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Abstract 

Background:  Plasma metabolomic profile is disturbed in dementia patients, but previous studies have discordant 
conclusions.

Methods:  Circulating metabolomic data of 110,655 people in the UK Biobank study were measured with nuclear 
magnetic resonance technique, and incident dementia records were obtained from national health registers. The 
associations between plasma metabolites and dementia were estimated using Cox proportional hazard models. The 
10-fold cross-validation elastic net regression models selected metabolites that predicted incident dementia, and a 
10-year prediction model for dementia was constructed by multivariable logistic regression. The predictive values of 
the conventional risk model, the metabolites model, and the combined model were discriminated by comparison 
of area under the receiver operating characteristic curves (AUCs). Net reclassification improvement (NRI) was used to 
estimate the change of reclassification ability when adding metabolites into the conventional prediction model.

Results:  Amongst 110,655 participants, the mean (standard deviation) age was 56.5 (8.1) years, and 51 186 (46.3%) 
were male. A total of 1439 (13.0%) developed dementia during a median follow-up of 12.2 years (interquartile range: 
11.5–12.9 years). A total of 38 metabolites, including lipids and lipoproteins, ketone bodies, glycolysis-related metabo-
lites, and amino acids, were found to be significantly associated with incident dementia. Adding selected metabo-
lites (n=24) to the conventional dementia risk prediction model significantly improved the prediction for incident 
dementia (AUC: 0.824 versus 0.817, p =0.042) and reclassification ability (NRI = 4.97%, P = 0.009) for identifying high 
risk groups.

Conclusions:  Our analysis identified various metabolomic biomarkers which were significantly associated with 
incident dementia. Metabolomic profiles also provided opportunities for dementia risk reclassification. These findings 
may help explain the biological mechanisms underlying dementia and improve dementia prediction.
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Background
Dementia is a leading cause of disability in people over 
65 years worldwide [1]. It is expected to affect over 131.5 
million people and cost over a trillion dollars by 2050 [2]. 
As no effective treatments for dementia are currently 
available, early identification of patients at high risk is 
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a public health priority in efforts to delay disease pro-
gression and alleviate the burden of disease on patients, 
policy makers, and healthcare providers [3]. Despite the 
plethora of research, current screening tools and predic-
tion models are insufficiently accurate and are associated 
with high costs, invasive tests, and complex technicali-
ties. Unfortunately, the early detection of dementia is 
a continually evolving field of research that frequently 
underdelivers to effectively target the needs and necessi-
ties of population-based screening.

Metabolomics comprehensively analyses small molecu-
lar metabolites in targeted tissues or biofluids, to indicate 
genetic, environmental, and pathological changes dur-
ing disease development. Previous studies have revealed 
deranged metabolomic profiles in dementia patients, but 
further studies have provided conflicting conclusions [1, 
4–6]. Such inconsistencies may be due to the small sam-
ple size, cross-sectional design, short follow-up time, 
limited adjustment for confounding factors, and different 
analytical chemistry techniques used to measure metab-
olomics in these studies. Furthermore, only few studies 
have investigated the additive value of plasma metabo-
lites in dementia prediction, with inconsistent conclu-
sions [7–13].

The UK Biobank Study is a prospective study that 
measured 249 metabolomic biomarkers in approximately 
118,000 EDTA plasma samples using high-throughput 
nuclear magnetic resonance (NMR). Its large sample 
size, long-term follow-up, standardized platform of 
metabolomics profiling, and systematic ascertainment 
of incident dementia provide a unique opportunity to 
investigate the metabolomic profile of incident dementia 
and assess the additive values of metabolites for incident 
dementia.

Methods
Study participants
We studied participants in the prospective UK Biobank 
Study cohort that met the inclusion criteria of this study. 
The UK Biobank Study includes over 500,000 people of 
middle and old age that were recruited from 2006 to 2010 
across the UK. Their baseline demographic, phenotypic, 
and genotypic characteristics were collected in 22 assess-
ment centres at enrolment, and further collections were 
accumulated after follow-up intervals of 6 months to 3 
years. Detailed protocols of the UK Biobank Study are 
described elsewhere [14].

