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Abstract 

Background:  Despite early interest in the health effects of polyunsaturated fatty acids (PUFA), there is still substan-
tial controversy and uncertainty on the evidence linking PUFA to cardiovascular diseases (CVDs). We investigated 
the effect of plasma concentration of omega-3 PUFA (i.e. docosahexaenoic acid (DHA) and total omega-3 PUFA) and 
omega-6 PUFA (i.e. linoleic acid and total omega-6 PUFA) on the risk of CVDs using Mendelian randomization.

Methods:  We conducted the largest genome-wide association study (GWAS) of circulating PUFA to date including a 
sample of 114,999 individuals and incorporated these data in a two-sample Mendelian randomization framework to 
investigate the involvement of circulating PUFA on a wide range of CVDs in up to 1,153,768 individuals of European 
ancestry (i.e. coronary artery disease, ischemic stroke, haemorrhagic stroke, heart failure, atrial fibrillation, peripheral 
arterial disease, aortic aneurysm, venous thromboembolism and aortic valve stenosis).

Results:  GWAS identified between 46 and 64 SNPs for the four PUFA traits, explaining 4.8–7.9% of circulating PUFA 
variance and with mean F statistics >100. Higher genetically predicted DHA (and total omega-3 fatty acids) concen-
tration was related to higher risk of some cardiovascular endpoints; however, these findings did not pass our criteria 
for multiple testing correction and were attenuated when accounting for LDL-cholesterol through multivariable Men-
delian randomization or excluding SNPs in the vicinity of the FADS locus. Estimates for the relation between higher 
genetically predicted linoleic acid (and total omega-6) concentration were inconsistent across different cardiovascular 
endpoints and Mendelian randomization methods. There was weak evidence of higher genetically predicted linoleic 
acid being related to lower risk of ischemic stroke and peripheral artery disease when accounting by LDL-cholesterol.

Conclusions:  We have conducted the largest GWAS of circulating PUFA to date and the most comprehensive 
Mendelian randomization analyses. Overall, our Mendelian randomization findings do not support a protective role of 
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Background
Early interest in the cardiovascular effects of polyunsat-
urated fatty acids (PUFA) emerged from observational 
studies conducted between the 1950s and 1970s indicat-
ing that populations with a high intake of omega-3 PUFA 
had lower rates of mortality from cardiovascular diseases 
(CVDs) [1, 2]. Numerous subsequent randomized con-
trolled trials (RCTs) indicated that dietary substitution 
of carbohydrates or saturated fatty acids by PUFA had 
a protective effect on intermediate outcomes, such as a 
reduction in low-density lipoprotein (LDL)-cholesterol 
and triglycerides [3]. However, the hypothesized car-
dioprotective role for omega-3 and omega-6 PUFA has 
been challenged by a recent series of Cochrane’s system-
atic reviews of RCTs of dietary advice or supplementa-
tion, which suggest little to no benefit [4–6]. Overall, 
most RCTs on PUFA intake included in these systematic 
reviews were at moderate to high risk of bias and there 
is large uncertainty on the evidence linking PUFA to sev-
eral cardiovascular outcomes [4–6]. Despite being the 
gold-standard study design for testing the effect of clini-
cal interventions, in practice RCTs are often limited in 
statistical power, breadth of outcomes analyzed, and have 
high risk of bias. Therefore, integrating multiple lines of 
evidence is key to improve causal inference on the role of 
PUFAs in CVD aetiology.

Alpha-linolenic acid and linoleic acid are omega-3 and 
omega-6 PUFAs, respectively, that cannot be produced 
endogenously by humans and, therefore, need to be 
obtained from diet. Other omega-3 and omega-6 PUFAs 
can be produced endogenously through a series of elon-
gation and desaturation reactions [7]. Circulating PUFA 
concentration is influenced by environmental and genetic 
factors [8–13], and the measurement of circulating PUFA 
can be used as an objective biomarker of PUFA intake, 
avoiding well-known biases in self-reported assessment 
of dietary intake. Comparing individuals genetically 
predisposed to higher or lower circulating PUFA can be 
used to probe the lifelong effect of circulating PUFA on 
CVD risk using Mendelian randomization [14]. Men-
delian randomization uses genetic variants associated 
with biomarkers as instrumental variables to assess their 
effect on disease aetiology. This approach was devel-
oped to improve causal inference by taking advantage of 
unique properties of genetic variants: (i) germline geno-
types remain unchanged throughout one’s life, (ii) the 
random allocation of parental alleles at meiosis reduces 

confounding by generating balanced groups and (iii) the 
unidirectional flow of biological information (from geno-
type to phenotype) avoids reverse causation [15–17]. In 
addition to indexing lifelong exposure to a biomarker of 
interest, genetic variants are subject to relatively little 
bias due to measurement error [18].

Previous Mendelian randomization studies have 
reported conflicting findings regarding the relation-
ship between circulating PUFAs and CVDs risk [19–25]. 
Overall, shorter (e.g. α-linolenic acid and linoleic acid) 
and longer (e.g. arachidonic acid) chain PUFA have been 
associated with lower and higher risk of CVDs, respec-
tively [19–25]. These seemingly contradictory findings 
have been largely attributed to the inclusion of genetic 
variants mapping to the FADS locus in the analyses, 
which contains the genes FADS1 and FADS2 encoding, 
respectively, the desaturases delta-5 (D5D) and delta-6 
(D6D), key enzymes catalyzing rate-limiting steps in 
PUFA biosynthesis [22]. Genetic variants modulating the 
expression/activity of D5D and D6D will lead to changes 
in shorter- and longer-chain PUFAs in opposite direc-
tions, which likely explains such contrasting MR find-
ings of lower vs higher CVD risk being associated with 
shorter- vs longer-chain PUFAs, respectively. In addition, 
these FADS variants are highly pleiotropic and associated 
with numerous non-fatty acid traits including triglyc-
erides, low-density lipoprotein (LDL)-cholesterol and 
fasting glucose [22]. On the one hand, given the well-
established link of FADS1/2 with PUFA biosynthesis, 
single-nucleotide polymorphisms (SNPs) in the vicinity 
of the FADS locus can add to the evidence on the involve-
ment of fatty acids in the development of cardiovascular 
diseases. On the other hand, the fact that SNPs nearby 
FADS1/2 are highly pleiotropic and not specific for indi-
vidual fatty acids or fatty acid classes complicate infer-
ences on the causal role of circulating fatty acids on CVD 
risk from Mendelian randomization studies solely/pre-
dominantly relying on genetic variants within this locus.

