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Abstract 

Background:  Considering the heterogeneity of tumors, it is a key issue in precision medicine to predict the drug 
response of each individual. The accumulation of various types of drug informatics and multi-omics data facilitates the 
development of efficient models for drug response prediction. However, the selection of high-quality data sources 
and the design of suitable methods remain a challenge.

Methods:  In this paper, we design NeRD, a multidimensional data integration model based on the PRISM drug 
response database, to predict the cellular response of drugs. Four feature extractors, including drug structure extrac-
tor (DSE), molecular fingerprint extractor (MFE), miRNA expression extractor (mEE), and copy number extractor (CNE), 
are designed for different types and dimensions of data. A fully connected network is used to fuse all features and 
make predictions.

Results:  Experimental results demonstrate the effective integration of the global and local structural features of 
drugs, as well as the features of cell lines from different omics data. For all metrics tested on the PRISM database, 
NeRD surpassed previous approaches. We also verified that NeRD has strong reliability in the prediction results of new 
samples. Moreover, unlike other algorithms, when the amount of training data was reduced, NeRD maintained stable 
performance.

Conclusions:  NeRD’s feature fusion provides a new idea for drug response prediction, which is of great significance 
for precise cancer treatment.
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Background
Due to their heterogeneity, tumors from the same tis-
sue origin and pathologic classification exhibit a high 
degree of genetic and phenotypic variation in individuals 

[1]. In practice, this translates to differential reactions 
to treatment. Therefore, to achieve precision medicine, 
the genetic background and medical history of patients 
should be considered [2]. Accurate computational pre-
diction of cancer patients’ responses to drug treatment 
is essential and meaningful to the achievement of preci-
sion medication [3]. However, the lack and inaccessibility 
of data on cancer patients is the limitation for large-scale 
computational predictions of drug response. In con-
trast, cell line-based drug response data are abundant 
and readily available, providing a basis for drug response 
prediction. Moreover, using the drug response data of 
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cell lines for drug response prediction is the foundation 
and the most important step in the realization of preci-
sion medicine [4]. Furthermore, the effective integration 
of various types of drug informatics and multi-omics data 
presents an opportunity to develop drug response pre-
diction models [5, 6].

With the rapid development of biotechnology and 
the ongoing progress of sequencing technology, a large 
amount of multi-omics and pharmacological data has 
been accumulated [7, 8]. In recent years, data from sev-
eral large-scale drug screening initiatives have been 
made available, including Genomics of Drug Sensitivity 
in Cancer (GDSC) [9], Cancer Cell Line Encyclopedia 
(CCLE) [10], and the US National Cancer Institute 60 
human tumor cell line anticancer drug screen (NCI60) 
[11]. The GDSC database1 is the largest public resource 
for information on drug sensitivity in cancer cells and 
molecular markers of drug response. It currently con-
tains nearly 75,000 items of experimental drug sensitivity 
data, describing the responses of 138 anti-cancer drugs 
in nearly 700 cancer cell lines [9]. The CCLE database2 
is a compilation of gene expressions, chromosomal copy 
numbers, and massively parallel sequencing data from 
947 human cancer cell lines, covering the responses of 24 
drugs in 504 cancer cell lines [10]. NCI60 is an in  vitro 
drug discovery tool developed in the late 1980s, which 
aims to replace the use of transplantable animal tumors 
in anti-cancer drug screening and test the drug responses 
of 52,671 drugs in 60 cancer cell lines [11]. They have 
helped advance the field of precision medicine. However, 
these studies either test the cellular response of numer-
ous compounds to a limited number of cell lines (e.g., 
the NCI60 panel), or of a limited number of tumor com-
pounds to numerous cell lines (e.g., the GDSC project). 
The ideal study should involve a number of drugs (most 
non-oncologic) screened in a large panel of genomically 
featured cell lines to capture the molecular diversity of 
human cancer [12].

To address this problem, Yu et al. reported a biotechno-
logical method called profiling relative inhibition simul-
taneously in mixtures (PRISM) [13]. Jin et al. applied this 
method to 500 cell lines covering 21 types of solid tumors 
and mapped the first generation of human cancer cell 
metastases, which validated the reliability of the method 
[14]. Corsello et  al. used this method to build a PRISM 
drug repurposing resource3 database, for which 4518 
drugs were tested for growth-inhibitory activity in 578 
human cancer cell lines, i.e., a large-scale drug screening 

process. They thought that this database could be used 
to build a drug response prediction model in cancer 
cell lines, thereby suggesting potentially relevant patient 
groups [12].