For the identification of metabolomic biomarkers 
associated with incident dementia, the present analyses 
included participants without prior dementia at base-
line with available metabolomic data. A total of 110,730 
participants had metabolites data, of which 75 partici-
pants with a history of dementia were excluded. Finally, 

110,655 participants were included in the current analy-
sis. To develop a prediction model for 10-year incident 
dementia risk, participants were randomly divided into 
a discovery group (n = 55,328) and a replication group 
(n = 55,327). The workflow of the analyses is presented 
in Fig. 1. Baseline characteristics of study participants in 
each dataset are described in Additional file 1: Table S1.

Ethics for the UK Biobank was approved by North 
West Multi-Centre Research Ethics Committee across 
the United Kingdom, and the Human Tissue Authority 
license was also approved for the UK Biobank. We gained 
access to the UK Biobank data through application. All 
participants submitted signed informed consent in writ-
ten form. The Declarations of Helsinki were complied 
with throughout this study.
Metabolite quantification
Detailed protocols on sample collection and metabo-
lomic quantification are presented elsewhere [15–17]. 
In brief, EDTA plasma samples were collected at base-
line recruitment (118,000 samples) and repeat assess-
ment (5000 samples). Samples were prepared directly in 
96-well plates by UK Biobank, with each plate contain-
ing a serum mimic as a quantification consistency moni-
tor and a mixture of 2 low-molecular-weight metabolite 
as a technical reference. These samples were shipped to 
Nightingale Health’s laboratories in Finland on dry ice 
and measured between June 2019 and April 2020. In the 
lab, samples were prepared with an automated liquid 
handler, automatically analysed with spectrometers and a 
robotic sample changer, and quantified with Nightingale 
Health’s proprietary software (Nightingale Health Bio-
marker quantification library 2020). Accredited quality 
control was done during the whole process to eliminate 
systemic and technical variance, and only samples and 
biomarkers that underwent the quality control process 
were stored in the UK Biobank dataset and used in our 
present study. Each sample included 168 metabolites in 
absolute level (mmol/L) spanning fatty acids, glycolysis 
metabolites, ketone bodies, amino acids, lipids, and lipo-
proteins, and 81 in ratio measurement.

Ascertainment of dementia
Dementia incidence data were collected through hospi-
tal in-patient admission records and death registries. The 
identification of dementia was based on the International 
Classification of Diseases (ICD) code, including 290.0–
290.4, 294.1, 331.0–331.2, and 331.5 in ICD-9 and A81.0, 
F00, F01, F02, F03, F05.1, F10.6, G30, G31.0, G31.1, 
and G31.8 in ICD-10, covering Alzheimer’s Disease 
dementia, vascular dementia, and dementias of other 
causes. The follow-up period was defined from baseline 
to the earliest one amongst the incident dementia date, 
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lost-of-follow-up date, death date, or the last date of data 
update, which was April 28, 2021.

Traditional risk factors
Age [18], gender [18], education level [18], systolic 
pressure [19], anti-hypertension treatment [20], diabe-
tes mellitus [21], smoking status [22], history of stroke 
[23], history of coronary heart disease [24], and APOE 
ε4 allele were established risk factors of dementia [25], 
and therefore were used as covariates in Cox regression 
analysis and constituted conventional prediction model 
for dementia. Age (UKB Field 21022) and systolic pres-
sure (UKB Filed 4080) were continuous variables and 
gender (UKB Field 31, female or male), education level 
(UKB Field 6138, college/university degree or others), 
anti-hypertension treatment (UKB Field 6153, no or yes), 
diabetes mellitus (no or yes, including UKB Field 2443, 
doctor-diagnosed diabetes, UKB Field 6153, insulin treat-
ment, UKB Field 20003, diabetes-related medication 
and UKB Field 30750, plasma HbA1c level of or over 48 
mmol/mol), smoking status (UKB Field 20116-0.0, never 
or former/current), history of stroke (UKB Field 4056, 
no or yes), history of coronary heart disease (UKB Field 
3627,3894, no or yes), and APOE ε4 carrier (no or yes) 
were redefined as categorical variables.

