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Abstract 

Background:  Despite large outbreaks in humans seeming improbable for a number of zoonotic pathogens, several 
pose a concern due to their epidemiological characteristics and evolutionary potential. To enable effective responses 
to these pathogens in the event that they undergo future emergence, the Coalition for Epidemic Preparedness Inno-
vations is advancing the development of vaccines for several pathogens prioritized by the World Health Organization. 
A major challenge in this pursuit is anticipating demand for a vaccine stockpile to support outbreak response.

Methods:  We developed a modeling framework for outbreak response for emerging zoonoses under three reactive 
vaccination strategies to assess sustainable vaccine manufacturing needs, vaccine stockpile requirements, and the 
potential impact of the outbreak response. This framework incorporates geographically variable zoonotic spillover 
rates, human-to-human transmission, and the implementation of reactive vaccination campaigns in response to 
disease outbreaks. As proof of concept, we applied the framework to four priority pathogens: Lassa virus, Nipah virus, 
MERS coronavirus, and Rift Valley virus.

Results:  Annual vaccine regimen requirements for a population-wide strategy ranged from > 670,000 (95% predic-
tion interval 0–3,630,000) regimens for Lassa virus to 1,190,000 (95% PrI 0–8,480,000) regimens for Rift Valley fever 
virus, while the regimens required for ring vaccination or targeting healthcare workers (HCWs) were several orders of 
magnitude lower (between 1/25 and 1/700) than those required by a population-wide strategy. For each pathogen 
and vaccination strategy, reactive vaccination typically prevented fewer than 10% of cases, because of their presently 
low R0 values. Targeting HCWs had a higher per-regimen impact than population-wide vaccination.

Conclusions:  Our framework provides a flexible methodology for estimating vaccine stockpile needs and the geo-
graphic distribution of demand under a range of outbreak response scenarios. Uncertainties in our model estimates 
highlight several knowledge gaps that need to be addressed to target vulnerable populations more accurately. These 
include surveillance gaps that mask the true geographic distribution of each pathogen, details of key routes of spillo-
ver from animal reservoirs to humans, and the role of human-to-human transmission outside of healthcare settings. In 
addition, our estimates are based on the current epidemiology of each pathogen, but pathogen evolution could alter 
vaccine stockpile requirements.
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Background
Less than 2 years ago, SARS-CoV-2 was an unknown 
virus circulating in a zoonotic reservoir  [1]. In the time 
since, it has caused a pandemic resulting in more than 
4.6 million deaths [2]. Theoretical work [3] predicts that 
frequent small-scale outbreaks in humans may provide 
opportunities for the selection of more transmissible 
variants that facilitate emergence from the original reser-
voir. Indeed, virological studies indicate that a sequence 
of mutations acquired in this manner may offer a plausi-
ble explanation for the emergence of SARS-CoV in 2003 
[4]. More frequent spillovers and more human-to-human 
transmission ensuing from those spillovers are expected 
to increase the probability that adaptations such as these 
arise and facilitate more widespread emergence [5]. 
Because of this evolutionary potential, even zoonotic 
pathogens with limited human-to-human transmission—
as defined by a basic reproduction number, R0, below 
1—are viewed as a concern. The status quo of investing 
in the development of diagnostics, therapeutics, and vac-
cines only in reaction to emerging disease threats has 
made the world dangerously vulnerable to pandemics [6, 
7].

To preempt future public health emergencies aris-
ing from emerging zoonotic diseases, the World Health 
Organization (WHO) developed a research and develop-
ment blueprint for action to prevent epidemics [8]. This 
R&D Blueprint prioritizes and regularly updates a list 
of pathogens for the development of diagnostics, thera-
peutics, and vaccines. The Coalition for Epidemic Pre-
paredness Innovations (CEPI) was launched in 2017 to 
accelerate the development of vaccines against emerging 
infectious diseases and to enable equitable access to these 
vaccines for people during outbreaks [9–11]. The first call 
for proposals from CEPI was on developing vaccines for 
Lassa virus (LASV), MERS coronavirus (MERS-CoV), 
and Nipah virus (NiV). Soon after, it added Rift Valley 
fever virus (RVFV) and chikungunya virus (CHIKV) to 
its portfolio. As of early 2021, CEPI was supporting the 
development of a total of 19 different vaccine candidates 
for these five diseases, in addition to other efforts related 
to Ebola, COVID-19, and “disease X” [12].

In anticipation of vaccine candidates for these diseases 
progressing through safety and efficacy trials and towards 
implementation, there is a need to understand future 
potential vaccine demand [6]. Even though these vaccines 
are not yet available for public health use (a NiV vaccine 
is currently undergoing a phase I clinical trial [13], and 
MERS-CoV and LASV vaccines are currently in phase 

II clinical trials [14]), understanding demand at an early 
stage is important to inform fundraising and planning 
efforts in support of the manufacturing and distribution 
infrastructure that will be required for their implemen-
tation [7]. Following the development of a new vaccine, 
manufacturing capacities are typically the first limiting 
factor for vaccine supply, which raises allocation and pri-
oritization decisions to protect people at higher risk of 
infection and clinical diseases [15, 16]. Appropriate plan-
ning of vaccine stockpiles to support vaccine demand is 
important to minimize the extent to which difficult deci-
sions about vaccine prioritization must be made once 
a vaccine becomes available for use. At the same time, 
overestimating vaccine stockpile needs could result in 
doses expiring and resources that could have gone to 
other needs being wasted.

To improve capabilities to plan vaccine stockpiles for 
emerging zoonotic pathogens, we developed a modeling 
framework to quantify the vaccine stockpile size needed 
to meet the demand for outbreak response and applied 
it to LASV, MERS-CoV, NiV, and RVFV (Fig. 1). Each of 
these pathogens is zoonotic, with the majority of human 
cases believed to result from spillover transmission from 
non-human hosts accompanied by self-limiting, human-
to-human transmission [17–20]. Our model is driven by 
geographically and seasonally realistic patterns of spillo-
ver for each pathogen, with each spillover event having 
the potential to spark an outbreak that we simulated 
stochastically with a branching process model. Out-
break response with reactive vaccination was triggered 
in our model whenever a threshold number of cases was 
exceeded within a certain space-time window. We quan-
tified the number of vaccine regimens required (where 
the number of regimens equals the number of individuals 
vaccinated) under three different approaches to reactive 
vaccination: (1) population-wide within the same geo-
graphic area as the outbreak, (2) targeted on healthcare 
workers (HCWs) within that area, or (3) targeted on a 
ring of contacts around each index case. Using vaccines 
modeled after target product profiles for each pathogen 
[21–24], we also quantified the impact of reactive vac-
cination under a range of scenarios about deployment 
timing, coverage, per-exposure protection (PEP) from 
vaccination, and several epidemiological parameters.

