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Abstract 

Background:  Extraintestinal symptoms are common in inflammatory bowel diseases (IBD) and include depression 
and fatigue. These are highly prevalent especially in active disease, potentially due to inflammation-mediated changes 
in the microbiota-gut-brain axis. The aim of this study was to investigate the associations between structural and 
functional microbiota characteristics and severity of fatigue and depressive symptoms in patients with active IBD.

Methods:  We included clinical data of 62 prospectively enrolled patients with IBD in an active disease state. Patients 
supplied stool samples and completed the questionnaires regarding depression and fatigue symptoms. Based on 
taxonomic and functional metagenomic profiles of faecal gut microbiota, we used Bayesian statistics to investigate 
the associative networks and triangle motifs between bacterial genera, functional modules and symptom severity of 
self-reported fatigue and depression.

Results:  Associations with moderate to strong evidence were found for 3 genera (Odoribacter, Anaerotruncus and 
Alistipes) and 3 functional modules (pectin, glycosaminoglycan and central carbohydrate metabolism) with regard to 
depression and for 4 genera (Intestinimonas, Anaerotruncus, Eubacterium and Clostridiales g.i.s) and 2 functional mod‑
ules implicating amino acid and central carbohydrate metabolism with regard to fatigue.

Conclusions:  This study provides the first evidence of association triplets between microbiota composition, func‑
tion and extraintestinal symptoms in active IBD. Depression and fatigue were associated with lower abundances of 
short-chain fatty acid producers and distinct pathways implicating glycan, carbohydrate and amino acid metabolism. 
Our results suggest that microbiota-directed therapeutic approaches may reduce fatigue and depression in IBD and 
should be investigated in future research.
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Background
The inflammatory bowel diseases (IBD) Crohn’s dis-
ease (CD) and ulcerative colitis (UC) are characterised 
by abdominal symptoms such as pain and diarrhoea, 

caused by intestinal inflammation. However, the qual-
ity of life of many persons with IBD is often consider-
ably reduced by extraintestinal symptoms like fatigue or 
comorbid depression, which are highly prevalent espe-
cially in active IBD [1, 2]. In the last decade, studies of 
microbiota-gut-brain interactions have helped to gain a 
better understanding of functional gastrointestinal dis-
orders and their relationship with mental health [3], and 
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these interactions are now also increasingly addressed in 
IBD [4, 5].

There is ample data demonstrating that the gut micro-
biota is influenced by the onset of IBD and does not 
revert to its normal state during the quiescent phases of 
the disease [6]. Global microbial parameters like diver-
sity and abundances of single taxa are associated with 
IBD incidence, prevalence or outcomes [7–10]. However, 
causal relationships or treatments targeting microbial 
dysbiosis have not been reliably established as the molec-
ular mechanisms underlying these associations are still 
unclear [11].

The microbiome interacts closely with the intestinal 
immune system and has the ability to influence brain 
function while at the same time being subject to modula-
tion by the central nervous system [12, 13]. Over recent 
years, it has also been associated with a growing num-
ber of mental disorders [14]. With regard to depression 
[15], alpha- and beta diversity have been shown to dif-
fer between patients and controls [16, 17]. Furthermore, 
a recent large study showed a depletion of specific taxa, 
such as Dialister and Coprococcus, to be associated with 
depressive symptoms [18]. Advances in sequencing 
techniques and analytic methods have allowed further 
insights into functional parameters of the microbiome 
such as the faecal metabolome in depression [19], link-
ing depressive symptoms to alterations in the microbial 
amino acid metabolism.

Associations between the microbiome and fatigue 
have been analysed in patients with myalgic encephalitis/
chronic fatigue syndrome [20, 21], multiple sclerosis and 
cancer [22] and non-alcoholic steatohepatitis [23] with 
heterogeneous fatigue-related results regarding diversity 
and specific taxa, which is not surprising considering that 
different disease entities are independently associated 
with microbiota changes.

In IBD, research on associations between the gut 
microbiome and extraintestinal symptoms is scarce. One 
descriptive study applied 16S rRNA gene sequencing on 
intestinal biopsies and associated depressive symptoms 
with the abundance of Bifidobacterium and Desulfovi-
brio in remitted patients with CD and UC, respectively 
[24]. Another recent study also using amplicon sequenc-
ing methods described the structural changes in the fae-
cal microbiome (such as lower operational taxonomic 
unit (OTU) richness) in a small group of patients with 
IBD and depressive symptoms compared to others with-
out depressive symptoms [25]. With regard to fatigue, 
one important recent study [26] specifically investigated 
the faecal metagenome of IBD patients with and without 
fatigue to determine associations between this common, 
but underinvestigated symptom and the microbiome. 
The authors reported a reduced bacterial diversity and 