Statistical analyses
Continuous variables were described with mean (stand-
ard deviation, SD) or median (interquartile range, IQR), 

and categorical variables were described with number 
and percentage. The values of all metabolites were first 
transformed using natural logarithmic transformation 
(ln[x+1]) and then Z-transformed. Our present study 
included two separate analyses (Fig. 1). In the first analy-
sis, the associations between metabolites and dementia 
were estimated using cox proportional-hazard models, 
with confounders including age, sex, education level, 
systolic pressure, anti-hypertension treatment, diabe-
tes mellitus, smoking status, history of stroke, history 
of coronary heart disease, APOE ε4 allele adjusted. A 
P value less than 0.05 was set as nominal significance. 
The corrected P-value was estimated through a prin-
cipal component analysis developed by Gao et  al. [26]. 
Strong correlations were considered, and 55 parameters 
explained 99.5% of metabolites variations. Therefore, 55 
independent tests were conducted for correlation ascer-
tainment, and P value significance was set at 9×10−4 
(0.05/55) or less. β coefficients of adjusted hazard ratio 
(HR), 95% coefficient interval (CI) and P values of all 249 
metabolites in the cox model are presented in Additional 
file 1: Table S2.

In the second analysis, participants were randomly 
assigned to a training set (n=55,328) and a testing set 
(n=55,327) to develop and validate the 10-year incident 
dementia risk prediction model. We used elastic net 
regularized logistic regression models to select metab-
olomic predictors. The elastic net regularized logis-
tic regression model is a straightforward supervised 

Fig. 1  Data processing and analyses flow diagram of this study. Thirty-eight metabolites were significant following multiple testing in multi-variable 
cox proportional hazards models. For the development of a prediction model, participants were randomly assigned to the training and testing 
group for model development. After a 10-fold cross-validation test, 24 metabolites were assigned a nonzero coefficient in the elastic net regression 
model amongst the 249 included metabolites. Receiver operating characteristic (ROC) curve was created and area under curve (AUC) was 
calculated for predictive value comparison. Categorical net reclassification improvement (NRI) was calculated to investigate the reclassification 
ability
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machine learning algorithm combining least absolute 
shrinkage and selection operator (LASSO) regression 
and Ridge regression with a good probabilistic inter-
pretation of variables suitable for disease prediction. 
The LASSO penalty selected variables by reducing the 
absolute value of weight, while the Ridge penalty fur-
ther reducing the extremities of weights. Details of the 
model have been described elsewhere [27]. Two tuning 
parameters for elastic net regression model were used, 
including α (representing the weight of the penalty) 
and λ (representing the complexity of the penalty). Of 
note, α controls the balance between LASSO and Ridge, 
with α(1) corresponding to the lasso (the default esti-
mator) and α(0) corresponding to ridge regression [28]. 
To achieve the sparsity of the model and select core 
metabolomic predictors, we tested α of 0.5, 0.75, and 1. 
We then used 10-fold cross-validation to select optimal 
λ and β coefficients for elastic net regression models 
in seek of minimum to minimize cross-validation pre-
diction error, and order to achieve optimal robustness 
of the model. Each combination of α and λ on a two-
dimensional grid underwent 10-fold cross-validation 
for elastic net logistic regression to compute cross-
validation prediction error and assign β coefficient for 
each metabolite to achieve the minimum cross-valida-
tion function. In the final model, α=1 and λ=0.0003648 
were selected by cross-validation. Minimum cross-
validation mean deviance was 0.0887588. 24 metabo-
lites were given nonzero coefficient (Additional file  1: 
Table  S3). In the testing set, we applied three logistic 
regression models to estimate the predictive values of 
different parameters. Model 1 included conventional 
risk factors, including age, gender, education level, sys-
tolic pressure, anti-hypertension treatment, diabetes 
mellitus, smoking status, history of stroke, history of 
coronary heart disease, and APOE ε4 allele; Model 2 
included selected metabolomic biomarkers; and Model 
3 included combined conventional risk factors and 
selected metabolomic biomarkers. Coefficients (95% CI) 
and P value for each exposure parameter are presented 
in Additional file 2: Table S4. The predictive value of the 
selected 24 metabolites was assessed through two meth-
ods. Firstly, the receiver operating characteristic (ROC) 
curve was constructed and the areas under the curves 
(AUCs) were compared amongst different models. Sec-
ondly, using > 5% as the threshold for the group at high 
risk to develop dementia in 10 years [29], categorical net 
reclassification improvement (NRI) was estimated for 
the added value of selected metabolomic biomarkers for 
risk stratification over conventional risk factors.