Methods
Study overview
We considered four emerging zoonoses prioritized 
by the WHO R&D Blueprint and CEPI. For each, we 
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modeled spillover, human-to-human transmission, and 
reactive vaccination. We quantified the vaccine stockpile 
necessary to meet the demands of reactive vaccination 
under three scenarios: vaccinating an entire population 
within the same geographic area as a detected outbreak, 
vaccinating healthcare workers within that geographic 
area, or vaccinating contacts associated with each spill-
over case. Lassa fever is caused by LASV, a virus that 
circulates in rodents in West Africa and has resulted 
in thousands of cases and deaths in recent years [25, 
26]. Nipah is caused by NiV, a virus that circulates in 
fruit bats that can be found throughout tropical and 
subtropical Asia [27, 28], but documented spillover to 
humans has been mainly limited to India, Bangladesh, 
and Malaysia [20, 29, 30]. Middle Eastern respiratory 
syndrome is caused by MERS-CoV, a coronavirus that 
probably originated in bats [31] and is known to circu-
late among domestic camel populations in the Middle 
East and parts of eastern and northern Africa, resulting 
in spillover from camels to humans [32–34]. Human-
to-human transmission has been reported in nosoco-
mial settings for three of these pathogens [20, 35, 36], 

although only MERS was reported in large hospital out-
breaks [36, 37]. The evidence for community transmis-
sion of these viruses is more limited [19, 20, 34]. Rift 
Valley fever is caused by RVFV, a mosquito-transmitted 
virus infecting ruminant livestock species in Africa, the 
Arabian Peninsula, and the Indian Ocean islands [38–
40]. RVF outbreaks have been associated with heavy 
rainfall in eastern and southern Africa [41, 42], but 
transmission can also occur outside of these epizootic 
events [17]. Humans can be infected via direct contact 
with infected animals or via mosquito bites but are 
believed to be dead-end hosts [43].

Epidemiological data
For each of the pathogens, we collated epidemiologi-
cal data through the end of 2020 from multiple sources, 
including WHO outbreak reports (e.g., [44]), ProMED 
reports [45], country-level reports [46, 47], and a litera-
ture search. A detailed overview of the source of epi-
demiological data for each pathogen can be found in 
Additional file 1: Table S1.

Fig. 1  Overview of this study. We considered four emerging zoonoses prioritized by the WHO R&D Blueprint and CEPI (Lassa fever, Middle Eastern 
respiratory syndrome (MERS), Nipah, and Rift Valley fever). For each, we modeled spillover, human-to-human transmission, and reactive vaccination. 
The left side of the figure shows the primary animal reservoirs, geography, and human-to-human transmission potential of each pathogen. The 
middle shows the three reactive vaccination scenarios we considered: vaccinating an entire population within the same geographic area as a 
detected outbreak, vaccinating healthcare workers within that geographic area, or vaccinating contacts associated with each spillover case. On the 
right side of the figure are the two main model outputs: an estimate of the vaccine stockpile required for reactive vaccination and the projected 
health impact of the reactive vaccination campaigns under each strategy
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Spillover simulation
Given extensive spatial heterogeneity of incidence, we 
collated epidemiological data at the first administrative 
level (adm1) in each country—e.g., province or state—
within the study region for each pathogen. Epidemiologi-
cal data availability below the adm1 level was too sparse 
to attempt a finer-scale analysis of spillover rates. The 
primary epidemiological data used to inform spillover 
rates was the annual incidence of reported cases of each 
pathogen at the adm1 level (Additional file 1: Table S1). 
Where possible, case data was categorized into cases of 
documented or suspected human-to-human transmis-
sion, documented or suspected spillover cases, and cases 
of unknown origin. The geographic coverage of our anal-
ysis for each pathogen was determined by the geographic 
distribution of spillover cases in the literature. All coun-
tries with at least one documented spillover case were 
included in our analysis. We excluded countries with 
imported cases but no spillover from a zoonotic source 
(e.g., South Korea for MERS-CoV).

Spillover rates were estimated using a generalized lin-
ear mixed model (GLMM) with a zero-inflated negative 
binomial distribution to capture overdispersion in the 
annual distribution of spillover cases within an adm1. 
Spillover cases were defined as documented spillover 
cases, suspected spillover cases, or cases of unknown 
origin, thereby excluding any cases of documented or 
suspected human-to-human transmission. Year, coun-
try, and adm1 were treated as random effects, with the 
adm1 variable nested within the country variable. Year 
was also included as a random effect for the zero-inflated 
portion of the model. Model fitting was conducted using 
the glmmTMB package in R [48]. This default model did 
not converge for NiV; therefore, for NiV, we used the 
GLMM model without the random effect by year in the 
zero-inflated portion of the model to enable convergence. 
Then, for each pathogen, we simulated annual spillover 
cases for each year and adm1 by taking draws (1000 rep-
licates) from a zero-inflated negative binomial distribu-
tion using the estimated parameters from the appropriate 
GLMM fit. We randomly sampled 1000 of these simu-
lated spillovers from the last 5 years as inputs to the out-
break simulation model so that the simulated spillovers 
would reflect recent spillover rates.

To account for the seasonality of spillover, we fitted a 
beta distribution to the timing of spillover cases within 
a year (daily for MERS, weekly for Lassa fever, monthly 
for Nipah and RVF) and simulated the timing of each 
spillover case as a random draw from that distribu-
tion (Table 1). To account for spatial clustering of cases 
below the adm1 level, we associated each simulated case 
with a catchment area. We did so according to the prob-
abilities proportional to the catchment area population. 

Catchment areas were defined by the second administra-
tive level (adm2) or hospitals aggregated within 10 km for 
the first administrative (adm1) areas that did not have an 
adm2 level. These catchment areas, therefore, represent 
areas where individuals would be expected to seek care 
and have their diagnosis reported, and the aggregation 
of hospitals within a 10-km area assumes that individu-
als who seek treatment for the relatively severe symptoms 
of these diseases do so at larger hospitals. Hospital loca-
tion data for sub-Saharan Africa used in the analysis of 
LASV was obtained from [49], and hospital location data 
outside of sub-Saharan Africa was obtained from Health-
sites.io [50]. The primary set of findings we reported are 
based on a set of 1570 catchment areas for LASV, 767 for 
MERS-CoV, 5076 for NiV, and 2126 for RVFV, which dif-
fer because of the different geography of each pathogen. 
We examined the sensitivity of our results to the defini-
tion of a catchment area by rerunning the analyses with 
either adm1 catchment areas or all hospitals within an 
adm1 as distinct catchment areas. The results of these 
analyses are presented in the supplement (Additional 
file 1: SI Text).

