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Abstract 

Background:  Interleukin 6 (IL-6) signaling is being investigated as a therapeutic target for atherosclerotic cardiovas-
cular disease (CVD). While changes in circulating high-sensitivity C-reactive protein (hsCRP) are used as a marker of IL-6 
signaling, it is not known whether there is effect heterogeneity in relation to baseline hsCRP levels or other cardiovas-
cular risk factors. The aim of this study was to explore the association of genetically predicted IL-6 signaling with CVD 
risk across populations stratified by baseline hsCRP levels and cardiovascular risk factors.

Methods:  Among 397,060 White British UK Biobank participants without known CVD at baseline, we calculated a 
genetic risk score for IL-6 receptor (IL-6R)-mediated signaling, composed of 26 variants at the IL6R gene locus. We then 
applied linear and non-linear Mendelian randomization analyses exploring associations with a combined endpoint of 
incident coronary artery disease, ischemic stroke, peripheral artery disease, aortic aneurysm, and cardiovascular death 
stratifying by baseline hsCRP levels and cardiovascular risk factors.

Results:  The study participants (median age 59 years, 53.9% females) were followed-up for a median of 8.8 years, over 
which time a total of 46,033 incident cardiovascular events occurred. Genetically predicted IL-6R-mediated signaling 
activity was associated with higher CVD risk (hazard ratio per 1-mg/dL increment in absolute hsCRP levels: 1.11, 95% 
CI: 1.06–1.17). The increase in CVD risk was linearly related to baseline absolute hsCRP levels. There was no evidence of 
heterogeneity in the association of genetically predicted IL-6R-mediated signaling with CVD risk when stratifying the 
population by sex, age, body mass index, estimated glomerular filtration rate, or systolic blood pressure, but there was 
evidence of greater associations in individuals with low-density lipoprotein cholesterol ≥ 160 mg/dL.

Conclusions:  Any benefit of inhibiting IL-6 signaling for CVD risk reduction is likely to be proportional to absolute 
reductions in hsCRP levels. Therapeutic inhibition of IL-6 signaling for CVD risk reduction should therefore prioritize 
those individuals with the highest baseline levels of hsCRP.
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Background
Chronic inflammation is an emerging therapeutic target 
for cardiovascular disease (CVD) [1]. Among pharma-
cological candidates, agents impacting interleukin (IL)-6 
signaling have attracted attention due to converging evi-
dence supporting the relevance of IL-6 in atherosclero-
sis [2]. Data from the Canakinumab Anti-inflammatory 
Thrombosis Outcome Study (CANTOS) trial showed 
that the cardiovascular benefit of IL-1β inhibition with 
canakinumab was proportional to the reductions in IL-6 
and high-sensitivity C-reactive protein (hsCRP) levels [3]. 
A recent phase 2 trial found that ziltivekimab, a mono-
clonal antibody directly inhibiting IL-6, effectively and 
safely reduces biomarkers of inflammation and throm-
bosis among patients with chronic kidney disease [4]. 
While indirectly targeting the IL-6 pathway with canaki-
numab led to hsCRP reductions of 35–40% [3], monthly 
subcutaneous administration of ziltivekimab resulted 
in a decrease of hsCRP by 77–92% [4]. However, it 
remains unknown whether larger hsCRP reductions will 
translate to greater reductions in CVD risk [4], and the 
ongoing phase 3 cardiovascular outcomes trial testing 
ziltivekimab will not be completed before 2025 [5].

Mendelian randomization (MR) leverages genetic 
variants to investigate the effect of exposures on out-
comes and can be applied to explore the therapeu-
tic potential of specific drug targets [6]. The random 
allocation of genetic variants at conception makes this 

approach less vulnerable to confounding and reverse 
causation that can impede causal inference in tradi-
tional epidemiological investigations [6, 7]. In this 
study, we performed MR analyses in 397,060 White 
British UK Biobank participants to investigate (i) the 
effect of IL-6 receptor (IL-6R)-mediated signaling on 
CVD risk in relation to baseline hsCRP levels and (ii) 
whether the effect of IL-6R-mediated signaling on CVD 
risk varies across population subgroups stratified by 
cardiovascular risk factors. These results may inform 
on patient subgroups for inclusion into interventional 
trials targeting IL-6 signaling for reducing CVD risk.