Drug response prediction is a core issue of preci-
sion medicine. Benefiting from these public datasets, 
researchers have developed a variety of effective com-
putational methods to predict drug responses in can-
cer cell lines, thereby promoting the advancement of 
anti-cancer drug discovery. The rapid development of 
machine learning also has had a profound impact on 
biological and medical applications. Menden et al. first 
develop cancer pharmaco-omics model using mul-
tilayer perceptron (MLP). Menden et  al. [15] Ridge 
regression [16], Lasso regression [17], random forest 
(RF) [18], and some Bayes-based methods [19, 20] are 
used to build drug response prediction models. Due 
to their powerful capabilities in model integration, 
such algorithms have been used to conduct system-
atic research on drug response prediction, combined 
with integrated strategies and multicore multitask 
learning techniques [21–23]. Nevertheless, because 
of the complexity of multi-omics data, these methods 
often face the problem of “small n, big p,” i.e., a fea-
ture dimension much greater than the number of sam-
ples [24]. This makes it difficult for such methods to 
effectively extract features from complex omics data. 
Some researchers [25–27] focus on feature selection, 
which is a major antidote to the statistical and com-
putational problems that the high-dimensional omics 
input data typically entail [28], to improve prediction 
accuracy on classic machine learning models. Auto-
HMM-LMF [29] and Dr.VAE [30] used autoencoders 
to solve the problem of high dimensionality of omics 
data, but they did not explore the characteristics of 
drugs. Effective fusion of multi-omics data is also one 
of the core issues of drug response prediction. Existing 
fusion categories can be summarized as early-fusion 
[15, 31], late-fusion [32] and intermediate-fusion [24, 
33, 34]. Intermediate-fusion shows better performance 
in this problem. In tCNNS [33], a set of twin convolu-
tional neural networks (CNNs) was used to combine 
the simplified molecular input line entry specification 
(SMILES) of a drug with the genome mutation data of 
a cell line. However, the limitations of CNNs render 
it unable to deal with features of different data struc-
tures and dimensions. GraphDRP [24] and DeepCDR 
[34] extract the drug structure information represented 
by a graph through a graph convolutional network 
(GCN). Although they made some progress in model 
performance, they only used a single drug feature. Fur-
thermore, using multisource information fusion with 
insufficient data to train the model, to maintain good 

1  https://​www.​cance​rrxge​ne.​org/
2  https://​sites.​broad​insti​tute.​org/​ccle/
3  https://​depmap.​org/​repur​posing/
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prediction accuracy poses a challenge. The scarcity of 
data due to the high cost of labeling remains the main 
problem in biomedical applications.

In response to the above problems, we propose a mul-
tichannel Neural network model to predict the cellu-
lar Response of Drugs (NeRD), using the PRISM drug 
response database. NeRD combines a one-dimensional 
CNN, stacked autoencoder, and GCN to effectively 
extract and integrate the global and local structure of a 
drug, as well as the cell line characteristics from multi-
omics data. The fully connected network is then used 
to predict the final drug response score. Experimental 
results show that our method can effectively integrate 
multisource information and combine the features of 
different data structures and dimensions. NeRD out-
performed seven comparison methods on all evaluation 
metrics on the PRISM database. Moreover, when the 
amount of training data was reduced, NeRD maintained 
stable performance and was more robust than the com-
parison algorithms. We summarized our contributions as 
follows.

•	 An accurate drug response prediction model NeRD 
is proposed. The model with a multichannel struc-
ture can effectively extract the features with different 
data structures and dimensions and integrate multi-
source information of drugs and cell lines.

•	 The fusion of multisource information makes the 
model more robust. Unlike other algorithms, when 
the amount of training data is reduced, NeRD main-
tains stable performance.

•	 We use a recently proposed database PRISM and 
prove its practicability. The database contains more 
drug-cell line pairs and is worthy of attention by 
researchers.

Methods
Database and data preprocessing
The data we use comes from the PRISM drug repurpos-
ing database, which contains the IC50 values, i.e., the 
concentration of a drug required to inhibit 50% of the 
cell line activity, for 1448 drugs across 480 cell lines. The 
lower the value the better the drug’s effect. We retrieved 
the SMILES feature characterizing the overall structure 
information of all drugs and the molecular fingerprint 
feature of local structure information. For cell lines, we 
selected the DNA copy number and miRNA expression 
data from multiple omics features. A total of 388 cell 
lines had data on both of the above omics features. The 
meanings of features and the reasons for selecting them 
are as follows.

Simplified molecular input line entry specification (SMILES)
An ASCII string represents the three-dimensional 
chemical structures of drugs. We used the RDKit toolkit 
[35] to transform a SMILES string to a molecular graph 
that reflects interactions between atoms inside drugs. 
Each atom was represented by a node, and the bonds 
between atoms were represented by edges. And each 
node contains five types of atom features: atom sym-
bol, atom degree calculated by the number of bonded 
neighbors and hydrogen atoms, total number of hydro-
gen atoms, implicit value of the atom, and whether the 
atom is aromatic. These atom features are encoded into 
a 78-dimensional binary vector [24]. The RDKit func-
tions we used and their descriptions can be found in 
Additional file 1: Table S1.

Molecular fingerprint
For 1448 drugs, we extracted chemical structure data in 
SDF format from the PubChem compound database [36]. 
Each drug was encoded into an 881-dimensional sub-
structure vector defined in PubChem using the R pack-
age ChemmineR. Each drug is represented by a binary 
fingerprint that indicates the existence of a predefined 
chemical structure fragment. If a drug contains the cor-
responding chemical fingerprint, the element is 1, and 
otherwise it is 0.

The above two drug features were selected to extract 
the global and local structural features of drugs together, 
so as to improve the reliability of the results. In this 
paper, the local structure features of drugs refer to the 
substructure information of drug molecules represented 
by molecular fingerprints, because molecular finger-
prints describe whether drug molecules contain certain 
substructures. Then the other drug feature, the molecu-
lar map, contains the information of the entire molecular 
structure, that is, the global structural feature of the drug.