reduced abundance of butyrate-producing bacteria, 
including Ruminococcus, Faecalibacterium and Rose-
buria, to be associated with fatigue. Although patients 
in this study were in clinical and endoscopic remission, 
more than half suffered from fatigue. In active disease, 
the prevalence of fatigue is reported to increase up to 
80% [1], indicating a contribution of inflammatory pro-
cesses in the development of fatigue. As mentioned 
above, depression is also much more prevalent in active 
disease, which may at least partly relate to similar mecha-
nisms [2]. As participants of all mentioned IBD-related 
studies addressing the microbiome and its association 
with depression or fatigue were in remission, but both are 
more prevalent in active disease, it is necessary to obtain 
information about possible biomarkers of extraintestinal 
symptoms also in the presence of inflammation, i.e. dur-
ing active disease.

In microbiome research, the microbial metabolome 
has attracted increasing scientific interest in recent 
years [27, 28]. As certain metabolic products are associ-
ated with a specific function, the approach of connect-
ing changes in microbial abundance with changes in 
metabolic activity and psychometry can result in a more 
functional understanding of this interaction.

In this study, we obtained stool samples of patients 
with active disease and aimed to investigate associations 
between taxonomic and metabolic characteristics of the 
faecal microbiome and fatigue and depression.

Methods
Sample collection
Patients with active IBD were recruited from the IBD 
outpatient unit at Department of Medicine II, Medi-
cal Faculty Mannheim, Heidelberg University, between 
January 2018 and October 2019. The study procedures 
were approved by the ethics committee of the Medical 
Faculty Mannheim, Heidelberg University (2014-633N-
MA), and conducted in accordance with the Declaration 
of Helsinki. All participants gave written informed con-
sent after a thorough explanation of the study protocol. 
Active disease was defined by the presence of intestinal 
inflammation, determined by endoscopy, MRI, sonogra-
phy and/or repeatedly elevated faecal calprotectin lev-
els (> 250 mg/kg). Patients with recent use of antibiotics 
(< 4 weeks before recruitment) were excluded from the 
study. At the time of recruitment, we collected blood and 
stool samples as well as information on clinical disease 
activity (Harvey Bradshaw Index or partial Mayo Score, 
respectively), and patients completed the questionnaires 
regarding depression and fatigue.

Participants were asked to collect fresh stool samples 
at home and immediately freeze them at − 20 °C in their 
home freezer in 10-ml Falcon tubes (buffer-free) and a 
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cooling bag and to bring them to the outpatient unit at 
the time of induction of the new therapy, where they 
were collected and immediately transferred to a − 80 °C 
freezer to prevent thawing.

Questionnaires
Depressive symptoms were measured with Hospital 
Anxiety and Depression Scale, Subscale for Depression 
(HADS-D [29]). This self-reported screening instru-
ment is widely used in different mental and somatic dis-
orders and has been validated in patients with IBD [30]. 
It contains 14 items, 7 each for depression and anxiety 
symptoms, and scores range from 0 to 21 points for each 
subscale, with higher scores indicating higher depression 
and anxiety. A score of 10 points or higher on each sub-
scale indicates at least moderate symptom load.

Fatigue was measured with Wurzburg Fatigue Inven-
tory Multiple Sclerosis (WEIMuS [31]). This 17-item 
self-report instrument was developed for patients with 
multiple sclerosis but was previously used and well-
accepted in patients with IBD [32]. WEIMuS scores reach 
from 0 to 68 points, with higher scores indicating more 
fatigue. The cut-off for relevant fatigue symptom load is 
generally considered to be at 32 points.

DNA extraction
DNA extraction of the stool samples was conducted 
at the research lab at the Department of Medicine II, 
Medical Faculty Mannheim, Heidelberg University. We 
retrieved 500-μg aliquots of each stool sample. DNA 
was purified with the QIAamp Fast DNA Stool Mini 
Kit (Qiagen Cat. No. 51604) according to the protocol 
“Isolation of DNA from Stool for Pathogen Detection” 
(handbook pages 23–25, version March 2014). After 
the lysis of cells, proteins were digested and degraded 
using proteinase K. The DNA was then purified by silica 
membrane columns. The eluted DNA had an average 
concentration of 40 ng/μl.