Outbreak simulation
To simulate incidence attributable to human-to-human 
transmission, we considered each spillover case as a 
potential index case for an outbreak. A schematic over-
view of both the spillover and outbreak simulation 
models, including outbreak response, is provided in 
Fig.  2. Human-to-human transmission was simulated 

Table 1  Overview of the parameter estimates. Incubation 
period and infectious period are defined in units of days, and 
parameters for seasonality refer to the week of the year. Numbers 
in parentheses for R0 represent the 95% confidence intervals. SD 
standard deviation

a  Fixed value used for sensitivity analysis only

Parameter LASV MERS-CoV NiV RVFV

Seasonality

  Peak 
(weeks)

31.1 23.3 27.3 23.2

  SD (weeks) 6.2 13.6 6.4 12.7

Incubation period

  Mean (days) 12.05 5.56 9.87 2.88

  SD (days) 3.62 0.77 0.84 1.95

Infectious period

  Mean (days) 11.31 13.5 6.49 7a

  SD (days) 8.29 2.61 0.26 –

R0

  Mean 0.063 (0.05, 
0.08)

0.58 (0.31, 
0.99)

0.325 (0.21, 
0.52)

0 (0.01)

  Dispersion – 1.42 0.048 –
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stochastically using a branching process model. For each 
primary case, a certain number of secondary cases was 
drawn either from a Poisson distribution (for Lassa fever 
and RVF) with λ = R0 or from a negative binomial dis-
tribution (for MERS and Nipah) with μ = R0 and a dis-
persion parameter, k. A Poisson distribution was used for 
Lassa fever and RVF, because both have an estimated R0 < 
0.1 and no available estimate of overdispersion. We used 
a negative binomial distribution for MERS and Nipah, 
because secondary cases for these diseases are known to 
be overdispersed, with a majority of human-to-human 
transmission arising from a small minority of primary 
cases [18, 20].

We estimated R0 and variability therein differently for 
each pathogen. For LASV, we estimated an R0 for noso-
comial transmission by fitting a simple branching process 
model to observed outbreak sizes from [51] using the 
optimize function in R and assuming a Poisson offspring 

distribution [52]. The resulting estimate of R0 for LASV 
was 0.063 (95% confidence interval [CI] 0.05––0.08) 
(Table  1). For MERS-CoV, we compiled estimates of R0 
from multiple studies analyzing data from MERS out-
breaks [18, 53–57] and described variability in those 
estimates with a gamma distribution, which resulted in 
a median R0 of 0.583 (90% CI 0.31–0.99). The disper-
sion parameter estimate, k = 0.26, for MERS-CoV was 
obtained from [57]. For NiV, we estimated R0 and its 
variability from detailed epidemiological investigations 
of Nipah outbreaks in Bangladesh that estimated person-
to-person chains of NiV transmission [58]. Using data 
from these studies on the number of secondary infections 
per primary infection and the size of each transmission 
cluster, we obtained maximum likelihood estimates of 
R0 (0.33, 95% CI 0.21–0.52) and k (0.048, 95% CI 0.031–
0.074), which were consistent with a branching pro-
cess with a negative binomial offspring distribution. For 

Fig. 2  Schematic of the spillover simulation and outbreak simulation models. The spillover simulation model estimates the magnitude and timing 
(seasonality) of the spillover rate for each catchment area from the historical distribution of reported spillovers in the catchment area. These 
estimated spillover rates are input into our outbreak model for each catchment area (as identified by the bolded model input), which used a 
branching process model to simulate human-to-human transmission. An outbreak response was triggered within a catchment area if the number 
of reported cases exceeded a predetermined number within a 28-day time window (outbreak threshold size). Outbreak model inputs with a 
superscript S were varied as part of our sensitivity analysis
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RVFV, we assumed R0 = 0 and considered R0 = 0.01 for 
sensitivity analysis only, as no human-to-human trans-
mission has been definitively documented to date [43].

The timing of incubation and infectious periods were 
then simulated subsequently based on gamma distribu-
tions of those periods that we estimated by fitting a model 
to reconcile variability in previously published estimates 
(Table 1). As no human-to-human transmission is known 
for RVFV, we assumed for the sensitivity analysis a fixed 
duration for the infectious period of 7 days that is con-
sistent with the duration of detectable viremia after the 
onset of symptoms [59]. For all pathogens, the infection 
date of secondary cases was simulated as a draw from a 
uniform distribution over the infectious period of the pri-
mary case. Each secondary case was assigned to the same 
catchment area as the associated index case. A detailed 
overview of the source for each parameter of each patho-
gen can be found in Additional file 1: Table S1.

Vaccine campaign simulation
Three different reactive vaccination strategies were eval-
uated: (1) vaccinating a portion of the general population 
in a given catchment area, (2) specifically targeting the 
HCWs in that catchment area, or (3) adopting a ring vac-
cination strategy where the local population surrounding 
each index case are targeted for vaccination. These strate-
gies were chosen as they represent three of the most fre-
quently deployed outbreak response strategies. For each 
strategy, baseline vaccination campaign parameter values 
(and parameter ranges for the sensitivity analysis) were 
based on vaccine target product profiles for each patho-
gen [21–24] or chosen in consultation with CEPI and 
subject-matter experts for each pathogen (Table 2).

To estimate the impact of vaccination, we simulated 
each outbreak response relative to a counterfactual 
simulation in which there was no outbreak response. 
Vaccination impact was defined as the number of cases 
averted via vaccination and calculated by taking the dif-
ference between the number of cases in the vaccination 
and no-vaccination scenarios. In our baseline scenario, 
an outbreak response within a single catchment area 
was triggered once ten cases of Lassa fever and MERS 
or three cases of Nipah and RVF were detected within 
a 4-week window (Table  2). These outbreak response 
thresholds were chosen through discussion with CEPI 
and pathogen experts and do not necessarily match the 
different outbreak definitions currently used by WHO or 
individual countries. The vaccination start date was cal-
culated by adding a delay to the outbreak response date. 
To simplify vaccine uptake in our model, we assumed 
that each target population was immunized on a single 
day. Multi-day vaccination campaigns would likely reduce 
the impact of outbreak response relative to our estimates, 

but this impact would be less severe than a compara-
ble delay in protection following vaccination because at 
least a portion of the population would be protected at 
the beginning of the campaign. Therefore, our analysis of 
the sensitivity of vaccination impact to a delay in protec-
tion following vaccination could be considered an upper 
bound on the sensitivity to extending the vaccine admin-
istration period for a given round of vaccination. In the 
case of a 2-dose vaccine, an additional delay of 28 days 
was assumed between the administration of the first and 
second doses.