Some of these limitations in current Mendelian rand-
omization studies could be addressed by incorporating 
into the analyses numerous genetic variants modulat-
ing circulating fatty acids via different pathways. Con-
sistency of findings across variants from multiple loci 
would increase confidence in the results and allow the 
use of Mendelian randomization methods that require 
multiple independent variants and are more robust 
to violations of the method’s assumptions. However, 

circulating PUFA concentration on the risk of CVDs. However, horizontal pleiotropy via lipoprotein-related traits could 
be a key source of bias in our analyses.
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the modest size of current genetic association studies 
(GWAS) on circulating fatty acids (up to ~13,000) have 
only allowed the discovery of a small number of genetic 
variants strongly and independently associated with 
circulating PUFA [8, 9, 11–13].

The aims of this study were (a) conducting the largest 
GWAS on circulating PUFA to date including a sample of 
114,999 individuals and (b) using two-sample Mendelian 
randomization to investigate the involvement of circulat-
ing omega-3 and omega-6 fatty acids on a wide range of 
cardiovascular disease endpoints in up to 1,153,768 indi-
viduals of European ancestry (i.e. coronary artery disease, 
ischemic stroke, haemorrhagic stroke, heart failure, atrial 
fibrillation, peripheral arterial disease, aortic aneurysm, 
venous thromboembolism and aortic valve stenosis).

Methods
Data sources
Fatty acids
The UK Biobank is a population-based cohort of approxi-
mately 500,000 (~5% of those invited) people aged 40 to 
69 years when recruited during 2006–2010 from several 
centres across the UK. A subset of approximately 20,000 
were selected for repeat assessment between 2012 and 
2013 [26, 27]. Details on study design, participants and 
quality control methods have been described previously 
[28, 29]. The UK Biobank received ethical approval from 
the Research Ethics Committee (REC reference for the 
UK Biobank is 11/NW/0382). This work was carried out 
using the UK Biobank project 30418 and 15825.

Circulating omega-3 (i.e. docosahexaenoic acid (DHA) 
and total omega-3) and omega-6 (i.e. linoleic acid and 
total omega-6) fatty acid concentration were measured 
using a targeted high-throughput nuclear magnetic 
resonance (NMR) metabolomics platform (Nightin-
gale Health Ltd; biomarker quantification version 2020) 
[30]. Pre-release data from a random subset of 126,846 
non-fasting plasma samples collected at baseline or first 
repeat assessment were made available to early access 
analysts. In total, 121,577 samples were retained for 
analyses after removing duplicates and observations not 
passing quality control (QC) (i.e. sample QC flag “Low 
protein”, biomarker QC flag “Technical error” or samples 
with insufficient material). This NMR platform provides 
simultaneous quantification of 249 metabolic meas-
ures (i.e. 165 metabolic measures and 84 derived ratios), 
encompassing routine lipids, lipoprotein subclass profil-
ing (including lipid composition within 14 subclasses), 
fatty acid composition and various low-molecular weight 
metabolites such as amino acids, ketone bodies and gly-
colysis metabolites (Additional file  1: Table  S1). Tech-
nical details and epidemiological applications of this 
platform have been previously reviewed [31–33]. The 

mean concentration of circulating fatty acids among the 
UK Biobank participants was 0.23 mmol/L (SD 0.08), 
0.53 mmol/L (SD 0.22), 3.41 mmol/L (SD 0.69) and 4.45 
mmol/L (SD 0.68) for DHA, total omega-3, linoleic acid 
and total omega-6, corresponding to 2%, 4.4%, 29% and 
38% of total fatty acids, respectively.

Cardiovascular disease endpoints
The outcomes of interest were (prevalent/incident) cor-
onary artery disease, ischemic stroke, haemorrhagic 
stroke, heart failure, atrial fibrillation, peripheral arterial 
disease, aortic aneurysm, venous thromboembolism and 
aortic valve stenosis. Table S2 (Additional file 1) describes 
the data sources used for these disease endpoints.

These data sources included several large-scale genetic 
consortia of cardiovascular disease outcomes [34–38] 
targeting individuals of European ancestry only, or pre-
dominantly, including the Coronary Artery Disease 
Genome-Wide Replication and Meta-analysis Plus the 
Coronary Artery Disease Genetics Consortium (CAR-
DIoGRAMplusC4D) (N cases = 60,801; N controls = 
123,504) [34, 39], MEGASTROKE (N cases = 40,585; N 
controls = 406,111) [35, 40], The Heart Failure Molecu-
lar Epidemiology for Therapeutic Targets (HERMES) (N 
cases = 47,309; N controls = 930,014) [38, 41], an atrial 
fibrillation genetic association meta-analysis (N cases = 
60,620; N controls = 970,216) [36, 42] and an abdomi-
nal aortic aneurysm genetic association meta-analysis (N 
cases = 4,972; N controls = 99,858) [37].

In addition to consortia data, we used data from two 
large biobanks (i.e. the UK Biobank [26, 27] and FinnGen 
[43]). We selected 464,708 UK Biobank participants hav-
ing European genetic ancestry, as defined by an in-house 
k-means cluster analysis performed using the first 4 prin-
cipal components provided by the UK Biobank in the 
statistical software environment R [29]. We used a lin-
ear mixed model (LMM) association method as imple-
mented in BOLT-LMM (v2.3) [44] to generate genetic 
association data on cardiovascular endpoints among the 
UK Biobank participants of European genetic ancestry 
as described previously [29, 45]. BOLT-LMM association 
statistics are on the linear scale; therefore, test statistics 
for these binary traits (betas and their corresponding 
standard errors) were transformed to log odds ratios 
and their corresponding 95% confidence intervals on 
the liability scale using a Taylor transformation expan-
sion series [44]. FinnGen is a public-private partnership 
project combining genotype data from Finnish biobanks 
and digital health record data from Finnish health reg-
istries (https://​www.​finng​en.​fi/​en). We used FinnGen 
data from release 4, which includes 176,899 participants 
[43]. The procedures used to generate genetic association 

https://www.finngen.fi/en
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data for cardiovascular outcomes in FinnGen have been 
described previously [43].