Metagenomics
Metagenomics was carried out by Novogene Europe 
Co. Ltd. (Cambridge, UK). Experimental procedures of 
metagenomic sequencing consisted of sample quality 
assessment, library construction and sequencing. The 
quality of DNA samples was tested as follows: (1) DNA 
degradation degree and potential contamination were 
monitored on 1% agarose gels, (2) DNA purity (OD260/
OD280, OD260/OD230) was checked using the Nano-
Photometer® spectrophotometer (IMPLEN, CA, USA) 
and (3) DNA concentration was measured using Qubit® 
dsDNA Assay Kit in Qubit®2.0 Fluorometer (LifeTech-
nologies, CA, USA). OD values between 1.8 and 2.0 
and DNA contents above 1 μg are used to construct the 

library. A total amount of 1 μg DNA per sample was 
used as input material for the DNA sample preparations. 
Sequencing libraries were generated using NEBNext® 
Ultra™ DNA Library Prep Kit for Illumina (NEB, USA) 
following the manufacturer’s recommendations. Index 
codes were added to attribute sequences to each sample. 
Briefly, the DNA samples were fragmented by sonication 
to a size of 350 bp, then DNA fragments were end-pol-
ished, A-tailed and ligated with the full-length adaptor 
for Illumina sequencing with further polymerase chain 
reaction (PCR) amplification. At last, PCR products were 
purified (AMPure XP system), and libraries were ana-
lysed for size distribution by Agilent2100 Bioanalyzer 
and quantified using real-time PCR. The clustering of 
the index-coded samples was performed on a cBot Clus-
ter Generation System according to the manufacturer’s 
instructions. After cluster generation, the library prepa-
rations were sequenced on an Illumina HiSeq platform 
with 150-bp reads with a mean of 23.9 million reads (SD 
= 3.4 million) per sample.

Taxonomic and functional annotation
Samples were processed with a pipeline implemented in 
NGLess [33]: low-quality reads were filtered out using 
MOCAT2 [34], and reads mapping to the human refer-
ence genome (version hg38.p10) were removed. Taxo-
nomic profiles were then generated with the mOTUs2 
software, version 2.5.1 [35] and combined at different 
taxonomic levels. Functional profiling of metagenomes 
was conducted by mapping filtered reads against the inte-
grated gene catalogue of the human gut microbiome [36] 
and then aggregating the counts for different orthologous 
groups (KOs) of the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database [37]. Lastly, the abundance 
of functional modules was calculated as the sum of reads 
across KO members according to the KEGG definitions. 
Since the manually curated KEGG module database does 
not include modules for the production of short-chain 
fatty acids (SCFAs), we extended the definitions by addi-
tionally including four metabolic pathways for the pro-
duction of SCFAs as described in Vital et al. [38].

Data filtering and adjustment
Further preprocessing steps and analyses were per-
formed using the statistical software R (version 3.6.3, 
https://​www.r-​proje​ct.​org/) and the phyloseq package for 
R (McMurdie & Holmes, 2013).

Taxonomic annotations were pooled at the genus level, 
resulting in 210 genera. Functional annotations were 
preprocessed at the module level, resulting in 235 mod-
ules. For five patients, the number of annotated genera 
or modules was below 50 (~ 20%). These patients were 
removed from further analyses. For the remaining 57 

https://www.r-project.org/
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patients with annotations for 210 genera and 235 mod-
ules, data were prepared for analyses using a three-step 
approach:

1.	 Prevalence filtering: To focus on more prevalent 
taxa and to avoid overfitting during adjustment for 
nuisance variables, we removed further 151 genera 
and 26 modules that were prevalent in less than 15 
patients. Although this leads to an unusual reduc-
tion in taxa, this aggressive filtering was necessary 
to allow correction for 10 confounding variables (see 
step 3) by means of a multiple regression model with 
at least 3 degrees of freedom. According to Cao and 
colleagues, this step very likely does not affect the 
integrity of data [39].

2.	 CLR transformation: Due to the compositional 
nature of microbiome data sets [40], the abundances 
were centred log ratio (CLR) transformed.

3.	 Adjustment for nuisance variables: To account for the 
known influence of host and environmental variables 
on the human microbiome [41–43], we adjusted 
CLR-scaled relative abundances for age, sex, inflam-
mation (C-reactive protein, CRP) and medication 
(steroids, mesalamine, immunosuppressants, hor-
monal contraceptives [44], antidepressants, proton 
pump inhibitors). To this end, a multiple regression 
model containing 10 nuisance variables as predictors 
was fitted genus-wise to the data. All further analy-
sis steps were carried out using the residuals of this 
regression.

Analyses of the associations between psychopathology, 
alpha diversity and clinical inflammation markers
Associations between depression and fatigue and alpha 
diversity quantified by the Shannon diversity index [45] 
as well as current inflammatory status (quantified by 
CRP) were analysed by bivariate correlation analysis.