For the general population vaccination strategy, HCWs 
were treated as part of the general population and were 
vaccinated with the same probability as the general popu-
lation. For the HCW vaccination strategy, non-HCWs 
were not vaccinated, except for a hybrid strategy tested 
as part of our sensitivity analysis, where 20% of the gen-
eral population was vaccinated versus 80% of HCWs 
(Table 2). For the ring vaccination strategy, we calculated 
the number of index cases that would arise after the reac-
tive vaccination campaign had started and assumed that 
90 vaccine regimens would be needed to vaccinate a ring 
of individuals around each index case based on estimates 
from ring vaccination campaigns during recent Ebola and 
cholera outbreaks [60, 61]. For the ring vaccination strat-
egy, we only estimated the number of vaccine regimens 
that would be required and did not attempt to estimate 

Table 2  Overview of the simulation scenarios. Parameter values 
for the baseline reactive vaccination scenario for each pathogen. 
Outbreak response threshold cases and threshold window refer 
to the number of cases that need to occur within a certain time 
window to trigger an outbreak response. Parameter values in 
parentheses are alternative values used as a part of the sensitivity 
analysis

a  Excluded for RVFV as no nosocomial transmission has been documented

Parameter LASV, MERS-CoV NiV, RVFV

Outbreak response

  Threshold cases 10 (5) 3 (1, 5)

  Threshold window 28 days 28 days

  Delay 28 days (7, 120) 28 days (7, 120)

Vaccination

  Coverage HCWa 70% (80, 50, 90)

  Coverage population 70% (20, 50, 90)

  Delay between doses 28 days

  Regimens per index case (ring 
vaccination only)

90

Per-exposure protection (PEP)

  Single dose 70% (50%, 90%)

  Two doses, 1st 35% (25%, 45%)

  Two doses, 2nd 70% (50%, 90%)

  Delay 7 days (14)
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the impact of vaccination on cases averted, because our 
model was designed to simulate a single vaccine cam-
paign and not the periodic deployment as required by a 
ring vaccination strategy.

Once a vaccination campaign was completed and the 
delay between vaccination and protective immunity had 
elapsed, vaccination in the general population removed 
spillover cases with a probability equal to vaccination 
coverage in the general population multiplied by per-
exposure protection (PEP). The PEP of the vaccine can 
therefore be viewed as a reduction in the per-exposure 
risk of symptomatic infection. Although we did not make 
an assumption regarding the ability of a vaccine to pre-
vent asymptomatic infections, because we assume that 
only symptomatic cases are infectious, the PEP could 
be seen as equivalent to a per-exposure probability of 
sterilizing immunity from an epidemiological perspec-
tive. Vaccination of the general population also removed 
patient-to-HCW nosocomial cases with a probability 
equal to vaccination coverage in HCWs multiplied by 
PEP. Vaccination of HCWs had no impact on spillover 
cases, but it removed nosocomial cases with a probabil-
ity equal to vaccination coverage in HCWs multiplied by 
PEP. PEP depended on whether a sufficient amount of 
time since vaccination had elapsed and, in the event of 
a two-dose vaccine, whether an individual had received 
one dose or two doses at the time of exposure (Table 2). 
Cases downstream in a transmission chain from a case 
averted by vaccination were also averted.

Vaccine demand calculation
To quantify the number of regimens required to meet the 
demands of a given outbreak response strategy, we esti-
mated the number of healthcare workers and the overall 
population associated with each catchment area where 
an outbreak occurred. The overall population per catch-
ment area was estimated based on WorldPop data from 
2015 [62]. For healthcare workers, we took the national-
level numbers of healthcare workers and distributed 
them proportional to the population associated with each 
catchment area [63].

Graphical user interface
A generalized implementation of the model is provided 
as a graphical user interface (GUI) at http://​eidva​ccine​
demand.​crc.​nd.​edu. In the generalized implementation, 
a few adjustments were made to allow for a more flex-
ible application of the model and to make computing 
time more acceptable for an interactive web tool. First, 
annual spillovers are drawn from a negative binomial 
distribution and then distributed across the catchment 
areas with a multinomial distribution proportional to 
the probability that spillovers occur in these catchment 

areas. Second, the population in the catchment areas 
was defined by a negative binomial distribution so that 
specific geographies did not need to be reproduced. The 
default parameters for the GUI of each pathogen were 
obtained by fitting the corresponding distribution func-
tion to the estimated spillover and population data from 
this study. The source code for the GUI is provided at 
https://​github.​com/​lerch-a/​CEPI_​Vacci​neCam​paign​GUI.

Results
Spillover cases and human‑to‑human transmission
The median annual number of spillover cases was 6 
(95% prediction interval 0–190) for Nipah, 114 (95% 
PrI 48–266) for MERS, 185 (95% PrI 8–13,134) for RVF, 
and 417 (95% PrI 142–1837) for Lassa fever (Fig.  3A). 
Simulated variability in the annual number of spillover 
cases matched the cumulative distribution of observed 
spillover cases for each pathogen (Additional file  1: 
Figs. S1B-S4B). Spillover rates for each pathogen varied 
both seasonally (Additional file  1: Figs. S1A-S4A) and 
geographically (Fig.  4A). Spillover cases of Lassa fever 
were concentrated in Sierra Leone, Liberia, and Nigeria, 
although a few spillover cases occurred in other west-
ern African countries. Spillover of RVF to humans was 
widespread in South Africa, Madagascar, eastern Africa, 
and the Arabian Peninsula, with frequent spillover cases 
occurring in several western and northern African 
countries as well. The majority of MERS spillover cases 
occurred in Saudi Arabia, and the majority of Nipah spill-
over cases occurred in Bangladesh, with additional spillo-
ver events in India and Malaysia.

The number of cases arising from human-to-human 
transmission depended on both the spillover rate and 
R0 (Fig.  3A). Under our default parameter assumptions, 
there was no human-to-human RVFV transmission, but 
in the absence of vaccination, the median annual num-
ber of human-to-human cases following spillover was 2 
(95% PrI 0–82) for Nipah, 29 (95% PrI 11–143) for Lassa 
fever, and 161 (95% PrI 46–407) for MERS (see Fig. 5 for 
an example of the transmission chains for one catchment 
area).

Estimates of vaccine demand
In our analysis, a median of 0 (95% PrI 0–8) Nipah reac-
tive vaccination campaigns were triggered annually, com-
pared to 4 (95% PrI 0–11) MERS campaigns, 5 (95% PrI 
0–20) RVF campaigns, and 0 (95% PrI 0–20) Lassa fever 
campaigns (Fig.  3B). The locations of reactive vaccina-
tion campaigns broadly followed the geographic distri-
bution of spillovers for each pathogen, although Lassa 
fever spillovers in Guinea, Benin, Togo, and western 
Nigeria were rarely reported frequently enough to trigger 
a response in our simulations (Fig.  4B). The number of 

http://eidvaccinedemand.crc.nd.edu
http://eidvaccinedemand.crc.nd.edu
https://github.com/lerch-a/CEPI_VaccineCampaignGUI
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reactive vaccination campaigns that were triggered, and 
the timing of those campaigns, was strongly influenced 
by the seasonal pattern of pathogen spillover (Additional 
file 1: Figs. S1-S4).