Methods
Study population
This study follows the reporting recommendations by 
the STROBE-MR Guidelines (Research Checklist) [8]. 
Analyses were performed in UK Biobank (application 
#2532), a prospective cohort study of 502,460 individu-
als aged 37–73 years recruited between 2006 and 2010. 
The UK Biobank obtained approval from the North-
west Multi-Center Research Ethics Committee. All 
participants provided written informed consent. The 
current analysis was based on White British individu-
als of European genetic ancestry without known CVD 
with available genetic, biomarker, and outcome data 
(Table 1).

Keywords:  Inflammation, Interleukin-6, Atherosclerosis, Cardiovascular disease, C-reactive protein, Cytokines, Human 
genetics, Mendelian randomization

Table 1  Baseline characteristics of the UK Biobank participants included in our analyses stratified by the median IL-6R-mediated 
signaling genetic score

The results represent median (interquartile range) or N (%). The p-values are derived from the Mann–Whitney U test for quantitative variables and the chi-square test 
for binary variables and test the null hypothesis that there is no difference in the listed phenotype by median IL6R signaling genetic risk score (GRS)

Variable IL-6R-mediated signaling GRS < median IL-6R-mediated signaling GRS > median p-value

Age, years 59 51–64 59 51–64 0.983

Sex, females 114,383 52.8 114,563 52.9 0.585

CRP, mg/dL 1.28 0.63–2.66 1.45 0.71–2.98  < 2.2 × 10−16

SBP, mmHg 137 126–151 137 126–151 0.218

DBP, mmHg 77 84–92 77 84–92 0.755

BMI, kg/m2 26.8 24.2–30.0 26.8 24.2–30.0 0.847

eGFR, mL/min/1.73 m2 88.3 76.5–100.1 88.2 76.3–100.0 0.062

HbA1c, % 5.36 5.15–5.61 5.38 5.15–5.62 4.1 × 10−07

LDL-cholesterol, mg/dL 136.5 114.1–159.9 136.3 113.8–159.8 0.038

HDL-cholesterol, mg/dL 53.9 45.1–64.6 53.8 45.1–64.5 0.131

Lipid-lowering drug use 37,296 17.2 37,742 17.4 0.044

Antidiabetic drug use 6,632 3.0 6,913 3.2 0.014

Antihypertensive drug use 47,587 22.0 47,615 22.0 0.920
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Genetic instruments
The genetic risk score (GRS) for IL-6 receptor (IL-6R)-
mediated signaling was created as previously described 
[9–11] and included 26 variants 300 kB within the IL6R 
gene (clumped at pairwise r2 < 0.1) that were associated 
with hsCRP, a downstream biomarker of IL-6 signal-
ing (Additional file  1: Table  S1, Additional file  2: Fig. 
S1). As previously described [12], we meta-analyzed a 
genome-wide association study (GWAS) for hsCRP lev-
els in 204,402 European ancestry individuals (Cohorts 
for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) Consortium) [13] with data from 318,279 
White British individuals in the UK Biobank [14]. This 
meta-analysis was performed to maximize the number of 
genetic variants to be leveraged as instruments for IL-6 
signaling, in turn optimizing the power of the MR analy-
sis. We selected variants associated with hsCRP levels 
(p < 5 × 10−8) after clumping for linkage disequilibrium 
at r2 < 0.1 (1000G European reference panel). We then 
created a genetic risk score (GRS) for IL-6R-mediated 
signaling, using association estimates from the CHARGE 
GWAS as weights for the 26 identified variants (Addi-
tional file 1: Table S1). As weights for the GRS were taken 
from a population that did not overlap with UK Biobank, 
risk of weak instrument bias related to participant over-
lap was minimized [15]. This GRS is associated with 
other biomarkers of upregulated IL-6 signaling as well 
(lower circulating IL-6 and soluble IL-6R levels), as has 
been previously described (Additional file 2: Fig. S1) [12].

Study outcomes
Genetic data were linked to inpatient hospital episode 
records, primary care data and death registry. The out-
come considered was a combined CVD endpoint of inci-
dent coronary artery disease, ischemic stroke, peripheral 
artery disease, aortic aneurysm, and cardiovascular death 
(codes used to define these outcomes in Additional file 1: 
Table S2). In sensitivity analyses, we examined an alter-
native outcome excluding aortic aneurysm, because the 
disease mechanisms might diverge from those of the 
other outcomes that are primarily related with athero-
sclerosis [16].

Statistical analysis
We used the ratio of coefficients method to perform MR 
analyses [17]. This represents the association of the GRS 
with the outcome divided by the association of the GRS 
with hsCRP [18]. Cox regression was used to estimate 
association of the score with outcomes, incorporating 
age, sex, principal components 1 to 10 of genetic ances-
try, genotyping chip, kinship, and assessment center as 
covariates. Linear regression was used to estimate the 

association of the GRS with hsCRP, incorporating the 
same covariates. In sensitivity analyses, we excluded 
individuals with evidence of relatedness within the UK 
Biobank cohort (kinship coefficient < 0.0884).