All analyses were performed using Stata version 13 
(Stata Corp) and R (version 3.3.1, R Project for Statistical 
Computing, Vienna, Austria).

Results
Baseline characteristics of the study participants
Our analysis included 110,655 participants with-
out dementia at baseline, with an average (SD) age of 
56.5 (8.1), of which 59,469 (53.7%) were female. After a 
median follow-up of 12.2 years (IQR: 11.5–12.9 years), 
1439 (1.30%) participants developed dementia. Baseline 
characteristics of all participants stratified by incident 
dementia are summarized in Table  1. Participants with 
incident dementia were often older, male, APOE ε4 car-
riers, with lower education, higher systolic pressures, a 
history of diabetes mellitus, anti-hypertensive medica-
tion use, former or current smokers, and had a history of 
stroke or coronary heart disease.
Associations of baseline circulating metabolites 
with incident dementia
Amongst the 249 metabolomic biomarkers tested by 
UK Biobank Study with NMR technique, after control-
ling for multiple testing, 38 metabolites remained sig-
nificantly associated with dementia incidence (Fig.  2). 
These metabolites included amino acids, fatty acids, 
glycolysis-related metabolites, ketone bodies, and 
lipids and lipoproteins categories. Only eight metabo-
lomic biomarkers, including citrate (HR=1.09 [95% CI: 
1.04–1.14], P=1.52×10−4), three ketone bodies (e.g., 
HRAcetoacetate=1.11 [95%CI: 1.07–1.15], P=8.78×10−8), 
phospholipids to total lipids ratio in intermediate-den-
sity lipoproteins (IDL), small low-density lipoproteins 
(LDL), and very small very-low-density lipoproteins 
(VLDL) (e.g., HRs-LDL-PL-%=1.12 [95% CI: 1.06–1.18], 
P=1.54×10−5), and free cholesterol to total lipids  ratio 
in very large VLDL (HRVL-VLDL-FC-%=1.08 [95% CI: 1.03–
1.12], P=5.62×10−4), were positively associated with 
dementia, while 30 other metabolomic biomarkers from 
amino acids, fatty acids, lipids and lipoprotein subclasses, 
were inversely associated with the incident dementia.

Metabolite selection, prediction, and reclassification 
of the incident possibility of dementia
Elastic net regularized logistic regression analysis iden-
tified metabolites for the construction of a dementia 
prediction model, and 24 metabolites (Additional file  1: 
Table S3) were selected for inclusion in the training set. 
The prediction ability of these metabolites (Xb2) was 
worse than the conventional prediction model (Xb1) 
(AUC: 0.677 versus 0.817), although the addition of these 
metabolites to the conventional risk factors-based model 
(Xb3) improved the prediction precision (AUC: 0.824 
versus 0.817, p=0.042) (Fig. 3). Categorical net reclassi-
fication improvement analysis showed significant benefit 
in reclassification ability through the addition of metabo-
lomic biomarkers into the conventional prediction model 
(NRI=4.97%, SE=0.009, p<0.001) (Table 2).
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Discussion
Using data from over 100,000 plasma samples from UK 
Biobank, we discovered that 38 serum metabolites includ-
ing amino acids, ketone bodies, glycolysis metabolites, 
lipids, and lipoproteins were significantly associated with an 
increased risk of incident dementia. Our findings suggest 
the addition of metabolites into dementia risk stratification 
models could improve its prediction and reclassification for 
at-risk individuals. These metabolites also further insights 
to biological mechanisms which may underly dementia, 
and may assist in the prediction of dementia.