For all four pathogens, there was a wide range in the 
number of vaccine regimens required in a typical year 
due to the dependence of vaccine demand on the spa-
tiotemporal clustering of spillover cases required to 
trigger an outbreak response. The largest annual vac-
cine demand was for RVFV, with a median of 1,191,741 
(95% PrI 0–8,480,275) vaccine regimens required to tar-
get the general population under our baseline outbreak 
response scenario (Fig. 3C). The median annual number 

of vaccine regimens for MERS-CoV was 870,045 (95% 
PrI 0–2,843,407). The median annual number of vaccine 
regimens needed for NiV and LASV was zero, implying 
that an outbreak response was triggered less than 50% of 
the time. However, the mean annual number of vaccine 
regimens was 673,167 (95% PrI 0–3,629,052) for LASV 
and 1,450,177 (95% PrI 0–12,240,814) for NiV (Fig. 3C). 
The number of vaccine regimens required to conduct a 
ring vaccination strategy or to cover healthcare work-
ers as a part of an outbreak response was typically sev-
eral orders of magnitude (between 1/25 and 1/700) lower 
than the number required to cover the general popula-
tion (Fig. 3C). The median annual number of MERS-CoV 

Fig. 3  Simulated annual cases and reactive vaccination impacts. A Annual number of spillover, human-to-human (H2H), and total cases for each 
pathogen across the entire study region (in the absence of vaccination). B Violin plot (including box plot representing the median, IQR, and 95% CI) 
of the annual number of vaccine campaigns triggered due to the outbreak threshold being exceeded across 1000 simulations for each pathogen. C 
Number of vaccine regimens required per year for reactive vaccination under our baseline scenario under three alternative assumptions about the 
target of vaccination campaigns. D Violin plot (including box plot representing the median, IQR, and 95% CI) of the annual number of cases averted 
by reactive vaccination campaigns across 1000 simulations for each pathogen. All y-axes are log10 scaled
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vaccine regimens required to cover healthcare workers 
was 6786 (95% PrI 0–22,086). A median of 1540 (95% PrI 
0–62,320) vaccine regimens were needed among health-
care/veterinary workers annually for RVFV outbreak 
response, 0 (mean 1144; 95% PrI 0–6485) were required 
for LASV, and 0 (mean 2330; 95% PrI 0–15,833) for NiV. 
The median annual number of vaccine regimens required 
for ring vaccination was 4860 (95% PrI 0–21,429) for 
MERS-CoV, 12,150 (95% PrI 0–1,175,758) for RVFV, 
0 (mean 13,774; 95% PrI 0–108,056) for LASV, and 0 
(mean 2605; 95% PrI 0–21,641) for NiV. The median 
size of a single reactive vaccination campaign targeting 

the general population was 153,773 (95% PrI 47,723–
485,034) for LASV, 156,634 (95% PrI 1478–1,162,080) for 
RVFV, 275,471 (95% PrI 90,171–358,259) for MERS-CoV, 
and 460,408 (95% PrI 32,633–5,098,459) for NiV (the 
sizes of single HCW vaccination campaigns are included 
in Additional file 1: Table S2).

Impact of outbreak response
The estimated impact of reactive vaccination as an 
outbreak response tool was generally low for all four 
pathogens. Vaccinating 70% of the general population 
in response to an outbreak with a single-dose vaccine 

Fig. 4  Geographic distribution of predicted spillover cases and reactive vaccination campaigns. A Geographic distribution at the 2nd administrative 
level (adm2) of the expected annual number of spillover cases for each pathogen. B The annual probability that a campaign will be triggered in 
each adm2 catchment area based on 1000 simulations
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prevented an annual median of 43 (95% PrI 0–5853) RVF 
cases, 6 (95% PrI 0–83) MERS cases, 0 (95% PrI 0–90) 
Nipah cases, and 0 (95% PrI 0–357) cases of Lassa fever 
(Fig.  3D). These vaccine impacts correspond to 0.69 
(95% PrI 0–2.92) cases averted per 100,000 vaccine regi-
mens administered for MERS, 3.61 (95% PrI 0–69.02) for 

RVF, 0 (95% PrI 0–9.84) for Lassa fever, and 0 (95% PrI 
0–0.74) for Nipah. Vaccinating only healthcare work-
ers typically had a smaller total impact than vaccinat-
ing the general population at the same coverage level, 
because there was no protection against spillover in the 
general population, but a larger per-regimen impact due 

Fig. 5  Timing of spillover and nosocomial cases in a single realization of one catchment area from the MERS-CoV outbreak model. (Bottom) 
Individual cases are visualized as thick horizontal lines, with observed cases in yellow/orange and averted cases in gray (yellow and light gray 
indicate incubation time, orange and dark gray indicate infectious time). Unrelated transmission trees are separated by thin horizontal gray lines. 
The dashed vertical line indicates the date the outbreak threshold was reached. Triangles indicate the vaccination date, and diamonds indicate the 
protection date. (Top) Number of observed (orange) and averted (gray) cases per week
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to the lower number of regimens is required. Vaccinat-
ing 70% of HCWs prevented an annual median of 4 (95% 
PrI 0–77) MERS cases, corresponding to 58.9 (95% PrI 
0–348.6) cases averted per 100,000 vaccine regimens in 
HCWs. Vaccinating HCWs averted a median of 0 (95% 
PrI 0–46) Lassa fever cases and 0 (95% PrI 0–48) Nipah 
cases, corresponding to 0 (95% PrI 0–710.4) and 0 (95% 
PrI 0–303.5) cases averted per 100,000 HCW vaccine 
regimens, respectively (we did not explore vaccinating 
HCWs against RVFV due to the lack of any documented 
nosocomial transmission).

Sensitivity analysis
The number of total cases increased with higher R0 values 
for each pathogen, with the largest sensitivity observed 
for MERS-CoV, because its higher value of R0 was close 
to one (Additional file 1: Fig. S16). There was also a large 
increase in the number of vaccine regimens required to 
vaccinate either the general population or HCWs for 
MERS-CoV at the higher R0 value, but the impact of R0 
on the required number of vaccine regimens was mini-
mal for the other pathogens (Additional file 1: Figs. S17-
S18). As a result, there were minimal differences in the 
impact of vaccination under higher or lower R0 values 
for LASV, NiV, or RVFV (Additional file  1: Figs. S19-
S22). Vaccination averted both a greater magnitude and 
a higher fraction of MERS cases as R0 increased (Addi-
tional file  1: Figs. S19-S20). In addition, the number of 
MERS cases averted per vaccine regimen administered to 
the general population or to HCWs also increased as R0 
increased (Additional file 1: Figs. S21-S22).