Data analysis
Genome‑wide association scan on circulating PUFA
We generated genome-wide genetic association data for 
circulating DHA, total omega-3, linoleic acid and total 
omega-6 concentration for 114,999 UK Biobank par-
ticipants of European ancestry using BOLT-LMM (v2.3) 
[44, 46]. To model population structure in the sample, 
we used 143,006 directly genotyped SNPs, obtained after 
filtering on minor allele frequency (MAF) > 0.01; geno-
typing rate > 0.015; Hardy-Weinberg equilibrium p-value 
< 0.0001 and linkage disequilibrium (LD) pruning to an 
r2 threshold of 0.1 using PLINKv2.00. Genotype array, 
fasting time and sex were adjusted for in the model. All 
fatty acid measures were standardized and normalized 
prior to analyses using rank-based inverse normal trans-
formation. SNPs with MAF < 1% or imputation accuracy 
(INFO) < 0.8 were excluded from further analyses. The 
same procedures were used to generate genome-wide 
genetic association data for other lipid-related traits 
measured using the NMR metabolomics platform [i.e. 
total fatty acids, triglycerides, clinical LDL-cholesterol 
(defined to match the LDL-C levels from routine clini-
cal chemistry) and apolipoprotein B], which were used in 
follow-up analyses as detailed below. The genetic associa-
tion data on fatty acids and other NMR traits were depos-
ited at the IEU Open GWAS Project [47, 48].

We used LD score regression (LDSC) to estimate 
genome-wide inflation in test statistics from PUFA 
genetic association data due to population phenomena 
(e.g. population stratification), as well as to approximate 
the genetic correlation between circulating PUFA and 
between PUFA and other lipid-related traits (i.e. total 
fatty acids, LDL-cholesterol, triglycerides and apolipo-
protein B) [49, 50].

Functional mapping and annotation of PUFA genetic 
association results
We used FUMA GWAS (“Functional Mapping and 
Annotation of Genome-Wide Association Studies”), an 
integrative web-based platform (http://​fuma.​ctglab.​nl) 
containing information from 18 biological data reposi-
tories and tools, to characterize SNPs according to (i) 
consequences to gene function, (ii) mapped genes and 
biological pathways and (ii) associations with other 
phenotypes. The pipeline used by FUMA has been 
described in detail elsewhere [51]. Briefly, we applied 
FUMA’s SNP2GENE function, which uses genome-
wide genetic association data to identify independent 
significant SNPs and SNPs in LD with those, which are 
then annotated for functional consequences to gene 

functions (i.e. altering expression of a gene, affecting a 
binding site or violating the protein structure) [52].

FUMA identifies as independent significant SNPs 
those associated with the trait of interested at p-value 
< 5 × 10−8 in the GWAS summary data and not in 
strong LD with each other (R2 < 0.6 using EUR 1000G 
phase3 as reference panel). For each independent sig-
nificant SNP, all known SNPs with MAF ≥ 1% in strong 
LD (R2 ≥ 0.6), either present in the GWAS summary 
data and/or reference panel, are included for further 
annotation (i.e. candidate SNPs). Additionally, FUMA 
classifies independent lead SNPs as a subset of inde-
pendent significant SNPs in weak LD (R2 < 0.1) and 
defines genomic risk loci by merging independent sig-
nificant SNPs in LD blocks and between LD blocks 
closely located to each other (< 250 kb based on the 
most right and left SNPs from each LD block).

Functionally annotated SNPs are subsequently 
mapped to genes based on (i) physical position on the 
genome (positional mapping), (ii) expression quantita-
tive trait loci (eQTL) associations (eQTL mapping) and 
(iii) 3D chromatin interactions (chromatin interaction 
mapping). In addition, independent significant SNPs 
and correlated SNPs are also linked to the GWAS cata-
log [53] to provide insights into previously reported 
associations of the SNPs with a variety of phenotypes. 
Gene-based test/gene-set analyses using MAGMA [54] 
are also carried out to summarize SNP associations at 
the gene level and associate the set of genes to biologi-
cal pathways.

Selection of genetic instruments for PUFA
For our main Mendelian randomization analyses, we 
selected genetic variants strongly associated with circu-
lating DHA, total omega-3 fatty acids, linoleic acid and 
total omega-6 fatty acids (P-value < 5 × 10−8) as instru-
ments for these fatty acid measures using data from 
114,999 UK Biobank participants. We performed prun-
ing to remove variants in LD (R2 < 0.001 1000G EUR 
population) given we used Mendelian randomization 
methods that assume independence between genetic 
instruments. For each fatty acid measure, we approxi-
mated the total R2 and mean F statistics across selected 
SNPs, as previously described [55, 56], using PUFA 
genetic association estimates from our discovery sam-
ple (i.e. the UK Biobank) and from a replication sample 
(Kettunen et al. [12]) to minimize bias due to winner’s 
curse. The replication sample corresponds to the largest 
previous GWAS (median N for fatty acids 13,516) with 
data on circulating fatty acids measured using the same 
NMR metabolomics platform as in the UK Biobank 
participants.

http://fuma.ctglab.nl/
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Assessing the impact of genetic instruments on the fatty acid 
pool
To explore the specificity of the genetic instruments for 
individual fatty acids, we assessed their impact on the 
composition of circulating PUFA using data from pre-
vious GWAS in individuals of European ancestry [8, 9, 
11, 12], which have modest sample size (N range 7824–
13,516) but more detailed data on individual PUFAs. 
These GWAS have been conducted in plasma samples 
using different assays (i.e. gas chromatography (GC), 
NMR or mass spectrometry (MS)) [8, 9, 11, 12] and 
have expressed results in standardized molar concentra-
tion units [12], as a proportion of total fatty acids [8, 9] 
or in arbitrary units [11]. We used the inverse variance 
weighted (IVW) method to test the impact of genetically 
predicted DHA, total omega-3, linoleic acid and total 
omega-6 on individual PUFA before and after excluding 
SNPs within 500 kb of the FADS locus (chromosome 11: 
61,067,097 to 62,134,826).