Our results showed branched-chain amino acids 
(BCAAs) are negatively associated with an elevated risk 
of incident dementia, which is consistent with several 

previous studies [1, 30]. It is suggested circulatory BCAAs 
may pass the blood-brain barrier (BBB) [1] and participate 
in the synthesis of key neurotransmitters, proteins, and 
energy [31], which may exert neuroprotective benefits for 
the ageing brain. A recent randomized clinical trial also 
suggested dietary BCAA supplements improved cognitive 
function in middle-aged and older adults [32]. As such, 
this study supports the role of BCAAs for dementia pre-
vention, and this should be further investigated as a pos-
sible modifiable factor for delaying dementia onset.

Our analysis also implicated ketone bodies and citrate 
as metabolites positively associated with incident demen-
tia. Elevation of plasma ketone bodies infer a switch from 
glucose-dependent substrates as energy, which occurs 

Table 1  Baseline characteristics of study participants in the prospective study of dementia

SD standard deviation, No. number

Baseline Characteristics Overall
(N= 110,655)

Individuals with incident 
dementia
(n=1439)

Individuals without incident 
dementia
(n=109,216)

P value

Age, mean (SD), years 56.5 (8.10) 64.2 (4.88) 56.4 (8.08) <0.001
Gender, No. (%) <0.001
  Female 59,469 (53.7) 652 (45.3) 58,817 (53.9)

  Male 51,186 (46.3) 787 (54.7) 50,399 (46.1)

Education level, No. (%) <0.001
  College or university degree 35,744 (32.3) 301 (20.9) 35,443 (32.5)

  Others 74,911 (67.7) 1138 (79.1) 73,773 (67.5)

Systolic pressure, mean (SD), mmHg 137 (18.5) 143 (19.3) 138 (18.5) <0.001
Anti-hypertension treatment, No. (%) <0.001
  No 100,148 (90.5) 1211 (84.2) 98,937 (90.6)

  Yes 10,507 (9.50) 228 (15.8) 10,279 (9.41)

Diabetes mellitus, No. (%) <0.001
  No 103,950 (93.9) 1207 (83.9) 102,743 (94.1)

  Yes 6705 (6.06) 232 (16.1) 6473 (5.93)

Smoking status, No. (%) <0.001
  Never 60,195 (54.7) 666 (46.6) 59,529 (54.8)

  Former/current 49,896 (45.3) 762 (53.4) 49,134 (45.2)

History of stroke, No. (%) <0.001
  No 109,108 (98.6) 1361 (94.6) 107,747 (98.7)

  Yes 1547 (1.40) 78 (5.42) 1469 (1.35)

History of coronary heart disease, No. (%) <0.001
  No 106,067 (95.9) 1267 (88.1) 104,800 (96.0)

  Yes 4588 (4.15) 172 (12.0) 4416 (4.04)

APOE ε4 carrier, No. (%) <0.001
  No 83,454 (75.8) 795 (55.6) 82,649 (76.0)

  Yes 26,675 (24.2) 635 (44.4) 26,040 (24.0)