Omics data
We acquired DNA copy number and miRNA expression 
data from the CCLE database for 338 cell lines. The DNA 
copy number data consist of 23,316-dimensional vectors 
that represent the number of occurrences of a specific 
DNA sequence in a haploid genome, which can reflect 
the characteristics of cell lines at the gene level. Studies 
have shown that copy number alterations are ubiquitous 
in cancer, and many of which are disadvantageous [37]. 
They are involved in the formation and progression of 
cancer and contribute to cancer proneness [38]. Analysis 
of copy number alteration data can help in cancer diag-
nosis and treatment by providing a better understanding 
of the biological and phenotypic effects of cancer [39]. 
Based on these studies, we have also considered this 
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data as feature data for cancer cell lines. The miRNA 
expression data consist of 734-dimensional vectors. It is 
a kind of noncoding RNA molecule that can inhibit or 
degrade mRNA translation by binding to complemen-
tary target mRNA. It plays an important role in cell dif-
ferentiation, proliferation, and survival [40]. Functional 
studies have confirmed that a causal relationship exists 
between abnormal miRNA regulations in many can-
cer cases. miRNAs, as tumor suppressors or oncogenes 
(oncomiRs), miRNA mimics, and molecules targeting 
miRNAs (antimiRs), have shown prospects in preclinical 
development [41].

Data preprocessing
To avoid the adverse effects of the different distributions 
of the DNA copy number and miRNA expression data on 
model training, we normalized them before inputting the 
feature extraction channels. For the drug SMILES (graph) 
and molecular fingerprint (binary vector), due to the par-
ticularity of the data format, we performed no processing 

before input. The range of values for IC50 is too large, 
and there are outliers. Therefore, we logarithmically 
processed the raw data while ensuring that the original 
IC50 values could be recovered. We also used a box-
plot to remove outliers [42]. We took the upper quar-
tile Q3 and lower quartile Q1 of all response data. Then, 
we got the interquartile range IQR = Q3 − Q1 . Finally, 
IC50 values less than Q1 − 1.5× IQR and greater than 
Q3 + 1.5× IQR were regarded as outliers. Specifically, 
the data we use contained 1448 drugs and 388 cell lines. 
Among them, there are 249,784 data with labels (44.46%). 
After removing the 15,976 outliers counted by the box-
plot, we ended up using a total of 233,808 labels.

Multichannel‑based neural network
Overview
Due to the different data structures and dimensions of 
drug features and cell line features, we designed different 
feature extraction networks for the four types of features 
(Fig. 1).

Fig. 1  Overall model architecture. The feature extraction part of NeRD contains four feature extractors: drug structure extractor (DSE), molecular 
fingerprint extractor (MFE), miRNA expression extractor (mEE), and copy number extractor (CNE). After extracting the features, the drug 
representation and cell-line representation in the same format are combined through the fusion layer, and the IC50 value is predicted
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We use the SMILES sequence containing global struc-
ture information and the molecular fingerprint con-
taining local structure information as drug features. 
The SMILES sequence describes the three-dimensional 
chemical structure of drugs. To extract the maximum 
structural information, we use SMILES in the graph 
form as the input of the drug structure extractor (DSE). 
To extract feature information from the graph, we use a 
method that can perform deep learning on graph data, 
the GCN, through which we can obtain the structural 
features of drug molecules. Since the data structure of 
a graph is different from other features and cannot be 
directly integrated, global maximum pooling is used to 
convert the feature data from a matrix to a vector, and 
its features are normalized to 128 dimensions through a 
fully connected network. Molecular fingerprints describe 
whether a drug has certain substructures, and can repre-
sent its local structural features. Since the data structure 
of the molecular fingerprint is a standardized binary vec-
tor, it can be directly used as the input of the molecular 
fingerprint extractor (MFE). Then, we use a one-dimen-
sional CNN to extract the features of these substructures, 
and normalize them to vectors of the same dimension. 
The two feature vectors representing a drug are spliced to 
obtain its final feature representation.

We use miRNA expression data and the DNA copy 
number as features for cell lines. We designed a miRNA 
expression extractor (mEE) based on a one-dimensional 
CNN. We input the feature vector describing the miRNA 
into this channel and extracted its potential features. 
However, the DNA copy number cannot be directly 
extracted by the above neural network model due to its 
ultra-high dimensionality. So we designed a copy number 
extractor (CNE) based on a stacked autoencoder and per-
formed nonlinear dimensionality reduction on the input 
data. The obtained low-dimensional feature representa-
tion was spliced with the output of the mEE to obtain the 
final feature representation of the cell lines.

Finally, we fuse the feature representations of drugs and 
cell lines and use the fully connected layers to predict the 
drug response in cancer cell lines. We next describe the 
implementation of these channels.

Molecular fingerprint extractor and miRNA expression 
extractor based on 1D CNN
For input in conventional formats, such as the molecular 
fingerprints of drugs and miRNA expression of cell lines, 
we use a one-dimensional CNN to extract their features.

We use three convolutional layers in the model, with 
4, 8, and 16 convolution kernels. Each element of a con-
volution kernel corresponds to a weight coefficient and 
a bias vector, similar to a neuron of a feedforward neu-
ral network [43]. Each neuron in a convolutional layer is 

connected to multiple neurons in a region close to the 
previous layer [44]. The size of the region depends on the 
size of the convolution kernel, which in our model is set 
to 8. This area is called a receptive field in the literature, 
whose meaning is analogous to that of a receptive field 
of a visual cortex cell [45]. When a convolution kernel is 
working, it scans the input features regularly, conducts 
matrix element multiplication and summation of input 
features in the receptive field, and superimposes the devi-
ation [46], so as to achieve the effect of feature extraction,

The summation in the formula is equivalent to solving 
a cross-correlation. b is the amount of deviation, and Zl 
and Zl+1 represent the input and output, respectively, of 
the (l + 1) th convolutional layer. Ll+1 is the size of Zl+1 . 
The input is assumed to be one-dimensional, and con-
volved in one dimensional direction only, and the two-
dimensional convolution formula [44] is similar to this. 
Z(i) represents the values of the feature vector; K is the 
number of channels; and f, s0 , and p are the parameters 
of the convolution layer, which represent the size of the 
convolution kernel, the stride, and the number of pad-
ding layers [46].