Network construction and topological analysis
Graph-theoretical approaches are becoming increas-
ingly important in biomedical science [46, 47]. Specifi-
cally, graph theoretical methods are very well suited to 
model complex relations within biological networks 
and to discover important mechanisms by means of the 
topological properties of these networks. To our knowl-
edge, associative patterns among taxonomic and meta-
bolic characteristics of individual microbiomes and 
individual expression of depressive symptomatology 
and fatigue have not been investigated before. Here, we 
base our analysis on a recent study [48], which proposed 
a framework of correlation and association analyses in 
the microbiome and integrative multiomics studies that 

offers an analytic approach to this constellation. Accord-
ing to the authors, a triple association between the com-
position of the microbiome could be associated with host 
factors as well as environmental factors or covariates 
including clinical or experimental conditions. In the pre-
sent study, we identified triple associations of taxa and 
metabolic modules associated with each other and with 
the expression of depressive symptoms or fatigue and 
searched for topological network features, called triangu-
lar motifs, within the common network created by means 
of our outcome variables.

To this end, we computed the joint network for our 
three outcome parameters. The 270 nodes of this net-
work were formed by the taxa and KEGG modules anno-
tated for our faecal samples and the two psychometric 
scores. Connections between nodes were computed by 
means of Bayesian correlation analyses using the CLR-
scaled abundances or symptom severities. Computa-
tions were conducted with the R package BayesFactor 
(https://​CRAN.R-​proje​ct.​org/​packa​ge=​Bayes​Factor) 
using a weakly informed Jeffreys-Zellner-Siow (JZS) prior 
with an r scale of 0.354. Evidence for H1 was assessed by 
means of Bayes factors (BF)10 [49]. Subsequently, BFs 
were linearised using the common logarithm (Log10). 
According to Kass and Raftery [49], substantial evidence 
for H1 is indicated by Log10(BF10) ≥ 0.5; the evidence 
is strong in the case of Log10(BF10) ≥ 1.0 and decisive if 
Log10(BF10) ≥ 2.0 [49]. A connection between two nodes 
was considered for network construction in case of at 
least moderate evidence for H1.

Subsequently, we investigated the topology of this joint 
network regarding the patterns that linked taxonomy, 
metabolism and psychopathology. Those patterns, also 
called triangular motifs are formed by taxonomical-
metabolic, taxonomical-psychopathological and met-
abolic-psychopathological associations and could be a 
sign of metabolism-mediated interactions between the 
gut microbiome and depression and fatigue severity. To 
assess the directions of associations within these motifs, 
we computed Spearman correlation coefficients. All find-
ings are reported, displayed and discussed according to 
these criteria.

The whole data processing pipeline is displayed in 
Fig. 1.

Results
Clinical characteristics of the study sample
We recruited 84 patients with active IBD. Twenty-two 
patients were excluded (n = 21 due to missing stool sam-
ples, n = 1 patient withdrew consent), leaving data of 62 
patients available for analysis.

Demographic and clinical information is summarised 
in Table 1. Half of the patients reported fatigue scores 

https://cran.r-project.org/package=BayesFactor
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above the cut-off value of 32 points and 18 patients 
reported depression scores indicating at least moder-
ate symptom severity (HADS depression subscale of 10 
points or higher).

The cohort showed elevated markers of systemic and 
luminal inflammation with mean CRP levels of 21.2 
mg/l and mean faecal calprotectin levels (available of 
n = 53 patients) of 365 μg/g. Neither biomarker was 
associated with fatigue (CRP: Log10(BF10) − 0.74; fCal: 
Log10(BF10) − 0.676) nor depression severity (CRP: 
Log10(BF10) − 0.76; fCal: Log10(BF10) − 0.580), Fig. 3.

Twenty-one patients were treated with systemic ster-
oids at the time of study inclusion, and 10 patients with 
biologicals. Thirty-one patients had previously been 
treated with biologicals, and 31 were naïve. Twenty-
two patients had a refractory disease course, i.e. had 
previously failed 3 or more systemic anti-inflammatory 
therapies. Twenty-four patients had undergone prior 
IBD-related surgery. Patients with refractory disease 
course, current steroid use and prior biological therapy 
had numerically lower depression scores, but neither of 
the current or previous medication and neither of the 
reported disease characteristics were significantly asso-
ciated with depression or fatigue severity (Additional 
file 1: Table S1).

Taxonomic sample characteristics
The number of annotated genera per patient ranged 
from 14 to 91 (median = 41) with genera mainly from 
the Firmicutes and Bacteroidetes phyla. Cumulative 
relative abundances of these annotated genera ranged 
from 0.334 to 0.995 (median = 0.942).