Lowering the outbreak threshold (from 10 to 5 cases 
within a 28-day window for MERS-CoV and LASV, and 
from 3 to 1 case for NiV and RVFV) increased both 
the number of vaccine regimens needed for outbreak 
response and the number of cases averted. With the 
lower outbreak threshold, the projected demand for 
MERS-CoV vaccine regimens was 2,351,059 (95% PrI 
492,028–5,872,847), a 170% increase, while the median 
number of cases averted was 19 (95% PrI 0–162), a 217% 
increase compared to the baseline. The required num-
ber of vaccine regimens for RVFV increased to 4,793,351 
(95% PrI 659,297–14,157,197), a 302% increase, while the 
median number of RVF cases averted was 66 (95% PrI 
0–6066), a 53% increase. The median number of vaccine 
regimens for LASV increased from 0 to 756,273 (95% 
PrI 0–6,644,995), and the median number of Lassa fever 
cases averted increased from 0 to 15 (95% PrI 0–534). The 
median number of vaccine regimens for NiV increased 
from 0 to 3,501,587 (95% PrI 0–54,814,275), but the 
median number of cases averted remained 0 (95% PrI 
0–119). When the outbreak threshold was increased to 5 
cases for RVF, the required number of vaccine regimens 

decreased by 50% to 594,894 (95% PrI 0–7,493,183). The 
number of RVF cases averted via vaccination decreased 
to 26 (95% PrI 0–5735), which was 41% fewer cases 
averted compared with an outbreak threshold of 3 cases.

Decreasing the time delay between the outbreak 
threshold being reached and the start of the vaccina-
tion campaign tended to increase the number of cases 
averted, while increasing the delay reduced the number 
of cases averted (Fig.  6). For MERS-CoV, reducing the 
time delay from 28 to 7 days increased the median num-
ber of cases averted from 6 (95% PrI 0–83) to 14 (95% PrI 
0–112), while increasing the delay to 120 days reduced 
the number of cases averted to 0 (95% PrI 0–38).

Increasing or decreasing the percentage of the popula-
tion that was targeted during reactive vaccination cam-
paigns also led to corresponding increases or decreases 
in the number of cases averted (Fig.  6). For example, if 
only 50%, rather than 70%, of the population was vac-
cinated for MERS-CoV, the median number of cases 
averted declined from 6 (95% PrI 0–83) to 4 (95% PrI 
0–72). In contrast, if vaccination coverage was increased 
to 90%, then 7 (95% PrI 0–93) MERS cases were averted. 
The number of MERS cases averted per 100,000 vaccine 
regimens administered decreased from 0.69 (95% PrI 
0–2.92) at 70% coverage to 0.64 (95% PrI 0–3.55) at 50% 
coverage and 0.63 (95% PrI 0–2.54) at 90% coverage. The 
sensitivity of the impact of outbreak response to other 
campaign parameters considered in our model, includ-
ing per-exposure protection, time to protection following 
vaccination, vaccination coverage levels in HCWs, and 
one-dose vs. two-dose vaccines, is provided in Fig. 6. The 
sensitivity analyses for the other pathogens (NiV, LASV, 
and RVFV) and for different catchment levels are pro-
vided in the supplement (Additional file  1: SI Text). In 
general, the number of cases averted was highest when 
the spatial scale for vaccine response (catchment area) 
was at the first administrative level, but the per-regimen 
vaccination impact was higher for the smaller catch-
ment areas (second administrative level or hospital-based 
catchment areas), because fewer vaccine regimens were 
required per campaign in those areas (Additional file  1: 
Figs. S33-S34).

Discussion
Model performance
Our spillover simulation model estimates closely 
matched the average annual reported number of spillover 
cases for each pathogen, as well as the observed interan-
nual variability in the number of spillover cases that have 
occurred in the past few decades. The simulation results 
also captured the geographic distribution and seasonality 
of spillover cases for each pathogen. The magnitude, spa-
tial distribution, and timing of spillover rates are the main 
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determinants of how frequently an outbreak response 
threshold will be triggered and therefore the size of 
the vaccine stockpile needed for outbreak response. 
Although these patterns could shift to some degree in the 
future, our model represents what we know about them 
presently. In addition to influencing stockpile size, these 
three factors (the magnitude, spatial distribution, and 
timing of spillover rates) are also relevant for logistical 

considerations such as the geographic location(s) of the 
stockpile and the necessary stockpile replenishment rate 
[64].

Stockpile estimates
The estimated number of vaccine regimens needed to 
reach vaccination coverage targets in the general popu-
lation varied considerably across the four pathogens 

Fig. 6  Vaccine impact sensitivity analysis for MERS-CoV. Sensitivity of vaccination impact for MERS-CoV to variation in different campaign 
parameters expressed as A fraction of cases averted, B cases averted per 100,000 vaccinated in the general population, and C cases averted per 
1000 health care workers (HCWs) vaccinated
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examined. For both LASV and NiV, the median was zero, 
indicating that reactive vaccination campaigns would not 
be triggered more than 50% of the time. In contrast, the 
median numbers of vaccine regimens needed for MERS-
CoV and RVFV were 870,000 and 1,190,000, respectively. 
However, the 95% prediction intervals for all four patho-
gens were wide due to spatial and temporal heteroge-
neity in spillover rates and overdispersion in outbreak 
sizes resulting from human-to-human transmission. For 
all four pathogens, the vaccine regimens needed to tar-
get HCWs were several orders of magnitude lower than 
needed to target the general population.

These results indicate that the size of the vaccine stock-
pile needed to meet annual reactive vaccination demands 
will depend on the pathogen’s epidemiology, the vaccine 
coverage strategy, and the specific demands of a sustain-
able manufacturing strategy. In addition to the median 
or mean annual vaccine demand, our estimates also pro-
vide an estimate of the inter-annual variability in vaccine 
demand and the potential magnitude of vaccine demand 
in low-frequency, but high-demand years. For example, 
the 75th or 90th percentile of our estimates corresponds 
to the level of demand experienced once every 4 or 10 
years, on average. The desired size of a vaccine stockpile 
will likely depend not only on the average annual vac-
cine demand, but also on the stockpile capacity needed 
to adequately handle the unpredictability in the timing, 
frequency, geography, and magnitude of outbreaks. These 
questions will depend on sustainable vaccine manufac-
turing capacity, the geographic distribution of both this 
manufacturing capacity and the stockpile, and vaccine 
shelf life. A graphical user interface is available at http://​
eidva​ccine​demand.​crc.​nd.​edu to facilitate interactive 
exploration of these dependencies.

