary factor was divided into 
higher and lower groups based on the median value.

To investigate whether there were potential mediation 
effects of gut microbes on the association between adi-
posity and insulin resistance, we performed a mediation 
analysis using the R package mediation (version 4.5.0) 
[36]. The baseline overweight/obesity status was served 
as the exposure, and follow-up gut microbes and insulin 
resistance-related phenotypes were served as mediators 
and outcomes, respectively (Fig.  1C). The correspond-
ing baseline gut microbes and insulin resistance-related 
phenotypes were adjusted in the statistical models. The 
covariates included age, sex, smoking status, alcohol 
status, education, income, physical activity, total energy 
intake, Bristol stool score, and time interval. Before per-
forming mediation analysis, we examined the prospective 
associations between weight group (underweight, nor-
mal weight, and adiposity) and insulin resistance-related 
phenotypes (HOMA-IR, fasting insulin, fasting glucose, 
and HbA1c) using multivariable linear regression mod-
els, adjusted for age, sex, smoking status, alcohol status, 
education, income, physical activity, total energy intake, 
time interval, and corresponding baseline levels of insulin 
resistance-related phenotypes.

One identified species Lachnospiraceae bacterium 
3 1 57FAA CT1 belonged to Lachnospiraceae which 
is involved in the production of short-chain fatty acid 
(SCFA) through fermenting plant polysaccharides [37, 
38]. In addition, Lachnospiraceae bacterium 3 1 57FAA 
CT1 has phylogenetic similarity to known butyrogenic 
gut bacteria [39]. The butyrate-producing pathway 
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PWY-5022 (4-aminobutanoate degradation V) was 
extracted from the pathway data obtained from func-
tional profiling of the metagenomic samples. We used 
a linear mixed-effect model to examine the association 
between Lachnospiraceae bacterium 3 1 57FAA CT1 and 
PWY-5022, adjusted for age, sex, smoking status, alcohol 
status, education, income, physical activity, total energy 
intake, and Bristol stool score. Additionally, the asso-
ciations between Lachnospiraceae bacterium 3 1 57FAA 
CT1 and other pathways in addition to PWY-5022 were 
also assessed using linear mixed-effect models, adjusted 
for the same covariates described above. We only 
included microbial pathways with a minimum detective 
relative abundance of 0.01% in at least 10% of the samples 
for this analysis. Unless otherwise noted, FDR<0.05 was 
considered statistically significant in this study.

Results
Characteristics of study participants
The mean (SD) age of these participants was 63.6 (5.4) 
years (31.9% men) when their first batch of stool sam-
ples were collected at baseline (Table 1). BMI was slightly 
increased from baseline to follow-up (p = 0.002), while 
WC was not statistically different between two time 
points (Additional file  1: Table  S1). The prevalence of 
adiposity (overweight or obesity) for the baseline and 
follow-up is 41.5% and 42%, respectively. Insulin resist-
ance-related phenotypes, including HOMA-IR, fasting 
insulin, HbA1c, and fasting glucose, were increased from 
baseline to follow-up (p<0.05; Additional file 1: Table S1).

The temporal relationship between BMI and gut 
microbiota
The associations between the BMI and gut microbial 
α-diversity and β-diversity were not statistically signifi-
cant in either direction (Additional file  1: Fig. S1A, Fig. 
S2A and Table S2). For the temporal relationship between 
BMI and individual gut microbes, we did not find any sta-
tistically significant associations for the path coefficients 
(ρ1) from baseline gut microbes to follow-up BMI (Addi-
tional file 1: Fig. S1B and Table S3). For the path coeffi-
cients (ρ2) from baseline BMI to follow-up gut microbes, 
ten species were identified (FDR<0.25; Fig. 2A and Addi-
tional file  1: Table  S3). Among them, with the increase 
of BMI, the abundances of four species (Clostridium 
hathewayi, Parabacteroides unclassified, Lachnospiraceae 
bacterium 3 1 57FAA CT1, Lachnospiraceae bacte-
rium 7 1 58FAA) were decreased, and the abundances 
of the other species (Megamonas hypermegale, Mega-
monas unclassified, Bacteroides caccae, Ruminococcus 
sp 5 1 39BFAA, Megasphaera unclassified, Adlercreutzia 
equolifaciens) were increased. Adlercreutzia equolifaciens 
belonged to Actinobacteria, Parabacteroides unclassified 