After the prevalence check, 59 genera annotated in at 
least 15 patients remained. The number of annotated 
genera per patient ranged from 14 to 53 (median 34), 
with Firmicutes and Bacteroidetes as the dominant 
phyla. Cumulative relative abundances over all phyla 
ranged from 0.2427 to 0.994 (median = 0.903). The 
highest abundances were found for Firmicutes (median 
= 0.412) and Bacteroidetes (median = 0.310). The final 
taxonomic annotation characteristics at the genus and 
phylum levels are shown in Fig. 2A.

Metabolic sample characteristics
For the initially annotated 235 metabolic modules 
defined according to the KEGG database (https://​www.​
genome.​jp/​kegg/​module.​html), the number of annota-
tions per patient ranged from 139 to 209 (median = 188) 
with cumulative relative abundances over all modules 
ranging from 0.017 to 0.0.40 (median = 0.030).

After the prevalence check, 209 modules annotated in at 
least 15 patients each remained. The number of annotated 
modules per patient ranged from 139 to 201 (median 185). 
Mainly represented were modules belonging to the amino 
acid and carbohydrate pathways. Cumulative relative 
abundances over all modules ranged from 0.017 to 0.994 
(median = 0.903). Highest abundances were found for the 
amino acid (median = 0.0074) and carbohydrate (median 
= 0.0071) pathways. The final metabolic annotation char-
acteristics at the KEGG pathway level are shown in Fig. 2B.

Associations with inflammatory activity
Systemic inflammatory activity: Neither depression 
(Log10BF10 = − 0.76) nor fatigue (Log10BF10 = − 0.74) 
were associated with CRP levels (Fig. 3 (left)).

Luminal inflammatory activity: Neither depression 
(Log10BF10 = − 0.58) nor fatigue (Log10BF10 = − 0.68) 
were associated with faecal calprotectin levels (Fig.  3 
(middle)).

Association with microbiome diversity
Shannon alpha diversity: Neither depression (Log10BF10 
= − 0.61) nor fatigue (Log10BF10 = − 0.17) were associ-
ated with alpha diversity (Fig. 3 (right)).

Triangular network motifs consisting of nodes 
of taxonomical, functional and psychopathological data
Depression: Six association triples were found contain-
ing the Odoribacter, Alistipes and Anaerotruncus gen-
era and carbohydrate and glycan metabolism associated 
modules. Most importantly, Odoribacter as well as glycan 
metabolism modules were each involved in three associa-
tion triplets and showed very strong evidence for a posi-
tive reciprocal association (Log10(BF10) = 2.611, see the 
“Methods” section for definition). Odoribacter abundance 
was strongly negatively associated with depression severity 

(See figure on next page.)
Fig. 1  Data processing pipeline. A Displayed are the processing steps applied for data preprocessing (cleaning, prevalence filtering, CLR 
transformation and adjustment for nuisance variables) and analysis. B Graphical display of the main steps for network construction and motif 
analysis. From left to right: (1-left) Computation of the joint Bayesian correlation matrix. Because for undirected graphs, the correlation matrix is 
symmetrical, and only their upper part is considered in further steps. Colour codes the strength of evidence for a certain connection with white to 
red preferring H1 and white to blue preferring H0. Sections associated with psychopathology (PP, depression and fatigue), taxonomical (T, genera) 
and metabolic (M, KEGG modules) abundances are separated by thin black lines. (2-middle) To binarise this matrix, a threshold of Log10BF10 ≥ 0.5 
was applied. For the remaining matrix elements or node connections, H1 is at least 3 times more likely than H0. The resulting binary adjacency 
matrix was used to construct the association network. (3-right) Exemplary representation of one triangular motif of interest, that is composed of 
interconnected nodes of all three modalities

https://www.genome.jp/kegg/module.html
https://www.genome.jp/kegg/module.html
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Fig. 1  (See legend on previous page.)
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(Log10(BF10) = 1.956) whereas the evidence for an (nega-
tive) association between glycan metabolism and depres-
sion was only moderate (Log10(BF10) = 0.530). In all 
triplets, below-average taxonomical and functional abun-
dances were related to increased depression severity.

Fatigue: Four association triplets were found containing 
Intestinimonas, Eubacterium, Anaerotruncus and Clostridi-
ales g.i.s. and carbohydrate and amino acid metabolism-
associated modules. Evidence for associations was mostly 
moderate, with the exception of strong evidence support-
ing a negative association between Clostridiales g.i.s. or 
Eubacterium and carbohydrate metabolism (Log10(BF10) 
= 2.900 and 1.082, respectively). In all triplets, the above-
average taxonomical and below-average functional abun-
dances were related to increased fatigue severity.