Multivariable regression
For comparison with Mendelian randomization results, 
we fitted logistic regression models to estimate the 
association of circulating PUFA on the risk of each car-
diovascular disease endpoint using individual-level data 
from the UK Biobank participants,  with adjustments for 
covariables assessed at recruitment (i.e. sex, age, body 
mass index (BMI), fasting time, alcohol intake, frequency, 
statins use and total circulating fatty acids).

Mendelian randomization
We estimated the effect of genetically predicted DHA, 
total omega-3, linoleic acid and total omega-6 on the 
risk of each cardiovascular disease endpoint using two 
univariable summary data Mendelian randomization 
methods: IVW (with multiplicative random effects) and 
MR-Egger [57, 58]. IVW assumes no (unbalanced) hori-
zontal pleiotropy. There are a range of plausible circum-
stances where this assumption could be violated, such 
as in the presence of  pleiotropic SNPs that influence the 
outcome through pathways that are not mediated by the 
exposure (aka horizontal pleiotropy). Because of that, 
we also used the MR-Egger method, which can provide 
valid tests of a causal effect in the presence of unbal-
anced horizontal pleiotropy provided that instrument 
strength is independent of its direct effects on the out-
come (i.e. INSIDE assumption). We used Cochrane’s Q 
and the MR-Egger intercept test to explore the presence 
of between-SNP heterogeneity and unbalanced pleiot-
ropy, respectively, and leave-one-out analyses to test for 
the presence of outlying SNPs.

Given most circulating fatty acids are carried in the cir-
culation by lipoproteins, we anticipated that many SNPs 

influencing circulating fatty acid concentration would 
map to genes regulating lipoprotein metabolism [12]. To 
mitigate bias due to lipoprotein-related traits, we used 
multivariable IVW to estimate direct effects of geneti-
cally predicted PUFA on the risk of cardiovascular dis-
ease endpoints after individually adjusting for total fatty 
acids, triglycerides, LDL-cholesterol, or apolipoprotein 
B, or simultaneously adjusting for both triglycerides and 
LDL-cholesterol. Multivariable IVW requires knowledge 
of the covariance between the effects of the genetic vari-
ants on each exposure, which we approximated from the 
phenotypic covariance matrix across exposure traits [59].

If genetic association data on cardiovascular diseases 
was available from two or more independent datasets 
(e.g. the UK Biobank and a European GWAS consortia 
not including the UK Biobank), we pooled these esti-
mates using fixed-effect meta-analysis with inverse vari-
ance weights and conducted the MR analyses outlined 
above in both study-specific and pooled data. We used 
a Bonferroni correction to account for multiple testing 
considering the 9 different outcomes of interest (p-value 
= 0.05/9 outcomes = 0.006). Mendelian randomization 
analyses were performed using the TwoSampleMR [60] 
and MVMR [59] packages in R software version 3.6.2 (R 
Foundation for Statistical Computing).

Positive exposure control
For comparison with our Mendelian randomization anal-
yses on circulating fatty acids, we used a positive control 
exposure approach, which consisted of selecting two 
exposures with well-established involvement in the risk 
of several cardiovascular diseases (i.e. LDL-cholesterol 
and apolipoprotein B) and conducting IVW to estimate 
their effect on the risk of the cardiovascular disease out-
comes included in this study. Following the suggestion 
from a reviewer, we repeated these analyses after remov-
ing a SNP within the FADS locus.

Results
Genome‑wide association scan on circulating PUFA
Genetic association results were available for 114,999 
individuals and 12,321,876 genetic variants. FUMA iden-
tified 38, 41, 52 and 59 independent genomic regions 
strongly associated with circulating DHA, total omega-3, 
linoleic acid and total omega-6, respectively (Additional 
file  2: Fig. S1) [51, 52]. The Manhattan plots indicate a 
similar genetic association signature across PUFA, espe-
cially between DHA and total omega-3 and between lin-
oleic acid and total omega-6 (Additional file 2: Fig. S2).

The quantile-quantile (QQ) plots did not indicate 
early separation of expected from observed P-values 
(Additional file  2: Fig. S3) and the LDSC intercepts did 
not indicate inflation of genome-wide test statistics due 
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to confounding: 1.027 (SE = 0.010), 1.037 (SE = 0.010), 
1.023 (SE = 0.011) and 1.029 (SE = 0.011) for DHA, total 
omega-3, linoleic acid and total omega-6, respectively.

As expected, genetic correlation was high between 
DHA and total omega-3 (0.85 (SE = 0.02)) and between 
linoleic acid and total omega-6 (0.95 (SE = 0.03)) and 
moderate to high between omega-3 and omega-6 fatty 
acids (ranging from 0.39 (SE = 0.07) between DHA and 
linoleic acid to 0.68 (SE = 0.06) between total omega-3 
and total omega-6) (Additional file 1: Table S3). Overall, 
genetic correlations of circulating PUFA with other NMR 
lipid-related traits were null to moderate for DHA (rang-
ing from −0.01 (SE = 0.08) for triglycerides to 0.57 (SE 
= 0.08) for LDL-cholesterol), but moderate to high for 
the other PUFA measures (ranging from 0.49 (SE = 0.07) 
between total omega-3 and triglycerides to 0.90 (SE = 
0.02) between total omega-6 and total fatty acids) (Addi-
tional file 1: Table S3).

Functional mapping and annotation of fatty acid genetic 
association results
Most genetic variants associated with circulating PUFA 
were either intronic or intergenic, suggesting that they 
are likely associated with PUFA concentration by mod-
ulating gene expression (Additional file  2: Fig. S1). As 
expected, genes mapped to PUFA-associated genetic var-
iants included some genes with well-known role in lipo-
protein metabolism, such as CETP, PCSK9, LPL, LIPC, 
ANGPTL3, APOB, APOC3, APOA1, APOE and LDLR, 
among others (Additional file 1: Tables S4A-D).