and Bacteroides caccae belonged to Bacteroidetes, and 
other species belonged to Firmicutes. When we used 
a more stringent cut-off value of 0.2 for FDR values, all 
identified ten microbes based on FDR<0.25 were also 
statistically significant (all FDR values less than 0.2 or 
very close to 0.2; Fig.  2A). All ten species had relatively 
high prevalence in our cohort (0.28–0.83; Additional 
file 1: Table S9). There were low to moderate correlations 
among these species (Additional file 1: Fig. S3). In addi-
tion, there were moderate correlations (from 0.12 to 0.46) 
of identified species between two time points (Additional 
file  1: Table  S4). The stratified analysis by sex for the 
association of BMI with identified species suggested that 
there was no heterogeneity of the regression coefficients 
between females and males (FDRheterogeneity>0.05; Addi-
tional file 1: Table S5) and there was a strong correlation 
between the regression coefficients for females and those 
for males (r = 0.815; Additional file 1: Fig. S4). The asso-
ciation of WC with gut microbes were similar compared 
with those of BMI with gut microbes, with correlation 
coefficients 0.88 and 0.99 for all gut microbial features 
and the identified microbes, respectively (Additional 
file 1: Fig. S5, Table S6 and S7). For the contributions of 
dietary factors (vegetable intake, fruit intake, fish intake, 
red and processed meat intake, and dairy intake) to the 
identified microbes, we only found that Ruminococcus sp 
5 1 39BFAA was associated with fish intake (FDR<0.05; 
Additional file  1: Table  S8), while other microbes were 
not correlated with dietary factors (FDR>0.05; Additional 
file 1: Table S8).

In the Human Microbiome Project (HMP) cohort, the 
prevalence of Megamonas hypermegale, Megamonas 
unclassified, and Megasphaera unclassified was very 
low (0.05, 0.06, and 0.09, respectively; Additional file  1: 
Table S9). Results of the prospective associations between 
baseline BMI and four species (Adlercreutzia equolifa-
ciens, Parabacteroides unclassified, Lachnospiraceae 
bacterium 3 1 57FAA CT1, Lachnospiraceae bacterium 
7 1 58FAA) were replicated in the HMP cohort, with a 
p-value for meta-analysis across the two studies < 0.05, 
pheterogeneity>0.05, and I2<50% (Fig.  2B; Additional file  1: 
Table S9).

Prospective association of long‑term weight change 
pattern with gut microbiota
The prospective association of long-term weight change 
pattern with gut microbial β-diversity was statistically 
significant with reduced PCo2 comparing the normal 
to adiposity group with the stable normal group (Addi-
tional file  1: Fig. S1C). The long-term weight change 
pattern was not associated with any of the α-diversity 
indices (Additional file  1: Fig. S1C and Fig. S2B). 
Among microbes associated with the BMI, Megamonas 
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unclassified was significantly higher in the normal to 
adiposity group compared with the stable normal group 
(FDR=0.01; Fig.  3A). Compared with the stable nor-
mal group, the abundances of Clostridium hathewayi 
and Lachnospiraceae bacterium 3 1 57FAA CT1 were 
significantly lower, and the abundances of Megamonas 

hypermegale, Megamonas unclassified, and Bacte-
roides caccae were higher in the stable adiposity group 
(FDR<0.05; Fig. 3B). The mean abundance of identified 
microbes was 0.13%, 0.03%, 0.24%, 2.04%, and 0.92% for 
Clostridium hathewayi, Lachnospiraceae bacterium 3 
1 57FAA CT1, Megamonas hypermegale, Megamonas 
unclassified, and Bacteroides caccae, respectively.