After feature extraction in each convolutional layer, the 
output feature data are passed to the pooling layer for 
feature selection and information filtering. The general 
form of Lp pooling is

where p is a pre-specified parameter. When p = 1 , Lp 
pooling takes the average value in the pooling area, which 
is called average pooling; when p → ∞ , Lp pooling takes 
the maximum value in the area, i.e., max pooling [47]. 
Again, pooling is reduced to one-dimensional space. Our 
model uses the method of max pooling with a step size 
of 3, i.e., p → ∞ , s0 = 3 . It replaces the result of a single 
point in the feature vector with the feature statistics of its 
neighboring regions. After that, the features from the 16 
channels are flattened into vectors, and the dimensions 
are converted to 128.

Copy number extractor based on stacked autoencoder
We cannot directly use conventional neural networks to 
extract features for DNA copy numbers with ultra-high-
dimensions; we need to reduce the dimensionality in 
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advance. Traditional methods such as PCA [48] can only 
reduce dimensionality in linear space and cannot per-
form nonlinear transformation, so we designed a stacked 
autoencoder [49] to predict the input by using fewer hid-
den nodes than the input nodes, i.e., to learn the function: 
h(x) ≈ x . In other words, it must learn an approximate 
identity function so that the output x̂ is approximately 
equal to the input x. For this reason, the network needs 
to encode as much information as possible into hidden 
nodes [50]. Stacked autoencoders are allowed to contain 
multiple hidden layers. We can learn more complex cod-
ing by adding hidden layers, but we must not make the 
autoencoder too powerful. If an encoder is too powerful, 
it just learns to map the input to an arbitrary number, and 
then the decoder learns its inverse mapping. Obviously, 
this autoencoder can reconstruct the data very well, but 
it cannot learn useful data representations. The autoen-
coder we designed contains six hidden layers, three 
belonging to the encoder and three to the decoder. The 
numbers of hidden layer neurons are 1024, 512, 256, 256, 
512, and 1024. Because the traditional methods, such 
as the PCA method, can only reduce the dimensional-
ity in linear space, we add nonlinear activation functions 
between the linear layers to enable nonlinear transforma-
tion. For the objective function during training, we use 
mean squared error, i.e.,

where y is the true value and ŷ is the predicted value. For 
ultra-high-dimensional and complex features of copy 
numbers, our model can encode these into low-dimen-
sional data and represent the original feature well.

Drug structure extractor based on GCN
A CNN is only suitable for tensor data, such as two-
dimensional images or one-dimensional text sequences. 
However, there is much data, whose relationships are 
difficult to simply express with tensors. For example, 
to use only a one-dimensional text sequence to repre-
sent the SMILES feature of a drug will lose its structural 
information. Thus, we need to use another common data 
structure, a graph represented by vertices and edges. Spe-
cifically, the SMILES sequence of a drug is transformed 
to the graph G = (V,E) through RDKit and stored in the 
form of a feature matrix X and an adjacency matrix A . 
X ∈ Rn×f  is composed of n nodes in the graph, and each 
node is represented by an f-dimensional vector. A ∈ Rn×n 
represents an edge between nodes.

In order to extract the features of this kind of graph 
structure, we need to use a graph network. A currently 
popular method is to apply convolution to the graph 

(3)
Loss =

n
∑

i=1

(ŷi − yi)
2

n
,

structure, i.e., a GCN [51]. For the graph of SMILES, 
unlike matrix data, its convolution is difficult to define 
directly, so the convolution operation in the spatial 
domain must be transformed to matrix multiplication in 
the spectral domain,

where g is the convolution kernel. The graph x is repre-
sented as x = (f(1) · · · f(n)) ∈ Rn , which is the signal 
at each point of the graph. U is the basis of the Fourier 
transform and the eigenvector of the Laplacian matrix. 
However, the cost of calculating U is too high, so after a 
series of approximate calculations, we obtain an approxi-
mate convolution formula,

where Ã is the graph adjacency matrix with self-loop 
added, which sums the node itself when summing the 
eigenvectors of all adjacent nodes. It is thus possible to 
combine information of an atom in the drug compound 
with its neighbors. D̃ is the diagonal degree matrix of 
graph Ã , D̃ii =

∑

j Ãij . The derivation process can be 
found in [51]. Then, after adding the nonlinear activation 
function σ , we can train using the graph convolutional 
network,

where H is the layer, and the superscript is the num-
ber of layers. Each additional graph convolution layer 
can aggregate the features of one more hop of neighbor 
nodes, thereby capturing as much neighborhood struc-
ture information as possible. H(0) is the feature matrix 
X , and W is the trainable parameter matrix. We use 
three graph convolutional layers in the model, where the 
dimensions of W(0) , W(1) , and W(2) are f × f  , f × 2f  , 
and f × 4f  , respectively. Thus, the dimensions of H(1) , 
H(2) , and H(3) are n× f  , n× 2f  , and n× 4f  , respectively. 
We then use global maximum pooling to convert H(3) to 
a 4f-dimensional vector. Through the fully connected lay-
ers, the output dimension is 128.