Using the full distribution of SNPs p-values, gene sets 
assigned by MAGMA were mostly related to pathways 
involved in lipoprotein metabolism. As an example, the 
top five results across PUFA measures were related to 
(triglyceride-rich or high-density) lipoprotein particle 
remodelling, apolipoprotein binding and reverse choles-
terol transport (Additional file 1: Table S5A-D).

Using data from the GWAS catalog, we identified 
SNPs that associated with PUFA (or SNPs in strong LD 
with these) as correlated with numerous traits (Addi-
tional file 1: Table S6A-D). In particular, among the top 
ten results across PUFA were triglycerides, LDL-choles-
terol, HDL-cholesterol, total cholesterol and C-reactive 
protein.

Selection of genetic instruments for PUFA
The number of genetic instruments selected (P-value 
< 5×10−8; R2 < 0.001) using data from the UK Biobank 
participants was 46, 49, 55 and 64 SNPs for DHA, total 
omega-3, linoleic acid and total omega-6, respectively 
(listed in Additional file  1: Table  S7). When combining 
information from SNPs present in both discovery and 
replication samples, the variance explained by these SNPs 

in the corresponding fatty acid measure was 6.5% (DHA), 
7.9% (total omega-3), 4.8% (linoleic acid) and 5.2% (total 
omega-6) in the UK Biobank (discovery sample) in con-
trast to 3.1% (DHA), 3.7% (total omega-3), 6.9% (linoleic 
acid) and 5.7% (total omega-6) in Kettunen et al. data [12] 
(replication sample). The mean F statistics across SNPs 
ranged from 109 to 201 among fatty acid measures in the 
UK Biobank and from 9 to 18 in the Kettunen et al. data 
(Additional file 1: Table S8). If excluding SNPs nearby the 
FADS locus, the variance explained by these SNPs in the 
corresponding fatty acid measure in the UK Biobank was 
3.1% (DHA), 4.5% (total omega-3), 4.5% (linoleic acid) 
and 5.2% (total omega-6).

Assessing the impact of genetic instruments on the fatty 
acid pool
Genetic instruments predicting higher omega-3 fatty 
acids (i.e. DHA and total omega-3), selected from the 
UK Biobank participants, were associated with mul-
tiple individual fatty acids across all three independ-
ent datasets. Overall, higher genetically predicted DHA 
concentrations were related to higher longer chain (e.g. 
DHA and arachidonic acid) and lower shorter chain (e.g. 
α-linolenic acid and linoleic acid) PUFA (Fig.  1). After 
excluding SNPs nearby the FADS locus, genetically pre-
dicted DHA were no longer associated with most PUFA, 
and it became positively associated with linoleic acid 
(Fig. 1). Similar results were observed for total omega-3 
fatty acids (Additional file 2: Fig. S4).

Genetic instruments predicting higher linoleic acid 
were strongly associated with increases in linoleic acid 
and omega-6 fatty acids, as well as DHA, in one out of 
the three independent datasets (Fig. 1). The exclusion of 
FADS SNPs had a modest impact on the relation between 
genetically predicted linoleic acid with PUFA compo-
sition (Fig.  1). Similar results were observed for total 
omega-6 fatty acids (Additional file 2: Fig. S4).

Multivariable regression
Characteristics of the UK Biobank participants included 
in multivariable regression models are summarized in 
Table S9 (Additional file 1).

Omega‑3 PUFA (DHA and total omega‑3 fatty acids)
In logistic regression models, higher circulating DHA 
was related to lower risk of most cardiovascular dis-
ease endpoints. The odds ratio of disease per standard 
unit higher DHA concentration (in models adjusted for 
sex, age, BMI, fasting time, alcohol intake frequency, 
smoking, statins use and total circulating fatty acids) 
was 0.91 (95% CI 0.89–0.94) for coronary artery dis-
ease, 0.90 (95% CI 0.84–0.97) for ischemic stroke, 0.92 
(95% CI 0.84–1.00) for haemorrhagic stroke, 0.89 (95% 
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CI 0.84–0.93) for heart failure, 0.95 (95% CI 0.92–0.98) 
for atrial fibrillation, 0.86 (95% CI 0.80–0.92) for periph-
eral artery disease, 0.87 (95% CI 0.79–0.95) for aortic 
aneurysm, 0.94 (95% CI 0.91–0.97) for venous thrombo-
embolism and 1.04 (95% CI 0.95–1.14) for aortic valve 
stenosis. Similar results were observed for total omega-3 
fatty acids (Fig. 2).

Omega‑6 PUFA (linoleic acid and total omega‑6 fatty acids)
Higher circulating linoleic acid was related to lower risk 
of most cardiovascular disease endpoints. The odds ratio 
of disease per standard unit higher linoleic acid con-
centration (in models adjusted for sex, age, BMI, fasting 
time, alcohol intake frequency, smoking, statins use and 
total circulating fatty acids) was 0.76 (95% CI 0.72–0.79) 
for coronary artery disease, 0.86 (95% CI 0.77–0.96) for 
ischemic stroke, 0.97 (95% CI 0.83–1.12) for haemor-
rhagic stroke, 0.75 (95% CI 0.68–0.81) for heart failure, 
0.89 (95% CI 0.84–0.94) for atrial fibrillation, 0.65 (95% 
CI 0.58–0.72) for peripheral artery disease, 0.80 (95% 

CI 0.68–0.93) for aortic aneurysm, 0.89 (95% CI 0.84–
0.94) for venous thromboembolism and 0.85 (95% CI 
0.74–0.99) for aortic valve stenosis. Similar results were 
observed for total omega-6 fatty acids (Fig. 3).