The results are listed in Table 2 and displayed in Fig. 4. 
Single and double associations are also displayed in these 
figures (grey).

Discussion
The present study examined the metagenomic microbi-
ota profiles of patients with active IBD and their associa-
tions with depression and fatigue severity. It yielded the 
following major findings.

First, triangular motif analysis identified triple asso-
ciations between taxonomical and functional faecal 
microbiota parameters and symptoms of depression and 
fatigue. Second, neither depression nor fatigue was asso-
ciated with microbiome alpha diversity or inflammatory 
activity as determined by serum CRP or faecal calprotec-
tin levels. Third, the taxonomical abundance of several 
SCFA-producing genera (Odoribacter, Alistipes, Anaer-
otruncus, Intestinimonas, Eubacterium and Clostridiales 
g.i.s.) was negatively associated with depression and/or 
fatigue. Fourth, functional microbiome analysis linked 
depression to glycan and pectin metabolism as well as 
PRPP biosynthesis, and fatigue to methionine biosynthe-
sis and the pentose phosphate pathway. Finally, micro-
biome findings showed partially overlapping but also 
partially distinct taxonomic and functional associations 
for depression and fatigue, respectively.

Depression
Depression is a leading health issue with an increasing 
prevalence worldwide and a higher prevalence in persons 
with IBD compared to the general population, especially 
during active disease [50]. While it is conceivable that a 
chronic and complex disorder such as IBD may impair 
quality of life by different mechanisms, such as physical 
symptoms, stigma and hospitalisations, the relationship 
between IBD and depressive symptoms appears to go 
beyond low mood caused by the low quality of life.

In support of bidirectional etiological links between 
IBD and depression, there is mounting evidence of an 
increased risk for developing IBD with pre-existing 
depression [51–53] and of mood disorders preceding 
the onset of IBD and other immune-mediated disorders 
for years [53–55]. Numerous studies have investigated 
the relationship between depressive symptoms and the 
course of IBD and reported bidirectional associations 
[56, 57], and there is growing data on the beneficial effect 
of antidepressants on the course or development of IBD 
[51, 58–61].

Taken together, increasing evidence supports the 
theory of biological mechanisms linking gut inflamma-
tion and depressive symptoms along the gut-brain axis 
or microbiota-gut-brain axis [4]. There is, however, still 
very limited data connecting depression in IBD with the 
gut microbiome [24, 25]. Neither of the existing stud-
ies included functional or metabolic information, and 
one examined a very limited sample of only 15 patients. 
Nevertheless, numerous studies have connected depres-
sive syndromes in general with changes in the gut micro-
biome [16, 17, 19, 62], and preliminary evidence even 
points to a causal contribution of the gut microbiota as 
suggested by the transferability of depressive behaviour 

Table 1  Demographic and clinical information of the study 
sample

CD Crohn’s disease, CRP C-reactive protein, HBI Harvey-Bradshaw Index, HADS 
Hospital Anxiety and Depression Scale, SD standard deviation, UC ulcerative 
colitis, WEIMuS Wurzburg Fatigue Inventory Multiple Sclerosis

Demographic and clinical information Results

Age, years, mean (SD) 40 (16)

Sex, n (female/male) 36/26

Diagnosis (CD/UC) 51/11

HBI in patients with CD, median (range) 9.4 (6.8)

Partial Mayo Score in patients with UC, mean (SD) 5.6 (2.5)

CRP in mg/l, mean (SD) 21.2 (24.8)

Faecal calprotectin in μg/g, mean (SD) (n = 53) 365 (282)

Fatigue (WEIMuS) score, mean (SD) 31.5 (14.7)

  WEIMuS ≥ 32P., n (%) 31 (50%)

Depression (HADS-D) Score, mean (SD) 6.5 (4.5)

  HADS-D ≥ 10P., n (%) 18 (29%)

Current antidepressant use 4 (6%)

Current steroid use, n (%) 21 (34%)

Current immunomodulatory therapy, n (%) 13 (21%)

  Of which biological therapy, n 10

  Of which TNF-alpha inhibitors, n 3

  Of which vedolizumab, n 5

  Of which ustekinumab, n 2

Refractory disease course (> 3 prior systemic therapies), n (%) 22 (35%)

Prior bowel resection, n (%) 24 (38%)

Prior biological therapy, n (%) 31 (50%)
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Fig. 2  Taxonomic and metabolic sample characteristics. Stacked bar graphs show relative abundances of annotated genera (A, upper part) and 
KEGG modules (B, upper part). Heatmaps of relative abundances are summarised by boxplots for genera (A, bottom part) and KEGG modules (B, 
bottom part)
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from patients to mice via faecal microbiota transplant 
[25, 63].