(See figure on next page.)
Fig. 2  Adjusted HR (95% CI) of incident dementia for metabolites after multiple testing. Hazard ratios (HR) are per 1 standard deviation (SD) higher 
of Z-transformed metabolic marker and are adjusted for age, gender, education level, systolic pressure, anti-hypertension treatment, diabetes 
mellitus, smoking status, history of stroke, history of coronary heart disease, and APOE ε4 allele. CI, confidence interval; LDL, low-density lipoprotein; 
HDL, high-density lipoprotein; VLDL, very-low-density lipoprotein; IDL, intermediate-density lipoprotein
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Fig. 2  (See legend on previous page.)
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in low carbohydrate diets, disrupted glucose uptake dis-
orders like diabetes, or during long periods of fasting. 
Ketone bodies have also been implicated in cognitive 
impairment and Alzheimer’s dementia (AD) brains which 
were exposed to long-term glucose uptake and utilization 
disruption [33, 34]. This association is further explained 
by recent evidence suggesting the utilization of ketone 
bodies in the brain largely relies on their plasma concen-
tration [35] and transportation capacity across the BBB 
[36]. Our association with peripheral citrate is concord-
ant with FA Leeuw et al. whom observed higher levels of 

plasma citrate were associated with brain and hippocam-
pal atrophy, and white matter hyperintensity, which are 
known neurological changes associated with AD and 
dementia [37]. Furthermore, these metabolic disturbances 
are replicated in animal AD model brains [33, 38, 39]. 
Although our findings are consistent with previous stud-
ies, the exact mechanisms underlying these associations 
are lacking. We suggest future research to concentrate on 
laboratory and clinical studies to further define and eluci-
date the roles of ketones and citrate in dementia.

Strong negative correlations were observed between 
small high-density lipoproteins (HDL), its lipid constitu-
ents (including total lipids, cholesteryl esters, choles-
terol, free cholesterol, and phospholipids) and incident 
dementia in the present analysis. Similar findings have 
been replicated by previous studies although an adequate 
explanation on these observations is yet to be fully real-
ized [37, 40, 41]. Of note, Martinez et al. recently showed 
small HDL was the only lipoprotein that could pass the 
BBB, which implies it plays a role in the balance and dis-
tribution of fats within the brain [42]. Potentially, HDL 
exerts its neuroprotective effects through the redistri-
bution of lipids which may affect neuronal membrane 
composition. This may have reverberating effects on β 
deposition and p-tau accumulation, and may protect 
neurons against oxidation and inflammation, thereby 
preserving vascular and synaptic function [40, 42, 43].

Fig. 3  ROC and AUC analysis of incident dementia prediction model development and predictive value comparison. An elastic net regression 
model based on lasso penalty was used for dementia prediction. After 10-fold cross-validation, 24 of 249 metabolites were selected for the 
dementia prediction model. Xb1 curve used conventional risk factors as input signals, while the Xb2 curve was for 24 selected metabolites and 
Xb3 was for conventional risk factors and 24 selected metabolites. There was no clinically significant difference (P = 0.042) found between the AUC 
of Xb1 and Xb3. Conventional risk factors included age, gender, education level, systolic pressure, anti-hypertension treatment, diabetes mellitus, 
smoking status, history of stroke, history of coronary heart disease, and APOE ε4 allele. ROC, receiver operating characteristic; AUC, area under curve

Table 2  Net reclassification improvement of adding 24 
metabolites into a conventional risk prediction model

Values are n. Patients in the upper-right cell were rightfully up-reclassified 
(n=48, and 6 patients were mistakenly down-reclassified), indicating an 
improved sensitivity. Patients in the lower-left cell were rightfully down-
reclassified (n=353, and 654 patients mistakenly up-reclassified), indicating an 
undermined specificity. NRI (SE) = 0.0497 (0.00921), P value <0.001·