Table 1  Characteristics of the study participants at the baselinea

a Data are expressed as mean (SD) and median (Q1, Q3) for continuous variables with normal and skewed distribution, respectively, and as frequency (percentage) for 
categorical variables

SD standard deviation, Q1 quartile 1, Q3 quartile3, HOMA-IR homeostasis model assessment of insulin resistance, HbA1c hemoglobin A1c, MET metabolic equivalent 
for task

Characteristics Female (n = 290) Male (n = 136)

Age, years, mean (SD) 62.7 (4.4) 65.7 (6.7)

BMI, kg/m2, mean (SD) 23.1 (3.0) 24.2 (3.3)

Weight group, n (%)

  Lean 9 (3.1) 5 (3.7)

  Normal 172 (59.3) 55 (40.4)

  Overweight 92 (31.7) 60 (44.1)

  Obesity 17 (5.9) 16 (11.8)

Adiposity (overweight or obesity), n (%) 102 (35.2) 75 (55.1)

Weight change pattern, n (%)

  Stable normal 154 (56) 51 (39.2)

  Normal to adiposity 19 (6.9) 4 (3.1)

  Adiposity to normal 12 (4.4) 9 (6.9)

  Stable adiposity 90 (32.7) 66 (50.8)

Waist circumference, cm, mean (SD) 84.4 (8.6) 87.1 (9.0)

Current smoker, n (%) 0 (0) 31 (22.8)

Current alcohol drinker, n (%) 8 (2.8) 27 (19.9)

Education, n (%)

  Middle school or lower 70 (24.1) 30 (22.1)

  High school or professional college 152 (52.4) 52 (38.2)

  University 68 (23.4) 54 (39.7)

Income level, n (%)

  Extremely low (≤500 ¥/month) 2 (0.7) 3 (2.2)

  Low (501–1500 ¥/month) 66 (22.8) 24 (17.6)

  Middle (1501–3000 ¥/month) 179 (61.7) 94 (69.1)

  High (>3000 ¥/month) 43 (14.8) 15 (11.0)

Fasting insulin, μU/mL, median (Q1, Q3) 6.6 (4.6, 9.6) 6.7 (4.2, 9.6)

HOMA-IR, median (Q1, Q3) 1.5 (1.0, 2.2) 1.5 (1.0, 2.2)

HbA1c, %, mean (SD) 5.6 (0.4) 5.7 (0.5)

Fasting glucose, mmol/L, median (Q1, Q3) 5.1 (4.8, 5.5) 5.1 (4.7, 5.5)

Physical activity, MET, mean (SD) 41.5 (14.1) 39.2 (12.6)

Total energy intake, kcal/day, mean (SD) 1709.7 (454.2) 1868.9 (454.2)

Vegetable intake, g/day, median (Q1, Q3) 366.9 (264.2, 492.4) 328.3 (246.9, 478.4)

Fruit intake, g/day, median (Q1, Q3) 144.0 (85.1, 218.4) 103.6 (57.4, 167.5)

Fish intake, g/day, median (Q1, Q3) 42.9 (23.9, 68.0) 39.0 (23.8, 64.6)

Red and processed meat intake, g/day, median (Q1, Q3) 76.6 (50.9, 107.7) 76.9 (53.0, 108.9)

Dairy intake, g/day, median (Q1, Q3) 16.61 (7.20, 27.51) 9.87 (2.25, 21.08)

Years of follow-up 3.2 (0.3) 3.1 (0.3)
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The association between gut microbes and insulin 
resistance‑related phenotypes
Lachnospiraceae bacterium 3 1 57FAA CT1 [β = − 0.13, 
95% CI (− 0.22, − 0.05), FDR = 0.014] and Clostridium 
hathewayi [β = − 0.1, 95% CI (− 0.18, − 0.02), FDR = 
0.03] were negatively associated with HOMA-IR (Fig.  4 
and Additional file 1: Table S10). In the secondary anal-
yses, Lachnospiraceae bacterium 3 1 57FAA CT1 was 
negatively associated with fasting insulin [β = − 0.13, 
95% CI (− 0.22, − 0.04), FDR = 0.037], and Megamonas 
unclassified had a positive association with HbA1c [β = 
0.09, 95% CI (0.03, 0.15), FDR = 0.037] (Fig. 4 and Addi-
tional file 1: Table S10). For the contributions of dietary 