Fusion layer
After the feature extraction channels, we concatenate 
the extracted features, fuse them through several fully 
connected layers, and make predictions. We add batch 
normalization (BN) layers between the linear layers and 
the nonlinear activation function to standardize the 
input of the activation function. This solves the prob-
lem of slow training due to inconsistent distributions of 
various features. Without normalization, the network 

(4)gθ ∗ x = U
(

UTgθ ·U
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)

,

(5)gθ ∗ x = θ
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needs more overhead to learn new distributions, which 
makes the model more complex and leads to overfit-
ting. It also allows each layer to face the same distribu-
tion of input values, reducing the uncertainty caused by 
changes, and reducing the impact on subsequent lay-
ers. Each layer of the network becomes independent, 
which alleviates the problem of gradient disappearance 
in training.

After the sigmoid function, the output is mapped to 
(0,  1), which corresponds to the normalized value of a 
drug response. The steps of this method are shown as 
Algorithm 1.

Algorithm 1  multichannel drug response prediction network

Results
We divided drug-cell line pairs into training, validation, 
and test sets in an 8:1:1 ratio. The training set is used to 
train the models, and the model with the best result on 
the validation set is saved. We use the test set to test the 
saved model to obtain the final results. Further, we per-
formed a five-fold cross-validation, that is, taking two 
pieces of data in turn as the validation set and the test 
set, and the remaining eight pieces as the training set. 
To evaluate these models, we use four classic metrics in 
regression: the Pearson correlation coefficient ( CCp ), R 

squared ( R2 ), root mean square error (RMSE), and Spear-
man correlation coefficient ( CCs).

For NeRD, we adjusted hyperparameters such as 
dimensions after feature extraction, number of fusion lay-
ers, learning rate, epoch number, batch size, and dropout 
value according to the results of validation set. For those 
baseline methods, based on the principle of maintaining 
the original model, we also fine-tuned some hyperparam-
eters according to the dataset we use to make the predic-
tion results optimal. Details of hyperparameters are in 
Additional file 1: Table S2-S9.

After that, we designed six sets of experiments to verify 
the effectiveness of the proposed model from multiple 
perspectives.

Performance comparison
Our baseline includes classic machine learning meth-
ods—linear regression (LR) and random forest and 
support vector regression (SVR, SVR-L for linear ker-
nel-based SVR); matrix factorization-based method—
SRMF [52]; deep learning methods—MLP and CNN; 
and advanced dual-channel methods—VAE+MLP [53], 
tCNNS [33], CDRScan [31], DeepCDR [34], and Graph-
DRP [24]. We use the same data processing and division 
method to obtain experimental results through different 
models.

It can be seen from the results in Table 1 that our pro-
posed model performs well, with a certain degree of 
improvement over each baseline. Our model shows an 
improvement of more than 4% over the best baseline on 
R2 , and RMSE is reduced by 5% from the best baseline. 
CCp and CCs are also increased by more than 2%. It can 
also be seen from the results that the nonlinear regres-
sion method has an advantage on this problem, while the 
performance of the linear regression method is very poor.

Blind test
In performance comparison experiments, it may hap-
pen that the response data of a drug to some cell lines is 
divided into the training set, and the response data of this 
drug to other cell lines is divided into the test set. How-
ever, it may be necessary to predict the response of a new 
drug, and we designed a blind drug test for this purpose. 
We randomly select 10% of the drugs and use all drug-
cell line pairs associated with them as the test set. Of the 
remaining 90% of drugs, 80% are used for training the 
model, and 10% for validation. It can also be necessary 
to predict the response of a new cell line, for which we 
designed a blind cell line test. We randomly select 90% of 
the cell lines and use all associated drug-cell line pairs for 
training, and the remaining 10% for testing. The number 
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of data instances corresponding to each data partition 
can be found in Additional file 1: Table S10.

From the results of the blind test (Tables  2 and 3), it 
can be seen that the results of the blind cell line test are 
slightly lower than those of the mixed test, and the gap 
between different methods is not so obvious. It is worth 
noting that SRMF [52], a matrix factorization-based 
method, has almost no performance loss in blind cell line 
test, compared to mixed test. As Chen et al. [54] stated, 
some non-deep learning methods may work better in 
blind testing scenarios. However, the results of the blind 
drug test are unsatisfactory. This is predictable, because 
different cell lines still have strong similarities, but differ-
ent drugs are not so similar, as Liu et al. [33] says. Conse-
quently, when a drug to be predicted does not appear in 
the training set, it is difficult for the models to effectively 

extract its features and make correct predictions. This is 
a common problem in existing research [24, 33, 55], and 
even then, NeRD still outperforms baseline models. Sur-
prisingly, SRMF did not perform as well as in the litera-
ture [54] on drug blind test. Therefore, we compared the 
data from GDSC in the original study with ours, which 
can be found in Additional file 1: Table S11.

In addition, random partitioning of dataset may lead 
to uncertainty in the results on blind test. It is more 
convincing to use drugs or cell lines with different simi-
larities as test sets. To do this, we grouped drugs and 
cell lines by their level of similarity across the dataset, 
respectively, and then used each group as a test set in 
turn.