To explore the shape of the association between geneti-
cally predicted IL-6R-mediated and CVD risk across indi-
viduals with varying baseline hsCRP levels, we stratified 
the population into strata based on residual hsCRP levels, 
defined as a participant’s hsCRP minus the genetic con-
tribution to hsCRP from the GRS. Stratifying on hsCRP 
directly would introduce collider bias to distort estimates 
[19]. For each stratum, we calculated the MR estimate 
for the association of genetically proxied IL-6R-mediated 
signaling with the outcome using the ratio of coefficients 
method [18]. Using a flexible semiparametric frame-
work [20], we then performed a meta-regression of the 
linear MR estimates obtained for each decile against the 
median hsCRP value per decile. A fractional polynomial 
test was used to investigate whether a non-linear model 
fit this meta-regression better than a linear model. This 
analysis was performed for both absolute and ln-trans-
formed hsCRP levels. In alternative analyses, we strati-
fied the analyses in centiles of hsCRP rather than deciles.

To investigate if the associations between geneti-
cally proxied IL-6R-mediated signaling and CVD vary 
depending on levels of other cardiovascular risk factors, 
we performed MR analyses stratified by sex and age, 
and residual values of body mass index (BMI), cystatin 
C-based estimated glomerular filtration (eGFR), glycated 
hemoglobin (HbA1c), low-density lipoprotein cholesterol 
(LDL-C), and systolic blood pressure (SBP) [19].

Statistical significance for all analyses was set at a two-
sided p-value < 0.05. Statistical analyses were performed 
in R (v4.1.1).

Results
From 502,460 individuals enrolled to the UK Biobank, 
a total of 397,060 individuals were included in analyses 
(Additional file 2: Fig. S2, Table 1). Median age at recruit-
ment was 59 years (interquartile range 51–64) and 53.9% 
of the participants were female. The median hsCRP levels 
among UK Biobank participants were 1.35 mg/dL (inter-
quartile range 0.67–2.80, Table  1). Levels of hsCRP fol-
lowed a right-skewed distribution (Additional file 2: Fig. 
S3) were higher among females and older individuals, 
correlated positively with BMI, LDL-C, SBP, and HbA1c, 
and correlated negatively with eGFR (Additional file  2: 
Fig. S4). The GRS for IL-6R-mediated signaling was asso-
ciated with hsCRP levels among both female and male 
participants (Additional file 2: Fig. S5).

Over a median follow-up of 8.8  years (interquartile 
range 8.1–9.5  years), there were a total of 46,033 inci-
dent CVD events. MR analyses identified significant 
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associations between genetically predicted IL-6R-me-
diated signaling and risk of the composite CVD out-
come (hazard ratio per 1-mg/dL increment in absolute 
hsCRP levels: 1.11, 95% CI: 1.06–1.17, p = 6.7 × 10−5). 
This association was similar across individuals with 
varying baseline hsCRP levels (Fig.  1A) and followed a 
linear dose–response pattern based with absolute, but 
not ln-transformed hsCRP levels (Fig.  1B, C). A simi-
lar dose–response pattern was observed when stratify-
ing the analyzed UK Biobank population into centiles 
of hsCRP rather than deciles (Additional file 2: Fig. S6). 
We observed similar results when excluding aortic aneu-
rysm cases from our main outcome (Additional file  2: 
Fig. S7). The results also remained materially unchanged 

when excluding individuals with evidence of related-
ness within the UK Biobank (Additional file  2: Fig. S8). 
Associations were similar in both sexes and across age 
subgroups. There was no evidence of a trend when strati-
fying by BMI, eGFR, HbA1c, or SBP (Fig. 2). There was 
evidence of heterogeneity across subgroups stratified by 
HbA1c (pheterogeneity = 0.001) and LDL-C levels (pheterogene-
ity = 0.004), with estimates of greater magnitude in indi-
viduals with LDL-C levels ≥ 160 mg/dl (ptrend = 0.03).