factors (vegetable intake, fruit intake, fish intake, red 
and processed meat intake, and dairy intake) to insulin 
resistance, we did not find any dietary factor that was 
prospectively associated with insulin resistance-related 
phenotypes (FDR > 0.05; Additional file 1: Table S11).

The mediation effects of the gut microbes 
on the association between adiposity and insulin 
resistance‑related phenotypes
We first examined the associations between weight 
group (underweight, normal weight, and adiposity) and 
insulin resistance. We found that adiposity was posi-
tively associated with several insulin resistance-related 

Fig. 2  The prospective association between BMI and gut microbiota. A The associations between baseline adiposity and follow-up gut microbes. 
The cross-lagged path analysis was used to estimate the difference in the abundance of gut microbes (in SD unit of the log-transformed 
abundance) per 1-SD difference of BMI, adjusted for age, sex, smoking status, alcohol status, education, income, physical activity, total energy intake, 
Bristol stool score, and time interval. B Replication of the prospective associations of BMI with microbes in the HMP cohort. Multivariable linear 
regression models were used to estimate the difference in the abundance of gut microbes (in SD unit of the log-transformed abundance) per 1-SD 
difference in BMI, adjusted for age, sex, race (white/not white), time interval, and corresponding baseline microbe abundance. The meta-analysis 
with a random effects model was used to integrate the results from GNHS and HMP cohorts, and the heterogeneity was assessed using I2 and 
Cochran-Q test
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phenotypes including HOMA-IR, fasting insulin, and 
HbA1c compared with the normal weight (FDR<0.05; 
Additional file  1: Table  S12). The results of mediation 
analysis showed that the Lachnospiraceae bacterium 
3 1 57FAA CT1 mediated the association of adiposity 
with HOMA-IR (17%, FDR = 0.024; Fig.  5A). Clostrid-
ium hathewayi did not have the mediation role in the 

association between adiposity and HOMA-IR (2.7%, FDR 
= 0.53; Fig.  5B). In the secondary analyses, the media-
tion effect of Lachnospiraceae bacterium 3 1 57FAA CT1 
on the association between adiposity and fasting insulin 
was borderline significant (14.8%, FDR = 0.056; Fig. 5C). 
The mediation role of Megamonas unclassified on the 
association of adiposity with HbA1c was not statistically 

Fig. 3  The prospective association between long-term weight change and gut microbiota. A Gut microbes that were associated with the normal 
to adiposity group compared with the stable normal group. Multivariable linear regression models were used to estimate the difference in the 
abundance of gut microbes (in SD unit of the log-transformed abundance) comparing the normal to adiposity group with the stable normal 
group, adjusted for age, sex, smoking status, alcohol status, education, income, physical activity, total energy intake, Bristol stool score, time interval, 
and corresponding baseline microbe abundance. B Gut microbes that were associated with the stable adiposity group compared with the stable 
normal group. Multivariable linear regression models were used to estimate the difference in the abundance of gut microbes (in SD unit of the 
log-transformed abundance) comparing the stable adiposity group with the stable normal group, adjusted for age, sex, smoking status, alcohol 
status, education, income, physical activity, total energy intake, Bristol stool score, time interval, and corresponding baseline microbe abundance. CI, 
confidence interval; FDR, false discovery rate