Conventional 
prediction model

Updated model

Incident dementia in 
10 years

Risk (%) <5 >5

Yes <5 668 48

>5 6 76

No <5 101,185 654

>5 353 823
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Total lipids, cholesteryl esters, cholesterol, triglycer-
ides in VLDL and LDL subclasses, and polyunsaturated 
fatty acids (PUFA) were inversely associated with future 
risk of dementia, while free cholesterol concentration in 
very large VLDL was associated with an increased risk 
of dementia. These findings are aligned with some previ-
ous studies [1, 40, 44, 45], although a body of evidence has 
suggested conflicting results [46–48]. Of note, LDL-C is a 
conventional risk factor in cardiovascular and metabolic 
diseases, although its role in dementia has been histori-
cally conflicting [48, 49]. Furthermore, the different roles 
of lipoprotein subclasses may be attributed to their ability 
to cross the BBB, which makes the lipid environment in the 
brain very different from the periphery [37]. Nonetheless, 
several hypotheses may explain our findings, including the 
presumed role of triglycerides for interfering with periph-
eral Aβ transportation and facilitating PUFA absorption 
[50]. PUFAs are not only an anti-oxidative and anti-inflam-
matory regulator through modulating pro-inflammatory 
cytokines and decreasing microglial inflammatory acti-
vation of Aβ [50], but also are an essential component of 
neuronal membranes and can pass the BBB to participate 
in brain development [51], so theoretically their pres-
ence in serum should indicate their active synthesis and 
transportation which would be beneficial for the brain. 
The links between VLDL and LDL with dementia are less 
straightforward, as these lipoproteins cannot pass the BBB. 
Further studies are needed to investigate their mechanisms 
and tie in their association with dementia pathogenesis.

Furthermore, we successfully identified candidate metab-
olites, whose addition to the conventional model could sig-
nificantly improve the accuracy of dementia prediction and 
reclassification of risk group, thus might improve the sensi-
tivity of identifying patients in their prodromal phase. Such 
findings suggest the potential clinical use of metabolomic 
biomarkers as complementary information for early and 
population-based detection of dementia. However, though 
our model showed statistically significant improvement 
through the addition of metabolites, caution is still required 
when interpreting clinical implications as the absolute 
increase was not substantial. This was possible because 
conventional risk factors for dementia, e.g., diabetes and 
hypertension, already accounted for some of the metabolic 
changes in dementia pathogenesis.

Our study had several strengths, including the use of over 
100,000 samples over a 14-year follow-up duration, the 
adjustment for confounding factors, and a homogeneous 
platform to analyse metabolites using the NMR technique 
[52]. Some limitations must also be acknowledged. Firstly, 
the participants were largely Caucasian and from developed 
countries with good socioeconomic standing [53] which 
may limit the generalizability of our results to other ethnici-
ties and geographic backgrounds. Secondly, our longitudinal 

associations do not imply causality, hence more research 
is needed to confirm our findings. Thirdly, though the 
identification of clinical dementia from the UK electronic 
healthcare dataset guaranteed the specificity of our model, 
the omission of subclinical dementia may undermine its 
sensitivity [54, 55]. Furthermore, the paper did not define 
the effect of metabolites on predicting various subtypes of 
dementia. Fourthly, as we used peripheral metabolomic data 
rather than CNS metabolites, these results may not reflect 
the brain microenvironment and should be interpreted with 
caution. Lastly, we cannot exclude residual confounders.

Conclusions
By use of a novel study design to investigate a prospec-
tive cohort of 110,655 participants over 14 years, several 
metabolomic biomarkers were found significantly associ-
ated with dementia incidence. The metabolites identified 
in this study may supplement future hypotheses explain-
ing the complex interplay between energy and lipid 
metabolism, and the development of dementia. These 
metabolites improved risk stratification when added 
to conventional risk factor models, and this study pro-
vides an opportunity for considering the improvement 
of screening tools to better identify at-risk populations. 
Our findings also further discuss biological mechanisms 
underlying dementia and potentially facilitate the predic-
tion, prevention, and treatment of dementia. Molecular 
and genetic studies were needed to determine the exact 
pathways mediating our observed associations, and clini-
cal studies are needed to prove these metabolites can 
improve screening and prediction of dementia.
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