Mendelian randomization analysis
Omega‑3 PUFA (DHA and total omega‑3 fatty acids)
For the pooled analyses using the univariable IVW 
method, the odds ratio of disease per standard unit 
higher genetically predicted DHA concentration was 1.12 
(95% CI 0.99–1.25) for coronary artery disease, 1.06 (95% 
CI 0.99–1.13) for ischemic stroke, 0.93 (95% CI 0.81–
1.07) for haemorrhagic stroke, 1.04 (95% CI 0.98–1.11) 
for heart failure, 1.04 (95% CI 0.97–1.11) for atrial fibril-
lation, 1.14 (95% CI 1.00–1.30) for peripheral artery dis-
ease, 1.11 (95% CI 0.95–1.30) for aortic aneurysm, 1.07 
(95% CI 0.96–1.19) for venous thromboembolism, 1.36 
(95% CI 1.10–1.68) for aortic valve stenosis (Fig. 2). None 
of these results, except for aortic valve stenosis, passed 
our multiple testing correction threshold (P < 0.006).

Fig. 1  Association of genetically predicted DHA and linoleic acid on the circulating PUFA composition among individuals of European ancestry 
before and after excluding SNPs nearby the FADS locus. Results are expressed as z-statistics (i.e. effect estimate / standard error) for the variation in 
individual omega-3 and omega-6 fatty acids (y-axis) across multiple data sources (x-axis) according to genetically predicted DHA and linoleic acid. 
These are expressed using different shades of colours to indicate relative strengths of association; blue, red and grey boxes denote, respectively, 
decreases, increases and no change in individual PUFA, while white boxes represent missing data. Asterisks indicate P-value: < 5×10−8 (***), < 
5×10−5 (**) and < 5×10−2 (*). DHA: docosahexaenoic acid; FADS: fatty acid desaturase genes; ELOVL: elongase genes; SNP: single-nucleotide 
polymorphism; Plasma FA: plasma fatty acids; N: median sample size used for estimating SNP-fatty acid association; GC: gas chromatography; NMR: 
nuclear magnetic resonance; MS: mass spectrometry



Page 8 of 14Borges et al. BMC Medicine          (2022) 20:210 

Overall, univariable IVW point estimates for the rela-
tion between DHA and CVDs were consistent with 
estimates from MR-Egger, except for peripheral artery 

disease and venous thromboembolism (which were 
slightly higher for MR-Egger), and with estimates from 
multivariable IVW, except for coronary artery disease 

Fig. 2  Multivariable regression and Mendelian randomization results for the risk of cardiovascular diseases associated with higher genetically 
predicted DHA and total omega-3 fatty acids among individuals of European ancestry. Results are expressed as odds ratio (OR) of cardiovascular 
diseases per standard unit increase in DHA and total omega-3 fatty acids with corresponding 95% confidence interval (CI). Full symbols indicate 
associations at P-value lower than the threshold accounting multiple testing (P < 0.006). Multivariable regression results are adjusted by for sex, age, 
BMI, fasting time, alcohol intake, frequency, statins use and total circulating fatty acids. DHA: docosahexaenoic acid; MV: multivariable regression; 
MR: Mendelian randomization; MVMR: multivariable Mendelian randomization; FA: fatty acids; TG: triglycerides; LDL: low-density lipoprotein 
cholesterol; ApoB: apolipoprotein B

Fig. 3  Multivariable regression and Mendelian randomization results for the risk of cardiovascular diseases associated with higher genetically 
predicted linoleic acid and total omega-6 fatty acids among individuals of European ancestry. Results are expressed as odds ratio of cardiovascular 
diseases per standard unit increase in linoleic acid and total omega-6 fatty acids with corresponding 95% confidence interval (CI). Full symbols 
indicate associations at P-value lower than the threshold accounting multiple testing (P < 0.006). Multivariable regression results are adjusted by 
for sex, age, BMI, fasting time, alcohol intake, frequency, statins use and total circulating fatty acids. MV: multivariable regression; MR: Mendelian 
randomization; MVMR: multivariable Mendelian randomization; FA: fatty acids; TG: triglycerides; LDL: low-density lipoprotein cholesterol; ApoB: 
apolipoprotein B
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and aortic aneurism (which were fully attenuated in mul-
tivariable MR adjusting for LDL-cholesterol or apolipo-
protein B) (Fig. 2).

For the vast majority of exposure-outcome combina-
tions, there was substantial heterogeneity across individ-
ual SNP estimates as indicated by Cochrane’s Q statistic 
p-values (Q p-value range 0.04 to 2 × 10−102), but lim-
ited evidence of unbalanced pleiotropy as assessed by 
the MR-Egger intercept test for most outcomes, except 
for peripheral artery disease (−0.015; p-value = 0.046) 
and venous thromboembolism (−0.018; p-value = 0.001) 
(Additional file 1: Table S10). Results were generally con-
sistent across studies given imprecision in study-specific 
estimates (Additional file  2: Fig. S5A). Leave-one-out 
analyses indicated that main IVW results were driven 
by rs174528, a SNP nearby the FADS locus, since the 
removal of this SNP resulted in partial or complete 
attenuation of the IVW estimated effect for most out-
comes (i.e. ischemic stroke, heart failure, atrial fibrilla-
tion, peripheral artery disease and aortic aneurism) and 
in reversal of the direction of the estimated effect for 
venous thromboembolism (Additional file 2: Fig. S6).

The conditional F statistics for DHA in multivariable 
IVW ranged from 76 to 112 (Additional file 1: Table S11). 
Results were similar between DHA and total omega-3, 
as shown in Fig. 2, Additional file 1: Table S10 and Addi-
tional file 2: Fig. S5A and 7.

Omega‑6 PUFA (linoleic acid and total omega‑6 fatty acids)
For the pooled analyses using the univariable IVW 
method, the odds ratio of disease per additional stand-
ard unit of genetically predicted linoleic acid concen-
tration was 1.26 (95% CI 1.06–1.49) for coronary artery 
disease, 0.99 (95% CI 0.91–1.07) for ischemic stroke, 
0.88 (95% CI 0.76–1.02) for haemorrhagic stroke, 1.05 
(95% CI 0.96–1.14) for heart failure, 0.97 (95% CI 0.90–
1.04) for atrial fibrillation, 0.95 (95% CI 0.79–1.13) for 
peripheral artery disease, 1.11 (95% CI 0.95–1.30) for 
aortic aneurysm, 0.92 (95% CI 0.72–1.17) for venous 
thromboembolism and 1.25 (95% CI 0.96–1.61) for aor-
tic valve stenosis (Fig. 3). None of these results passed 
our multiple testing correction threshold (P < 0.006).