Discussion
Our findings are consistent with a linear dose–response 
relationship between genetically predicted IL-6R signal-
ing and CVD risk in relation to absolute baseline hsCRP 

Fig. 1  Associations between genetically predicted IL-6R-mediated signaling and risk of incident cardiovascular disease across measured hsCRP 
levels. A Mendelian randomization analyses stratified by baseline hsCRP levels. The hazard ratios are scaled for 1 mg/dL increment in absolute hsCRP 
levels. The p-values for heterogeneity and for trend are derived from the Cochran Q statistic and linear meta-regression analyses across deciles of 
measured hsCRP. B, C Mendelian randomization analyses of genetically predicted IL6R-mediated signaling and CVD risk across B ln-transformed 
measured hsCRP levels and C absolute measured hsCRP levels. For B, C, results are obtained from fractional polynomial models across associations 
derived for deciles of measured hsCRP levels. The reference is set to the minimum hsCRP value in the UK Biobank sample (0.08 mg/dL). The p-values 
for non-linearity are 0.001 for ln-transformed hsCRP levels and 0.99 for absolute hsCRP levels. For all graphs, the residual values of hsCRP are used to 
stratify, as determined in models regressing the genetic risk score for IL-6 signaling on measured hsCRP levels
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levels. For pharmacological purposes, this translates to 
greater efficacy against CVD of IL-6 signaling inhibition 
that achieves larger hsCRP reductions.

Our results expand previous genetic data supporting 
a causal role of IL-6 signaling on atherosclerotic CVD 
[9, 10, 21] and are consistent with the known effects of 
IL-6 signaling on increasing CRP generation [22]. In 
primary prevention cohorts, circulating levels of both 
IL-6 and CRP have been found to be independently 
associated with risk of incident CVD [23–25]. Further-
more, the magnitude of cardiovascular risk reduction 
in the CANTOS trial was directly related to the degree 
of IL-6 reduction achieved [3]. Taken together, our cur-
rent genetic findings add to the body of epidemiological 
and trial evidence supporting a dose response-relation-
ship between IL-6 signaling mediated CRP lowering and 
CVD risk reduction. In terms of mechanisms underly-
ing such a dose–response relationship, IL-6 is involved 
in upregulating cellular adhesion molecules at the vessel 
wall [26], increasing vascular permeability and disrupting 
endothelial barrier function [27], and promoting vascular 

smooth muscle growth [28]. It follows that greater abso-
lute reductions in IL-6 signaling, as measured by hsCRP 
reduction, would confer greater benefit in cardiovascular 
risk reduction.

When stratifying on other cardiovascular risk fac-
tors, there was evidence of greater CVD risk reduction 
through IL-6R signaling inhibition in individuals with 
higher LDL-C. This aligns with the notion that inflamma-
tion is the result of lipid accumulation in atherosclerotic 
plaques, and as such, greater benefits may be expected 
among patients with high baseline LDL-C levels. How-
ever, previous genetic analyses have suggested no 
departure from additive effects on CHD risk when con-
sidering genetic proxies for inhibition of IL-6R signaling 
and pharmacological LDL-C-lowering [11].

A limitation of this work is that it considered Euro-
pean ancestry individuals and may not translate across 
other ethnic groups. This is particularly relevant as the 
risk factors and pathophysiological mechanisms under-
lying CVD may vary across populations of different eth-
nic ancestry. Furthermore, we considered individuals 
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Fig. 2  Association between genetically predicted IL-6R-mediated signaling activity and risk of cardiovascular disease across clinically relevant 
subgroups. The hazard ratios are scaled on 1 mg/dL increment in absolute hsCRP levels. The p-values for heterogeneity and for trend are derived 
from the Cochran Q statistic and linear meta-regression analyses across strata of the different measured variables. For all variables except for age 
and sex, the residual values are used to stratify, as determined in models regressing the genetic score for IL-6 signaling on these variables
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without CVD at baseline, and it is unclear how these 
findings will apply to individuals with established CVD, 
who are at greater absolute risk and therefore likely to 
be prioritized for treatment. We also did not consider 
potential adverse effects of perturbing IL-6 signal-
ing, including implications for allergic, autoimmune 
and infectious disease [10]. Of note, observational 
and genetic evidence has supported an association of 
low CRP levels with increased risk of Alzheimer’s dis-
ease [29], and further work is required to delineate the 
dose–response relationship between IL-6 signaling 
mediated changes in CRP levels and potential adverse 
outcomes. Finally, these genetic analyses explore small 
lifelong effects, and may not be directly extrapolated to 
short-term clinical interventions [6].

Conclusions
In summary, we find genetic evidence to support that 
any benefit of pharmacologically inhibiting IL-6 signal-
ing for CVD risk reduction is likely to be proportional 
to absolute reductions in hsCRP levels. Our results 
indicate that therapeutic inhibition of IL-6 signaling for 
CVD risk reduction should prioritize those individuals 
with the highest baseline levels of hsCRP.
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