Our vaccine demand estimates indicate that the biggest 
determinant of the size of the reactive vaccine stockpile 
needs was the vaccination strategy: targeting the general 
population, only HCWs, or ring vaccination. For patho-
gens that primarily cause nosocomial outbreaks (e.g., 
LASV), vaccinating HCWs can protect high-risk indi-
viduals. In our analysis, this strategy had a larger impact 
in terms of cases averted per vaccine regimen than vacci-
nating the general population. The impact of vaccinating 
HCWs will be highest when spillovers are highly spatially 
clustered because vaccination campaigns are more likely 
to be triggered in high-spillover catchment areas, thereby 
protecting HCWs against nosocomial transmission in 
areas where vaccination has already occurred earlier 
in the transmission season but where the spillover risk 
may remain high. A ring vaccination strategy would also 
require significantly fewer regimens than a general vac-
cination strategy. We estimated that the vaccine demand 
under a ring vaccination strategy would be similar to the 

demand under a HCW vaccination strategy for LASV, 
NiV, and MERS-CoV and moderately higher than the 
HCW vaccination strategy for RVFV. Another strategy 
to reduce the number of vaccine regimens needed per 
reactive campaign that we did not consider in our analy-
sis would be to target high-risk sub-populations instead 
of the whole population of a catchment area. In the case 
of RVFV, this would be animal workers like butchers, 
veterinarians, and farmers who are at the highest risk of 
infection [65–67]. For MERS-CoV, camel workers have a 
higher risk of infection than the general population [33]. 
For LASV, rural populations within a catchment area 
are assumed to have a higher risk than urban popula-
tions (but see Chika-Igwenyi et al. [68], where > 50% of 
patients in one outbreak were urban residents). For NiV, 
rural populations and people drinking raw date palm sap 
could be targeted for vaccination [69, 70].

In addition to providing an estimate of vaccine stock-
pile size, our modeling approach also provides an esti-
mate of where the stockpile will most frequently need 
to be deployed. An understanding of the geographical 
distribution of vaccine demand is critical for sustainable 
manufacturing and timely response to outbreaks [71–73]. 
Knowledge of vaccine needs by geographic area is essen-
tial so that the stockpile(s) can be strategically positioned 
for rapid deployment following the triggering of an out-
break response. Vaccine demand in a given area will be 
a function of the probability of an outbreak response 
being triggered and the size of the target population. 
Because we used a sliding time window for the outbreak 
threshold, the probability of a reactive vaccination cam-
paign being triggered will also depend on the seasonality 
of spillover. Spillover cases that are highly seasonal will 
be more likely to trigger a response than spillovers that 
occur sporadically throughout the year. Highly seasonal 
spillover rates also increase the importance of the rapid 
deployment of reactive vaccination campaigns, because 
the shorter duration of the transmission season increases 
the likelihood that any delays would cause campaigns 
to occur only after seasonal spillover transmission has 
declined.

The size of the outbreak response catchment areas (our 
baseline catchment area at the 2nd administrative level 
vs. 1st administrative units or individual hospitals within 
each 1st administrative unit) also had a large impact on 
the frequency and timing of outbreak response. First-
level administrative catchment areas triggered more 
outbreak responses and also have larger population sizes 
and would therefore require a larger vaccine stockpile. 
However, this result assumes that the outbreak threshold 
(number of cases needed to trigger a reactive vaccination 
campaign) is the same regardless of the size of the catch-
ment area. Adjusting the threshold size based on the 

http://eidvaccinedemand.crc.nd.edu
http://eidvaccinedemand.crc.nd.edu
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geographic extent or population size of the catchment 
areas would alter the stockpile requirements and could 
be one approach to aligning expected stockpile demands 
with manufacturing capacity. The expected number of 
regimens needed for adm1 catchment areas might also 
be an overestimate if only certain regions in an adm1 are 
at risk. Therefore, another approach that could balance 
the advantage of expanded adm1 catchment surveillance 
areas against the larger stockpile requirements would be 
to monitor spillover cases at the adm1 level, but limit 
reactive vaccination to the adm2 regions within the adm1 
catchment area where spillover cases were observed.

Vaccination impact
Our results indicate that reactive vaccination strategies 
for preventing the transmission of zoonotic pathogens 
with R0 < 1 tend to have limited impacts. For each of the 
four pathogens we considered, reactive vaccination of the 
general population averted fewer than 100 cases per year 
on average and required more than 10,000 vaccine regi-
mens per case averted. The largest impact (as measured 
by total cases averted or fraction of cases averted) was 
achieved for RVFV, which was the only pathogen where 
> 5% of total cases were averted via reactive vaccination 
under our default assumptions. On a cases-averted per 
regimen basis, vaccinating HCWs was more effective 
than vaccinating the general population for each of the 
pathogens with at least some human-to-human trans-
mission in nosocomial settings (LASV, MERS-CoV, and 
NiV), suggesting that targeting this group may be a viable 
strategy for reducing the spread of zoonotic pathogens 
that are capable of nosocomial transmission.

Under our baseline reactive vaccination scenario, 
vaccination averted a higher proportion of RVF cases 
than cases of the other three diseases, even though we 
assumed that there was no human-to-human RVFV 
transmission. The higher impact of reactive vaccination 
for RVFV was the result of two factors. First, our default 
threshold to trigger an RVFV vaccination campaign was 
three cases (compared to 10 cases within a 28-day win-
dow for LASV or MERS-CoV), which led to more RVFV 
campaigns being triggered than for the other diseases. 
Second, RVFV spillovers are highly clustered in space 
and time, so additional spillover cases were often con-
centrated in catchment areas where previous spillovers 
during the transmission season had already triggered 
a reactive vaccination campaign. Although the lower 
threshold led to more vaccine regimens being required 
for RVFV than for the other pathogens, the per regimen 
impact of reactive vaccination was still highest for RVFV. 
These results highlight the importance of understanding 
the underlying epidemiology of zoonotic pathogens when 
assessing the feasibility of a reactive vaccination strategy. 

The spatial and temporal heterogeneity in spillover pat-
terns will be a primary factor determining the poten-
tial impact of reactive vaccination for pathogens where 
cases primarily occur via zoonotic spillover rather than 
human-to-human transmission. With a sensitive case 
threshold for triggering a vaccination campaign, and a 
relatively quick response time (28 days), our results indi-
cate that ~ 25% of RVF cases could be averted. However, 
if the response time is slower (120 days), fewer than 5% of 
RVF cases would be averted via reactive vaccination. This 
highlights the importance of rapid response and vaccine 
deployment to the success of reactive campaigns when 
spillover is seasonal.

After RVFV, the impact of vaccination was modestly 
higher for the pathogen (MERS-CoV) with the highest 
R0 (baseline R0 = 0.58), indicating that rapid deployment 
of a reactive vaccination campaign can avert a fraction 
of cases for pathogens capable of at least some sustained 
human-to-human transmission. However, even for 
MERS-CoV, fewer than 10% of annual cases were averted 
by reactive vaccination, even under our most optimistic 
scenario with a minimal delay. This was partly because a 
significant fraction of cases were spillover cases in geo-
graphic areas where no vaccination campaign was trig-
gered, and partially because reactive vaccination often 
did not occur rapidly enough to avert a significant pro-
portion of cases resulting from secondary human-to-
human transmission. The one scenario where reactive 
vaccination had a large impact on MERS-CoV transmis-
sion was with a higher R0 value of 0.99. In this case, 84.0% 
(95% PrI 10.7–97.5%) of MERS cases could be averted 
under our baseline reactive vaccination scenario, com-
pared to only 2.1% (95% PrI 0–18.2%) of cases averted 
with the default R0 = 0.58. This result highlights the 
increased potential impact of a reactive vaccination strat-
egy as R0 approaches or exceeds one and self-sustaining 
human-to-human transmission chains that lead to larger 
outbreaks become more likely.