The prediction results of blind cell line test were posi-
tively correlated with the similarity level of test sets. The 

Table 1  Performance comparison. “ ↑ ” means the larger the value, the better; “ ↓ ” means the smaller the value, the better. The standard 
deviation of the cross-validation results is calculated by the STDEVP function

Method CCp ↑ R2 ↑ RMSE ↓ CCs ↑

LR 0.234±0.0010 0.055±0.0004 0.171±0.0002 0.237±0.0011

SVR-L 0.232±0.0013 0.047±0.0012 0.172±0.0007 0.237±0.0008

SVR 0.469±0.0034 0.213±0.0065 0.153±0.0007 0.494±0.0051

RF 0.653±0.0355 0.419±0.0405 0.130±0.0056 0.606±0.0147

MLP 0.828±0.0029 0.698±0.0048 0.104±0.0007 0.800±0.0014

CNN 0.836±0.0026 0.700±0.0044 0.097±0.0008 0.807±0.0029

SRMF 0.837±0.0022 0.701±0.0037 0.097±0.0006 0.809±0.0018

VAE+MLP 0.830±0.0036 0.688±0.0060 0.098±0.0011 0.795±0.0031

DeepCDR 0.764±0.0147 0.572±0.0223 0.115±0.0032 0.676±0.0471

CDRScan 0.834±0.0039 0.696±0.0066 0.097±0.0008 0.810±0.0038

tCNNS 0.849±0.0039 0.721±0.0067 0.093±0.0010 0.822±0.0015

GraphDRP 0.848±0.0033 0.719±0.0057 0.093±0.0010 0.821±0.0020

NeRD 0.866±0.0027 0.750±0.0048 0.088±0.0007 0.839±0.0014

Table 2  Cell-line blind test

Method CCp ↑ R2 ↑ RMSE ↓ CCs ↑

LR 0.231±0.0040 0.053±0.0020 0.171±0.0004 0.233±0.0039

SVR-L 0.110±0.0663 0.045±0.0206 0.180±0.0018 0.106±0.0634

SVR 0.471±0.0168 0.218±0.0169 0.153±0.0034 0.496±0.0015

RF 0.677±0.0351 0.440±0.0506 0.141±0.0044 0.566±0.0344

MLP 0.804±0.0144 0.658±0.0244 0.110±0.0040 0.767±0.0120

CNN 0.819±0.0124 0.671±0.0208 0.101±0.0034 0.781±0.0133

SRMF 0.836±0.0091 0.699±0.0151 0.096±0.0024 0.808±0.0093

VAE+MLP 0.796±0.0108 0.623±0.0187 0.108±0.0026 0.755±0.0102

DeepCDR 0.714±0.0568 0.506±0.0771 0.123±0.0094 0.586±0.1103

CDRScan 0.815±0.0123 0.663±0.0202 0.102±0.0034 0.788±0.0107

tCNNS 0.826±0.0156 0.682±0.0264 0.099±0.0044 0.791±0.0143

GraphDRP 0.833±0.0140 0.693±0.0228 0.097±0.0039 0.801±0.0125

NeRD 0.838±0.0132 0.702±0.0229 0.096±0.0039 0.808±0.0114
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higher the similarity of the test set, the more accurate 
the prediction result. Blind drug test did not reflect this 
pattern. And no matter the scenario, NeRD still outper-
forms other methods. Specific results can be found in 
Additional file 1: Table S12.

Feature ablation experiment
We use multiple features of drugs and cell lines from 
different sources. We conducted a feature ablation 
experiment to verify the validity of the selected features. 
Specifically, we remove one feature of a drug or cell line, 
or remove one feature of each. We observe the results 
under these conditions and analyze the effect of each 
channel on the model’s performance.

It can be seen from the results (Fig. 2) that when any 
feature is lost, each evaluation index will drop slightly. 
This confirms that every feature we choose is beneficial to 
the model. It is interesting that when the molecular fin-
gerprint of a drug is not used, the loss of performance is 
the most obvious, which shows that this is indeed a good 
feature to represent the drug. An intuitive result is that to 
only use the molecular fingerprint as the feature of a drug 
is better than just using SMILES, but this phenomenon 
does not appear in the two features of the cell line.

To further investigate the influence of each channel on 
the prediction results, we calculate the Shapley value for 
the four channels, which is the sum of the marginal con-
tributions of each channel to the outcome divided by the 
number of possible combinations:

Table 3  Drug blind test

Method CCp ↑ R2 ↑ RMSE ↓ CCs ↑

LR 0.201±0.0244 −0.029±0.0863 0.180±0.0132 0.196±0.0351

SVR-L 0.109±0.0435 −0.208±0.2698 0.192±0.0237 0.111±0.0444

SVR 0.315±0.1793 −0.274±0.3725 0.206±0.0076 0.254±0.1311

RF 0.112±0.2737 −0.461±0.1934 0.236±0.0515 0.137±0.2424

MLP 0.261±0.0435 −0.074±0.0924 0.184±0.0135 0.202±0.0701

CNN 0.223±0.0527 0.018±0.0468 0.176±0.0113 0.169±0.0689

SRMF 0.093±0.0553 −0.006±0.0316 0.311±0.0620 0.098±0.0437

VAE+MLP 0.283±0.0242 −0.190±0.0854 0.190±0.0087 0.238±0.0347

DeepCDR 0.318±0.1403 0.010±0.1699 0.174±0.0177 0.254±0.0922

CDRScan 0.297±0.0418 0.049±0.0278 0.173±0.0098 0.229±0.0583

tCNNS 0.256±0.0261 −0.029±0.1123 0.180±0.0179 0.230±0.0335

GraphDRP 0.312±0.0926 0.067±0.0799 0.172±0.0120 0.272±0.0653

NeRD 0.370±0.0131 0.069±0.0454 0.168±0.0076 0.291±0.0426

Fig. 2  Feature ablation experiment. Due to the difference in the scope of metrics, they are normalized separately here
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where R is the permutation of n channels for a total of n!. 
S is a permutation in R, v(S) is the prediction result when 
channel i is included, and v(S − {i}) is the outcome before 
adding channel i. Specifically, we calculate the Shapley 
values of four channels based on the evaluation indica-
tors CCp , CCs , RMSE, and R2 respectively, and present 
them in the form of percentages.