Page 10 of 14Deng et al. BMC Medicine          (2022) 20:171 

significant (6.1%, FDR = 0.354; Fig.  5D). As all aver-
age causal mediation effects (ACME) and average direct 
effect (ADE) were larger than zero, the mediation effects 
and direct effects in the overweight/obesity group were 
larger than those in the normal group for all above medi-
ation analyses (Fig.  5). We further found that Lachno-
spiraceae bacterium 3 1 57FAA CT1 was associated with 
a higher level of the butyrate-producing pathway PWY-
5022 [β = 0.12, p < 0.001; Additional file 1: Table S13). In 
addition, Lachnospiraceae bacterium 3 1 57FAA CT1 was 
also associated with several other microbial functional 
pathways, such as amino acid biosynthesis and degrada-
tion pathways (HISDEG-PWY, PWY-4981, PWY-5101, 
DAPLYSINESYN-PWY, PWY-5030, PWY-2942, PWY-
5154, HSERMETANA-PWY, PWY-6630, PWY-5097, 
PWY-6629), anaerobic energy metabolism (PWY-7383), 
lipid metabolism (PWY-5667, PWY0-1319), and gluco-
neogenesis (PWY66-399) (FDR < 0.05; Additional file 1: 
Table S14).

Discussion
In the present longitudinal cohort study with repeated-
measured gut microbiota and adiposity data, we identi-
fied ten microbes that were prospectively associated 
with the baseline BMI, and no baseline microbes were 
found to be associated with future BMI. Among them, 

associations of BMI with four microbes were replicated 
in the HMP cohort. In addition, there were significant 
associations between the identified gut microbes and 
several insulin resistance-related phenotypes (HOMA-
IR, fasting insulin, and HbA1c). We demonstrated that 
Lachnospiraceae bacterium 3 1 57FAA CT1 may mediate 
the association of adiposity with insulin resistance.

The associations between adiposity and human gut 
microbiota were explored in several cross-sectional stud-
ies over the past few years [3, 6, 7]. Most of these stud-
ies focused on identifying gut microbes that could affect 
the development of adiposity [40]. Although the causal 
role of gut microbiota in adiposity development has 
been established in mice [4], how and what gut microbes 
may be longitudinally associated with adiposity status 
in humans was not clear. On the other hand, adiposity 
has huge impacts on the diversity of gut microbiota, as 
shown in mice [41]. However, few studies explored the 
association of adiposity with gut microbiota in human 
longitudinal cohorts, which might be helpful for the 
discovery of new therapeutic targets for adiposity-asso-
ciated diseases. The temporal relationship between adi-
posity and gut microbiota was unexplored, due to the 
scarcity of dynamic microbiota data in large human stud-
ies. The direction of their associations could be resolved 
using repeated collected fecal microbiota data overtime, 

Fig. 4  The associations between the identified microbes and insulin resistance-related phenotypes. Linear mixed-effect models were used to 
estimate the difference in insulin resistance-related phenotypes (in SD unit) per 1-SD difference in the log-transformed abundance of gut microbes, 
adjusted for age, sex, smoking status, alcohol status, education, income, physical activity, and total energy intake. Fasting insulin, HOMA-IR, and 
fasting glucose were log-transformed. HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c, hemoglobin A1c; FDR, false discovery 
rate
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such datasets are currently available among several West-
ern and American populations [9–11]. Our study, to 
the best of our knowledge, presented the first repeated-
measured gut metagenome data in Chinese populations, 
which could be helpful for revealing the dynamic change 
of gut microbiota overtime. In addition, prior cross-
sectional studies explored the association between BMI 
and gut microbiota, mostly using data from 16S rRNA 
sequencing [6, 7]. In the present study, metagenomic data 
were used to detect gut microbes at species level, which 
improved the taxonomic precision.

In our assessment of the temporal relationship between 
BMI and gut microbiota, we did not find any baseline gut 
microbes that were associated with future BMI levels. 
Instead, we identified several gut microbes longitudinally 
associated with baseline BMI in the present study. The 
inverse association between BMI and Parabacteroides 
was also observed in a cross-sectional study among 
Chinese college students using 16S rRNA sequencing 
[6]. Results from another cross-sectional study showed 
lower levels of Parabacteroides and higher levels of Meg-
asphaera in overweight/obesity patients compared with 