Reactive vs. prophylactic vaccination
Delays between the triggering of the outbreak threshold 
and vaccine administration limit the impact of reactive 
vaccination. In most simulated outbreaks, the outbreak 
died out before the vaccination was administered due to 
the low R0. In light of this, prophylactic immunization of 
HCWs or people at high risk could have a larger impact 
than reactive vaccination. However, a potentially impor-
tant aspect that was not considered in our study was the 
impact that reactive vaccination campaigns in 1 year 
had on protection in subsequent year(s). Depending on 
the duration of vaccine-derived immunity, the number 
of cases averted in subsequent years could be substan-
tial, particularly if the geographic clustering of spillovers 
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is fairly consistent from year to year. For example, in the 
past few years, some catchment areas in Nigeria have 
experienced outbreaks of Lassa fever multiple years in a 
row [19, 26]. As an extension of our work, the number 
of averted cases in the years following a reactive vaccina-
tion campaign could be estimated based on the spillover 
rate, the probability of an outbreak, and the durability of 
vaccine-derived immunity.

Limitations
We have attempted to estimate vaccine stockpile needs 
and identify the most important determinants of success 
for reactive vaccination of zoonotic emerging pathogens 
by modeling several vaccination strategies and exploring 
the sensitivity of our results to different aspects of patho-
gen natural history and vaccine deployment. However, 
there are some limitations to our approach that could 
affect these estimates. We briefly mention the main limi-
tations here and include an expanded discussion of these 
limitations in Additional file 1: SI Text.

First, there is a relatively poor understanding of the 
epidemiology of most emerging zoonotic pathogens, 
and data that could be used to try and elucidate the 
most important aspects of their epidemiology is limited 
[74]. In this study, we collated epidemiological data and 
parameter estimates from a variety of published sources 
and also consulted pathogen-specific experts, but, inevi-
tably, our approach was limited by current knowledge. 
Second, because the modeling framework is intended to 
be applicable to a range of emerging zoonotic pathogens, 
it cannot incorporate all of the specific epidemiological 
details that might affect the vaccine demand or impact on 
a particular pathogen. Our focus was on the key aspects 
of epidemiology and outbreak response that influence 
sustainable manufacturing needs, vaccine stockpile 
requirements, and the impact of the outbreak response. 
As a result, we also did not consider other potential con-
trol strategies beyond reactive vaccination in humans 
that might be relevant for some zoonotic pathogens, such 
as the use of a camel-targeted vaccine for MERS-CoV, a 
livestock-targeted vaccine(s) for RVFV, or vector con-
trol efforts for RVFV. In some settings, these alternative 
strategies might be more effective than reactively vac-
cinating the human population, or these additional con-
trol measures could be conducted in coordination with 
a reactive vaccination campaign. Third, we only consid-
ered reported cases when estimating pathogen spillover 
rates, because undiagnosed or unreported infections 
would not trigger an outbreak response, which could 
bias the geographic distribution of vaccine demand away 
from areas with limited disease surveillance systems. This 
decision was made to ensure that our framework could 

be implemented with existing data only and therefore 
could be applied to other pathogens in a straightforward 
manner.

Fourth, because the extent of community transmission 
for each of the study pathogens is poorly understood, we 
assumed that human-to-human transmission was limited 
to nosocomial settings, which could result in an under-
estimate of vaccine demand. However, our modeling 
framework could be used to explicitly represent commu-
nity transmission dynamics, and for pathogens with R0 
≪ 1, as was largely the case in this study, the limited size 
of the modeled transmission chains would be similar in 
either a community or hospital setting since we did not 
restrict the potential number of contacts per index case. 
Our outbreak model did not incorporate population den-
sity, which could also be relevant in communal settings 
and would likely become increasingly important as R0 
approaches or exceeds 1. However, our model implic-
itly incorporates the effect of population size on out-
break probability through its influence on the estimated 
number of spillover cases in a catchment area. Fifth, we 
also assumed that all nosocomial transmission was from 
patients to HCWs or between HCWs, and that there 
was no patient-to-patient or HCW-to-patient transmis-
sion. Therefore, our estimates of the impact of vaccinat-
ing HCWs represent an upper bound on the effectiveness 
of this strategy, as instances of patient-to-patient trans-
mission would not be prevented via this strategy. Sixth, 
another simplifying assumption of our model is that 
cases in one catchment area do not lead to transmission 
or an outbreak outside of that catchment area. How-
ever, our model already implicitly incorporates the pos-
sibility of spread between catchment areas, and although 
our model does not predict spillover cases occurring 
outside of each pathogen’s currently documented geo-
graphic distribution, the reactive vaccination strategies 
we examined should also be applicable for responding 
to imported cases and their associated outbreaks. Sev-
enth, we assumed that vaccinated individuals who were 
successfully protected from symptomatic infection were 
not capable of infecting other individuals. However, if 
the vaccine was less effective at preventing asymptomatic 
infection, and these asymptomatic individuals were still 
capable of transmitting the pathogen, the impact of vac-
cination could be smaller than we have estimated. Finally, 
we did not consider any targeted vaccination strategies 
beyond ring vaccination or targeting healthcare workers 
to limit nosocomial outbreaks.

Conclusions
To inform the development of sustainable vaccine man-
ufacturing processes for emerging pathogens, we devel-
oped a modeling framework to estimate the necessary 
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reactive vaccine stockpile size for emerging zoonotic 
pathogens. Our framework provides a flexible methodol-
ogy for estimating vaccine stockpile needs for outbreak 
response and for exploring the impact of epidemiology 
and vaccination strategies on outcomes that have impor-
tant logistical implications for sustainable vaccine manu-
facturing, such as the geographic distribution of demand 
or the required stockpile replenishment rate. However, 
our model showed that the impact of reactive vaccination 
for the four pathogens that we explored was minimal, 
preventing fewer than 10% of human cases under most 
scenarios with their current epidemiology. However, all 
these pathogens are closely monitored for their outbreak 
potential, and control measures are needed. Targeting 
populations at higher risk of infection, such as HCWs, 
had a higher per-regimen impact than population-wide 
vaccination in outbreak control situations. Our results 
highlight the need for a more thorough epidemiological 
understanding of these, and other, emerging zoonotic 
pathogens. Improved pathogen surveillance and case 
detection are also essential for improving the model and 
our estimates of vaccine demand. Further work exploring 
additional scenarios, such as the possibility of targeting 
certain high-risk populations or the potential uses of vac-
cines for outbreak prevention rather than just outbreak 
response, is also needed to improve the potential impacts 
of vaccination.
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