There were some inconsistencies between point esti-
mates from univariable IVW compared to MR-Egger 
and multivariable IVW, though it should be noted that 
some estimates were very imprecise. As an example, 
compared to univariable IVW, estimates for the rela-
tion between circulating linoleic acid were attenuated 
to the null or became protective for coronary artery 
disease (OR 0.99; 95% CI 0.70–1.38 for MR-Egger; OR 
0.77; 95% CI 0.61–0.96 for multivariable IVW simulta-
neously accounting for LDL-cholesterol and triglycer-
ides) and became protective for ischemic stroke (OR 

0.91; 95% CI 0.76–1.08 for MR-Egger; OR 0.79; 95% 
CI 0.69–0.92 for multivariable IVW accounting for tri-
glycerides and LDL-cholesterol) and peripheral artery 
disease (OR 0.54; 95% CI 0.41–0.71 for multivariable 
IVW accounting for triglycerides and LDL-cholesterol). 
Overall, accounting for total fatty acids or triglycerides 
individually in multivariable IVW increased uncer-
tainty (i.e. resulted in wider confidence intervals) but 
did not substantially change the magnitude of effect 
estimates as compared to univariable IVW (Fig. 3).

For vast majority of exposure-outcome combinations, 
there was substantial heterogeneity across individual 
SNP estimates as indicated by the Cochrane’s Q sta-
tistic p-values (Q p-value range 0.2 to 8 × 10−209), but 
limited evidence of unbalanced pleiotropy as assessed 
by the MR-Egger intercept test [intercept ranging from 
0.004 (p-value = 0.66) to 0.023 (p-value = 0.13)] (Addi-
tional file 1: Table S10). Overall, leave-one-out analyses 
did not indicate that the main results were substan-
tially influenced by a single SNP with the exception 
of rs115478735, a SNP in the ABO locus, for which 
removal increased the magnitude and precision for the 
estimated effect of linoleic acid on venous thromboem-
bolism risk (Additional file 2: Fig. S8).

The conditional F statistics for linoleic acid in multi-
variable IVW ranged from 52 to 128 (Additional file 1: 
Table  S11). Results were generally consistent across 
studies given imprecision in study-specific estimates, 
except for haemorrhagic stroke and heart failure (Addi-
tional file  2: Fig. S5B), and between linoleic acid and 
total omega-6 (Fig.  3, Additional file  1: Table  S10 and 
Additional file 2: Fig. S5B and S9).

Positive exposure control
Our positive control exposure analyses confirmed that 
higher circulating LDL-cholesterol and apolipoprotein 
B were related to higher risk of several cardiovascular 
disease outcomes. As an example, the odds ratio of dis-
ease per additional standard unit of genetically predicted 
LDL-cholesterol concentration was 1.55 (95% CI 1.43–
1.68) for coronary artery disease, 1.13 (95% CI 1.05–1.23) 
for ischemic stroke, 0.91 (95% CI 0.81–1.02) for haemor-
rhagic stroke, 1.13 (95% CI 1.06–1.22) for heart failure, 
1.04 (95% CI 0.98–1.11) for atrial fibrillation, 1.25 (95% 
CI 1.08–1.45) for peripheral artery disease, 1.17 (95% CI 
1.02–1.35) for aortic aneurysm, 0.99 (95% CI 0.80–1.21) 
for venous thromboembolism and 1.35 (95% CI 1.13–
1.61) for aortic valve stenosis (Additional file 2: Fig. S10). 
Removing a SNP within the FADS locus (i.e. rs102275) 
did not alter results from the positive control analyses 
(Additional file 1: Table S12).
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Discussion
Using the largest-scale genetic association data avail-
able for fatty acids from over 114,000 UK Biobank par-
ticipants, we identified a much larger number of genetic 
variants strongly and independently associated with 
circulating PUFA concentration compared to previous 
GWAS [8, 9, 11–13], which enabled us to conduct key 
sensitivity analyses such as MR-Egger and multivariable 
MR, both of which preferably require a large number of 
independent instruments. As expected, many of these 
genetic variants mapped to genes involved in lipopro-
tein-related metabolism. This poses a challenge to Men-
delian randomization studies of fatty acids since using 
SNPs from a single gene region involved in fatty acid 
metabolism (e.g. FADS) is likely to be more specific but 
not amenable to most pleiotropy-robust Mendelian rand-
omization methods, while using SNPs across the genome 
is likely to introduce non-specificity but allow the use of 
pleiotropy-robust methods.

When using these multiple genetic variants as instru-
ments for Mendelian randomization, our findings did not 
confirm the inverse association observed in conventional 
multivariable regression and provided weak evidence of 
higher genetically predicted DHA (and total omega-3 
fatty acids) concentration being related to higher risk of 
some cardiovascular endpoints. However, overall, Men-
delian randomization findings did not pass our crite-
ria for multiple testing correction and were attenuated 
when accounting for LDL-cholesterol/apolipoprotein 
B or excluding a SNP in the vicinity of the FADS locus. 
Mendelian randomization findings for higher genetically 
predicted linoleic acid (and total omega-6) concentra-
tion were inconsistent across different cardiovascular 
endpoints and methods and did not confirm the inverse 
association observed in conventional multivariable 
regression. There was weak evidence of higher geneti-
cally predicted linoleic acid being related to lower risk 
of ischemic stroke and peripheral artery disease after 
accounting for LDL-cholesterol/apolipoprotein B. 
Despite the large increase in the number of instruments 
in our analyses, there remains considerable impreci-
sion in estimates for the effect of circulating fatty acids 
on the risk of some cardiovascular disease outcomes. As 
an example, IVW estimates for the relation of DHA with 
the risk of aortic aneurysm was 1.11 (95% CI 0.95–1.30), 
while IVW estimates for the relation of our positive con-
trol exposure (LDL-cholesterol) with the same outcome 
was 1.17 (95% CI 1.02–1.35). This indicates that we can-
not confidently rule out the presence of clinically mean-
ingful effects due to the considerable uncertainty in some 
results.