Antidepressants were shown to influence bacteria or 
the gut microbiome in  vitro and in  vivo [64–67]. Vice 
versa, probiotics can have antidepressant effects [68]. The 
bidirectional effects of antidepressants on the microbi-
ome and of microbiota manipulation on depression also 
point to a role of dysbiosis in the development of depres-
sion. In conclusion, one might speculate that the efficacy 
of antidepressants as well as probiotics on depressive 
symptoms as well as IBD activity may at least in part be 
mediated by an impact on dysbiosis, and this may explain 
why some people respond to medication while others do 
not, depending on the extent to which depressive symp-
toms in an individual are mediated by dysbiosis. In our 
study, examining the confounding factors for taxonomic 
abundance revealed an effect of antidepressant medica-
tion on several taxa (see Additional file 2: Fig. S1), which 
is why we controlled for this factor among others.

Anti-inflammatory medication, e.g. with tumour 
necrosis factor-alpha inhibitors, such as infliximab, was 
shown to improve depression in inflammatory disor-
ders [69, 70], which may relate to an improvement of the 
dysbiotic state of a patient’s microbiome. Of note, a ran-
domised clinical trial examining the effects of infliximab 
in major depression disorder showed no direct effects on 
depression scores in the whole infliximab-treated group, 
but interestingly in a subgroup of patients with adverse 

childhood events [71], i.e. traumatic experiences during 
early life. Considering that childhood is a crucial phase 
for the development of a stable microbiome, it is possi-
ble that these effects were also mediated by the changes 
in the microbiota, rather than by changes in inflamma-
tion. In line with these findings, CRP values as a measure 
of systemic inflammatory activity and faecal calprotectin 
as a marker of luminal inflammation in the present study 
did not associate with psychometric scores (see Fig. 3).

Triangle motifs of taxonomic and functional microbi-
ome profiles with depression scores implicated 3 genera 
and 3 metabolic pathways to be associated with depres-
sion. We identified two genera of the phylum Bacteroi-
detes (Odoribacter and Alistipes) and one genus of the 
phylum Firmicutes (Anaerotruncus) to be negatively 
associated with depression scores. Functional modules 
associated with depression implicate glycan metabolism, 
which is in line with previous studies [19, 72], along with 
pectin and other carbohydrate metabolisms.

We found microbial pectin degradation and glycan 
metabolism to negatively correlate with depression scores 
and positively associate with the abundance of the 3 
implicated genera. Pectins and some glycans are indigest-
ible dietary compounds foraged by gut bacteria, which 
produce short-chain fatty acids (SCFA) in the degrada-
tion process [73]. In line, a reduced abundance of SCFA-
producing microbial taxa and pathways has previously 
been associated with major depression disorder [74]. 

Fig. 3  Correlations between biomarkers and depression/fatigue. Left column: scatter plots of CRP levels versus severity of depression and fatigue 
respectively. Middle column: scatter plots of faecal calprotectin levels versus severity of depression and fatigue, respectively. Right column: scatter 
plots of gut microbial alpha diversity (Shannon index) and depression and fatigue severity. Additionally shown are linear regression models (blue 
lines) and the 90% confidence interval for the model slope. Bayesian factors and Spearman correlation coefficients are given on top
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Table 2  Triangular motifs for depression severity and taxonomic and functional abundances. Listed are all triangular motifs within 
the joint network, formed by taxonomic-metabolic, taxonomic-psychopathological and metabolic-psychopathological associations. 
Related associations are alternately highlighted in grey or white

a KEGG—path: map00040—map01100
b KEGG—path: map00030—map00230—map01200—map01230—map01100
c KEGG—path: map00531—map01100
d KEGG—path: map00270—map01230—map01100
e KEGG—path: map00030—map01200—map01230—map01100—map01120

Association Log10BF(10) Rho

Depression
  Bacteroidetes: Odoribacter Carbohydrate metabolism: pectin degradationa 2.026 0.455

  Bacteroidetes: Odoribacter Depression: HADS 1.956 − 0.457

  Carbohydrate metabolism: pectin degradationa Depression: HADS 0.804 − 0.343

  Bacteroidetes: Odoribacter Carbohydrate metabolism: PRPP biosynthesisb 1.291 − 0.390

  Bacteroidetes: Odoribacter Depression: HADS 1.956 − 0.457

  Carbohydrate metabolism: PRPP biosynthesisb Depression: HADS 0.655 0.324

  Bacteroidetes: Odoribacter Glycan metabolism: dermatan sulfate degradationc 2.611 0.498