As can be seen from Table 4, each feature we selected 
plays an integral role. Among them, the molecular fin-
gerprint of the drug have the greatest impact on the 
results, exceeding 30%, which means that the molecular 
fingerprint of the drug may represent itself better than 
the molecular graph. The difference between the two fea-
tures of cell lines is small, and the influence of miRNA is 
slightly larger, which also shows that the influencing fac-
tors of cancer are multi-faceted.

Segment verification
To verify the effectiveness of the feature extraction and 
feature fusion parts of the model, we use the t-SNE 
algorithm to visualize the features of each stage. We 
analyze the effect of the model by observing the distri-
bution of samples at different stages. We randomly select 
1000 drug-cell line pairs. Before the feature is input to 

(7)ϕi(v) =

∑

R[v(S)− v(S − {i})]

n!
,

extraction channels, we concatenate the initial features 
and use t-SNE to map them to a two-dimensional space 
to facilitate the visualization of the sample distribution. 
To analyze the distinguishing ability of the feature rep-
resentation, we use the value of IC50 as the label of the 
drug-cell line pairs to color the t-SNE graph. Similarly, 
the features after the four extraction channels are con-
catenated and mapped to a two-dimensional space, vis-
ualized, and colored. Features that have passed through 
the fully connected network of fusion layers are also 
presented.

It can be seen from Fig. 3 that before the feature extrac-
tion channels, drug-cell line pairs with different IC50 val-
ues are mixed together, with no regularity (Fig. 3a). After 
feature extraction, the data distribution becomes regular. 
Samples with high and low IC50 values are divided into the 
two ends of the picture, but the boundaries between other 
samples are not obvious (Fig. 3b). After the fusion layers, 
samples of middle-level IC50 are no longer mixed together, 
and all drug-cell line pairs are distributed in a segmented 
band according to the IC50 value (Fig. 3c). Data with differ-
ent IC50 values are divided into different intervals.

Data reduction experiment
Due to the scarcity of labels in actual application, the 
effect of many models is often much less than the experi-
mental effect. Thus, we artificially reduce the amount of 
training data and observe the attenuation of the effects of 
each model. We randomly select a portion of each train-
ing set in five-fold cross-validation for training, and the 
proportion of this portion is reduced from 1

2
 to 1

16
 . Then, 

we test NeRD and several baselines with good experi-
mental results with different amounts of training data.

The results of the data reduction experiment are shown 
in Fig.  4. It can be seen from the line charts (a–d) that 
the performance of each model is lost as the amount of 
data decreases. However, the prediction results of our 
model are relatively stable. Even when the amount of data 

Table 4  Influence of channels

Drug Cell-line

Channel DSE MFE mEE CNE

CCp 22.8% 30.5% 24.4% 22.3%

R2 21.4% 33.4% 23.8% 21.4%

RMSE 20.0% 32.9% 24.7% 22.4%

CCs 22.6% 32.3% 24.3% 20.8%

Fig. 3  Sample distribution at different stages. a Initial distribution, whose features are concatenated from initial input features. b Sample 
distribution after feature extraction, whose features are concatenated from the output of four extraction channels. c Sample distribution after fusion 
layers, whose features are taken from the fully connected neural network of the fusion layers
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Fig. 4  Data reduction experiment. a CCp of five methods under different data volumes. b R2 of five methods under different data volumes. c RMSE 
of five methods under different data volumes. d CCs of five methods under different data volumes. e Prediction error training on 187,056 pieces (all) 
of data. f Prediction error training on 11,691 pieces (1/16) of data. We perform four sets of statistical tests on the errors of the four baselines with 
NeRD, calculate their P values, and mark them in e and f (*p < 1e − 5 ; **p < 1e − 10 ; ***p < 1e − 20)

Fig. 5  The global enrichment analysis. a Gene Ontology (GO) biological process enrichment analysis. b KEGG pathway enrichment analysis



Page 12 of 16Cheng et al. BMC Medicine          (2022) 20:368 

is reduced to 1
16

 of the total, it maintains a CCp above 0.8 
and an RMSE below 0.10. The performance degradation 
of other models is more obvious. In particular, Graph-
DRP, although it shows excellent performance on the 
original data, has results that deteriorate significantly as 
the amount of data continues to decrease, which may be 
due to the complexity of the model. To more intuitively 
observe the results, we draw the box plots (e, f ) repre-
senting the distribution of prediction errors, from which 
it can be seen that when the data are sufficient (e), the 
prediction error of NeRD is slightly less than that of other 
methods. However, when data are scarce, the prediction 
error of the comparison methods deteriorates severely, 
while the results of NeRD remain stable (f ).