Previous metanalyses of classical observational stud-
ies indicate that higher circulating long-chain omega-3 

and omega-6 PUFA are either not associated or associ-
ated with lower risk of coronary artery disease and stroke 
[61–64]. Cochrane recently published a series of system-
atic reviews of RCTs with the overall conclusion that 
increasing omega-3, omega-6 or total PUFA intake, via 
supplementation or diet, has modest to no effect on CVD 
events or mortality [4–6]. Since then, further large-scale 
RCTs on long-chain omega-3 PUFA have been published 
and yielded conflicting results [65–67]. In addition, most 
Mendelian randomization studies, as well as classical 
observational studies and RCTs, have focussed on explor-
ing the effect of PUFA on the risk of coronary artery dis-
ease and, to a lesser extent, ischemic stroke. The effects 
of these fatty acids on other types of cardiovascular end-
points, such as heart failure and atrial fibrillation, have 
been under explored.

Integrating multiple lines of evidence to resolve con-
troversies in research on cardiovascular health effects 
of fatty acids is essential. However, directly comparing 
results from different study designs in this context is not 
straightforward. For illustration, in intervention stud-
ies, the effect of PUFA supplementation or diet intake 
on CVD endpoints is frequently tested over relatively 
short periods of time due to logistical issues [4–6] and, in 
some instances, may depend on the overall diet composi-
tion [3]. On the other hand, genetic proxies of circulating 
PUFA affect their metabolism (not intake) are assumed 
to have lifelong effects and have pleiotropic effects on 
lipoprotein-related traits.

Mendelian randomization can provide a valid test of 
the presence of a causal effect if genetic variants are rel-
evant and valid instruments for the exposure of interest.

Regarding instrument relevance, we have selected inde-
pendent SNPs strongly associated with circulating PUFA 
concentration, which explained from 4.8 to 7.9% of phe-
notypic variance (mean F statistics 109–201) among the 
UK Biobank participants (discovery sample). In addition, 
we replicated these associations in an independent data-
set [12] using the same NMR metabolomics platform as 
the one used in the UK Biobank participants (median 
sample size 13,516), where SNPs explained 3.1 to 6.9% of 
phenotypic variance in circulating PUFA. This indicates 
that bias due to weak instruments is unlikely to be sub-
stantial in our analyses, even though bias due to winner’s 
curse (due to using the UK Biobank to select SNPs and 
estimate their effect on PUFA) could affect the magni-
tude of effect estimates. There was little evidence that the 
selected SNPs impacted PUFA composition in independ-
ent datasets with more detailed data on individual PUFA, 
particularly after removing SNPs nearby the FADS locus. 
This might be related to differences in assays, units of 
analyses or statistical power.
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Instrument validity requires that any effect from 
genetic instrument to the outcome is completely medi-
ated by the exposure of interest. This assumption could 
be violated in several scenarios, such as in the presence of 
confounding due to population stratification or horizon-
tal pleiotropy.

Bias by population stratification could result if hetero-
geneity in genetic ancestry in a given sample was related 
to different distributions of genetic instrument and out-
come. To mitigate that, heterogeneity in genetic ancestry 
was accounted for when generating genetic association 
data for cardiovascular outcomes in all data sources by 
correcting for genomic inflation factor, adjusting for 
principal components of ancestry or using mixed linear 
models as detailed in Table S2 (Additional file 1). In addi-
tion, the overall consistency of findings across multiple 
studies provides some reassurance against findings being 
explained by population stratification.

Horizontal pleiotropy is one of the major threats to 
the validity of Mendelian randomization studies. By con-
ducting a series of analyses for functional mapping and 
annotation of fatty acid genetic association results, we 
showed that genetic variants associated with fatty acids 
are strongly enriched for genes and pathways involved 
in lipoprotein metabolism, particularly (triglyceride-
rich or high-density) lipoprotein particle remodelling, 
apolipoprotein binding and reverse cholesterol trans-
port. For illustration, some PUFA SNPs mapped to genes 
encoding proteins targeted by lipid-lowering drugs, 
such as HMGCR​ (Entrez Gene 3156), PCSK9 (Entrez 
Gene 255738) and CETP (Entrez Gene 1071) [68, 69]. 
Considering the pivotal role of lipoprotein metabolism 
in the aetiology of several cardiovascular diseases, this 
stresses that the assumption of no horizontal pleiotropy 
(or the weaker versions of this assumption by MR-Egger) 
in our analyses is likely implausible. We tried to miti-
gate that by using multivariable MR to account for total 
fatty acids, given the lack of specificity of the selected 
instruments for specific fatty acids, and for triglycer-
ides, LDL-cholesterol or apolipoprotein B, which are 
key determinants of several CVDs reflecting lipoprotein 
metabolism. Accounting for LDL-cholesterol/apolipo-
protein B revealed a potential direct protective effect of 
linoleic acid on the risk of ischemic stroke and peripheral 
artery disease, suggesting that horizontal pleiotropy via 
LDL-cholesterol might have masked some true underly-
ing protective effect of linoleic acid. In addition, Men-
delian randomization findings for the relation between 
DHA and several CVDs were attenuated when excluding 
SNPs in the vicinity of the FADS locus. On the one hand, 
SNPs regulating FADS1 and FADS2 are expected to be 
more credible instruments given their proximal relation 
with PUFA biosynthesis. However, these SNPs have been 

shown to be associated with numerous fatty acids and 
non-fatty acid traits and may not be valid instruments for 
circulating DHA [22]. Results from multivariable regres-
sion were often inconsistent with results from MR IVW 
(e.g. multivariable regression and IVW estimates were in 
opposite direction for the association between PUFA and 
CAD risk). While the reason for that is not entirely clear, 
this is possibly related to pleiotropic genetic instruments 
since accounting for LDL-cholesterol in MR analyses 
attenuated those differences.

Conclusions
Overall, our Mendelian randomization findings do 
not support a protective role of circulating DHA, total 
omega-3, linoleic acid and total omega-6 concentra-
tion on the risk of CVDs, as observed in conventional 
analysis. However, horizontal pleiotropy via lipoprotein-
related traits could be a key source of bias in our analyses 
despite our attempts to account for that.
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