normal weight controls among Italian adults using 16S 
rRNA sequencing [7]. The association between BMI 
and Adlercreutzia equolifaciens was also identified in a 
study using metagenome data from the northern Nether-
land [9]. However, the directions of the effects could not 
be clarified in the above prior studies. Furthermore, we 
replicated the results of the prospective associations of 
baseline BMI with four follow-up microbes in the HMP 
cohort that was mainly composed of Caucasians in the 
US and had completely different age coverage with our 
GNHS cohort. The identified associations that could not 
validated in the HMP cohort may be specific for Chinese 
populations. However, given that the sample size of the 
HMP cohort was small (only 43 participant), it should 
be further validated whether the identified associations 
in our cohort are specific for Chinese populations in the 
future larger studies.

Previous studies demonstrated that stable adipos-
ity and weight gain were associated with increased risk 
of cardiovascular disease and mortality [42, 43]. In this 
study, we found that long-term stable adiposity status 
was significantly associated with the abundance of gut 

Fig. 5  Mediation analysis for the role of gut microbes in the association between adiposity and insulin resistance-related phenotypes. A The 
mediation effect of Lachnospiraceae bacterium 3 1 57FAA CT1 on the association between adiposity and HOMA-IR. B The mediation effect of 
Clostridium hathewayi on the association between adiposity and HOMA-IR. C The mediation effect of Lachnospiraceae bacterium 3 1 57FAA CT1 on 
the association between adiposity and fasting insulin. D The mediation effect of Megamonas unclassified on the association between adiposity and 
HbA1c. In the mediation analysis, age, sex, smoking status, alcohol status, education, income, physical activity, total energy intake, Bristol stool score, 
time interval, and corresponding baseline gut microbes and insulin resistance-related phenotypes were adjusted. ACME, average causal mediation 
effects; ADE, average direct effect; FDR, false discovery rate; HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c, hemoglobin A1c



Page 12 of 14Deng et al. BMC Medicine          (2022) 20:171 

microbes. We discovered that the abundance of Mega-
monas unclassified was higher in the normal to adiposity 
group compared with the stable normal group. Our study 
showed that the abundance of Megamonas unclassified 
was associated with higher levels of HbA1c. As adiposity 
is a risk factor for diabetes, Megamonas unclassified may 
contribute to the development of diabetes accompanying 
the development of overweight/obesity. The metabolic 
function of Megamonas unclassified was unexplored in 
the literature. Ling et  al. reported that Megamonas was 
significantly correlated with systemic inflammatory 
cytokines (e.g., IL-6) [44]. As the inflammation has an 
important role in diabetes [45], Megamonas unclassified 
may be involved in the development of diabetes through 
the inflammation pathways. Intervention study con-
ducted by Pisanu et  al. demonstrated that a moderately 
hypocaloric Mediterranean diet could decrease the rela-
tive abundance of Megamonas for obese and overweight 
patients [46]. We noted that Megamonas hypermegale, 
Megamonas unclassified, and Megasphaera unclassified 
had higher prevalence in our cohort compared with the 
HMP cohort (36% vs. 5%, 52% vs. 6%, and 38% vs. 9%, 
respectively). As gut microbiome is mainly determined by 
genetics and environment, and there were diverse dietary 
cultures and ethnicities between Chinese (GNHS cohort) 
and Western populations (HMP cohort), the higher prev-
alence of these species in the GNHS cohort compared 
with the HMP cohort may be caused by the  combined 
influence of genetics and diet. For example, we found that 
there was a positive association between fish intake and 
Megamonas hypermegale (β = 0.21, p = 0.021; Additional 
file 1: Table S8).