Pharmacogenomics analysis
We use the trained NeRD model to predict unknows 
drug-cell line pairs in PRISM database (approximately 

19.5% of all pairs across 388 cancer cell lines and 1448 
drugs). To verify whether the predicted results have 
biological and clinical significance, we sorted the newly 
predicted IC50 values from small to large and selected 
the top 1% drug-cell line pairs (altogether 2537 pairs 
across 383 cancer cell lines and 91 drugs) (Additional 
file 1: Table S13). Based on the value of IC50, we have 
reason to believe that these drugs have certain antican-
cer activity against different cancer cell lines. For this 
reason, we found the target genes of these 91 drugs 
(Additional file  1: Table  S14) according to the target 
information of the drugs provided in PRISM database. 
Then, we performed two global enrichment analyses 
of these genes, including Gene Ontology (GO) biologi-
cal process and KEGG pathway enrichment. Accord-
ing to the results, these genes are significantly enriched 
in 364 GO terms and 110 pathways (adjusted p-value< 
0.001). The top 20 enrichment results are shown in 
Fig.  5. GO enrichment analysis demonstrates multiple 

Fig. 6  Types of cancer tissues. We classified cancer tissues in the predicted top 1% drug-cell lines pairs and selected the three most numerous 
tissues for analysis
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cancer-related processes (Fig. 5a), such as ion channels 
and transport [56], phosphorylation of the amino acid 
[57, 58], and phagocytosis [59]; these processes are inti-
mately linked to tumor progression, maintenance, and 
treatment. KEGG pathway enrichment analysis reveals 
multiple significant biological pathways (Fig. 5b), which 
are strongly associated with cancer. These enriched 
pathways including ErbB signaling pathway [60], EGFR 
tyrosine kinase inhibitor resistance [61], viral carcino-
genesis [62], proteasome [63], and apoptosis [64], and 
most of them have proven to be effective therapies 
against cancer.

We then also categorized the predicted top 1% of 
drug-cell line pairs according to the tissue that the 
cell line belonged to Fig.  6, selecting the three most 
numerous cancer tissues (i.e., lung, skin, and pancreas) 
for analysis. Importantly, we found that the predic-
tive results for many of these cell line drug pairs in 
these tissues have been confirmed by the existing lit-
erature (Table  5). For example, in the analysis of lung 
cancer, dasatinib as a Src family kinases (SFKs) inhibi-
tor can inhibit the growth and survival of non-small 
cell lung cancer NCI-H2122 cells [65]. In skin can-
cer, NVP-AUY922, a heat shock protein 90 (HSP90) 
inhibitor can sensitize melanoma SKMEL5 cells to it 
[69]. In pancreatic cancer studies, pancreatic cancer 
PANC1005 cells are sensitive to the tubulin polymeri-
zation inhibitor docetaxel, which is consistent with our 

predicted results [75]. Taken together, these case stud-
ies support that NeRD is able to effectively predict the 
drug sensitivity of cell lines, which can help speed up 
the screening of drugs and find new anti-cancer drugs 
in actual clinical settings.

Discussion
We presented a multichannel neural network model, 
NeRD, to computationally predict cancer drug 
responses by integrating multi-dimensional data. We 
designed feature extractors DSE, MFE, mEE, and CNE 
to extract informative embeddings from multidimen-
sional features of cell lines and drugs. Features extracted 
from each channel were converted to a uniform format, 
fused, and predicted. The results of five experiments 
show that NeRD achieves excellent performance from 
many aspects. First, it performs better than comparative 
models. Second, its generalizability was demonstrated 
by blind test results, and it outperformed other mod-
els when predicting new samples. Third, the results of 
a feature ablation experiment show that each selected 
feature is beneficial to the model, and that NeRD effec-
tively fuses multiple information sources and features 
from different data structures and dimensions. Fourth, 
according to a segment verification experiment, NeRD 
has a strong feature extraction capability, which indi-
rectly shows that each feature extractor designed in the 
model has strong utility. Fifth, NeRD has high robust-
ness, as illustrated by a data reduction experiment. 
Sixth, the result of using trained NeRD for drug sen-
sitivity prediction have biological and clinical signifi-
cance. Despite NeRD having strong predictive power, 
the model was built on in vitro data. Challenges remain 
in its application. Recent studies have shown that using 
clinical data from some patients can better help achieve 
precision oncology [27, 79]. These challenges can be 
addressed in our future studies.

Conclusion
In summary, we think that NeRD, as a highly extensi-
ble framework, can effectively fuse multidimensional 
features of cell lines and drugs to accurately predict the 
drug response of cell lines. Furthermore, this model can 
be widely applicable to integrate other omics data, thus 
benefiting clinical cancer therapy and future research on 
drug response prediction. Thus, it will provide a more 
diverse view of clinical cancer therapy.
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relation coefficient; CCs: Spearman correlation coefficient; CNE: Copy number 
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GCN: Graph convolutional network; GDSC: Genomics of drug sensitivity in 
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from these tissues. We found that the predicted results of these 
drug-cell lines were consistent with those reported in the 
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Cell line Cancer tissue Drug name Predicted IC50 Study

NCIH2122 Lung Dasatinib 0.093358595 [65]
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NCIH1650 Lung Bortezomib 0.046070208 [67]

NCIH322 Lung Bortezomib 0.046246483 [11]
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SKMEL5 Skin NVP-AUY922 0.038356718 [69]

UACC62 Skin Piperazine 0.107990561 [70]

A2058 Skin Piperazine 0.125350529 [71]

UACC62 Skin Trametinib 0.063189984 [72]
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ASPC1 Pancreas Dasatinib 0.120664515 [74]
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PATU8902 Pancreas Docetaxel 0.041285745 [76]
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cell line pairs without IC50 data in the PRISM database, sorted from small 
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