We identified a potentially beneficial microbe named 
Lachnospiraceae bacterium 3 1 57FAA CT1, which was 
associated with lower levels of HOMA-IR and fasting 
insulin. Long-term adiposity status was associated with 
a lower abundance of Lachnospiraceae bacterium 3 1 
57FAA CT1. The mediation analysis further suggested 
that Lachnospiraceae bacterium 3 1 57FAA CT1 medi-
ated the association of adiposity with insulin resistance. 
In other words, adiposity may potentially induce insulin 
resistance through reducing the abundance of Lachno-
spiraceae bacterium 3 1 57FAA CT1. Therefore, Lach-
nospiraceae bacterium 3 1 57FAA CT1 may serve as a 
potential intervention target for overweight/obese indi-
viduals to prevent and treat obesity-related insulin resist-
ance. Many species in Lachnospiraceae were involved 
in the production of SCFA [37], and Lachnospiraceae 
bacterium 3 1 57FAA CT1 had phylogenetic similarity 
to known butyrogenic gut bacteria [39]. In the present 
study, we speculated that Lachnospiraceae bacterium 
3 1 57FAA CT1 may be involved in the gut production 
of the butyrate through examining the association of 

this bacterium with butyrate-producing pathway PWY-
5022. A prior study conducted by Sanna et  al. showed 
that PWY-5022 was causally associated with improved 
insulin response following an oral glucose test and the 
reverse relationship was not significant [47]. In addition, 
Gao et al. showed that supplementation of butyrate could 
decrease the fasting insulin level in mice fed a high-fat 
diet [48]. Therefore, we hypothesize that Lachnospiraceae 
bacterium 3 1 57FAA CT1 may drive the fasting insulin 
level and the potential beneficial association of Lachno-
spiraceae bacterium 3 1 57FAA CT1 with insulin sensitiv-
ity may be explained by its potential to produce butyrate 
in the gut.

For the contributions of dietary factors to gut micro-
biota and insulin resistance-related phenotypes, most 
associations (except the association between fish intake 
and Megamonas hypermegale) were not significant in our 
samples. These null results do not mean that dietary fac-
tors are not important for the gut microbiome or insu-
lin resistance, but rather due to the very limited sample 
size we used in this study. Usually for the study of FFQ-
based dietary factors with microbiome or diseases, we 
need thousands of participants to increase the statistical 
power, as we did previously [49].

Our study has some strengths. First, it is based on a lon-
gitudinal cohort study with a median follow-up time of 
3.15 years. Second, we, for the first time, apply the cross-
lagged panel analysis with structural equation model to 
microbiota data, which could help reveal the temporal 
relationship between adiposity and gut microbiota. We 
admit that our study has some limitations. First, although 
we have adjusted several important confounding factors, 
we are unable to fully rule out the influence of residual 
confounding on our results due to the observational 
nature of our study. Second, our study only included one 
small replication cohort (HMP) as the repeated-meas-
ured fecal metagenome data was rare. There are only 43 
participants in the cohort, which limits the power to fully 
replicate the present results. Larger replication cohorts 
are needed to make our findings more solid. Meanwhile, 
as the information of insulin resistance-related pheno-
types is not provided in the HMP cohort, other findings 
in our study could not be validated. Therefore, the results 
in the present study should be further validated in other 
large repeated-measured cohorts or experimental studies 
in the future. Third, several weight change pattern groups 
have relatively small sample size (normal to adiposity 
group 23; adiposity to normal group 21), which limits the 
statistical power to detect significant associations. Given 
that there is only a small number of individuals who 
changed weight pattern groups, our data is mainly based 
on a small number of individuals even though the total 
data set is large.
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Conclusions
In summary, our study explored the temporal bidirec-
tional relationship between adiposity and gut microbi-
ota and identified ten microbes that were prospectively 
associated with baseline BMI. Three identified microbes 
(Lachnospiraceae bacterium 3 1 57FAA CT1, Clostridium 
hathewayi, and Megamonas unclassified) were associated 
with several insulin resistance-related phenotypes. We 
further discovered one potentially beneficial bacterium 
Lachnospiraceae bacterium 3 1 57FAA CT1, which might 
mediate the effect of adiposity on insulin resistance. 
These findings suggest that gut microbiota may lie in the 
pathway linking adiposity and insulin resistance, and the 
identified microbe Lachnospiraceae bacterium 3 1 57FAA 
CT1 could be potentially served as a therapeutic target 
for insulin resistance.
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