  Bacteroidetes: Odoribacter Depression: HADS 1.956 − 0.457

  Glycan metabolism: dermatan sulfate degradationc Depression: HADS 0.530 − 0.307

  Bacteroidetes: Alistipes Glycan metabolism: dermatan sulfate degradationc 1.644 0.423

  Bacteroidetes: Alistipes Depression: HADS 0.997 − 0.365

  Glycan metabolism: dermatan sulfate degradationc Depression: HADS 0.530 − 0.307

  Firmicutes: Anaerotruncus Glycan metabolism: dermatan sulfate degradationc 1.098 0.370

  Firmicutes: Anaerotruncus Depression: HADS 0.530 − 0.307

  Glycan metabolism: dermatan sulfate degradationc Depression: HADS 0.666 − 0.326

Fatigue
  Firmicutes: Intestinimonas Amino acid metabolism: methionine biosynthesisd 0.509 − 0.300

  Firmicutes: Intestinimonas Fatigue: WEIMuS 0.972 − 0.363

  Amino acid metabolism: methionine biosynthesisd Fatigue: WEIMuS 0.959 0.361

  Firmicutes: Eubacterium Carbohydrate metabolism: pentose phosphate pathwaye 1.082 − 0.369

  Firmicutes: Eubacterium Fatigue: WEIMuS 0.655 − 0.324

  Carbohydrate metabolism: pentose phosphate pathwaye Fatigue: WEIMuS 0.715 0.332

  Firmicutes: Anaerotruncus Carbohydrate metabolism: pentose phosphate pathwaye 0.554 − 0.306

  Firmicutes: Anaerotruncus Fatigue: WEIMuS 0.662 − 0.325

  Carbohydrate metabolism: pentose phosphate pathwaye Fatigue: WEIMuS 0.715 0.332

  Firmicutes: Clostridiales genus incertae sedis Carbohydrate metabolism: pentose phosphate pathwaye 2.900 − 0.517

  Firmicutes: Clostridiales genus incertae sedis Fatigue: WEIMuS 0.660 − 0.325

  Carbohydrate metabolism: pentose phosphate pathwaye Fatigue: WEIMuS 0.715 0.332

Fig. 4  Results of motif analysis of correlation network topology. A Ring graph showing significant correlations of gut bacterial genera/metabolic 
modules with depression and fatigue severity. Triangular motifs associating both a bacterial taxon and a metabolic module with depression 
and fatigue are coloured (and taxa shown in boldface), and all other associations are displayed in grey. Those belonging to triangular motifs are 
displayed in red or blue (see colour key). Line thickness is proportional to association strength. On the inner ring, phyla and metabolic pathways 
are colour coded. On the second ring, relative abundances are coded as a grey-scale heatmap. On the outer ring, the number of patients in which 
the genus/metabolic module was found is colour coded from green to yellow. B Scatter plots showing taxonomic versus metabolic abundances 
for selected motif triplets (individual data points shown as red dots) with psychopathological severity values colour coded in the background 
(depression and fatigue severity increases from blue to yellow)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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In a mouse model of depression, reduced SCFA levels 
were identified after chronic unpredictable mild stress, 
and intrarectal application of propionate could alleviate 
depression-like behaviour in these mice [75]. In IBD, the 
protective anti-inflammatory effects of SCFA have been 
repeatedly reported. These effects include the inhibition 
of proinflammatory pathways, such as NFkappaB-acti-
vation [76] or the stimulation of regulatory T-cells [77]. 
As SCFAs can reach systemic circulation and pass the 
blood-brain barrier, they seem to play an important role 
in microbiota-brain-gut interactions [78, 79]. Of note, all 
three genera implicated in triangular motifs in the pre-
sent study have also previously been shown to produce 
SCFA [80, 81], emphasising the potential role of this met-
abolic pathway in the development of depression in IBD.

Furthermore, glycans are an important part of the 
mucous layer separating the gut microbiome from the 
intestinal epithelium, and changes in microbial glycan 
metabolism in this study may also implicate impaired 
barrier function to contribute to the association between 
dysbiotic microbiota and systemic pathology including 
depression [82]. In line, butyrate, which is produced by 
bacteria such as Anaerotruncus, can strengthen intesti-
nal epithelial barrier function [83]. As gut barrier func-
tion is certainly affected by intestinal inflammation in 
active IBD, an increase of circulating pro-inflammatory 
cytokines due to increased permeability is another pos-
sible mechanism of depressive symptoms being mediated 
by microbiota changes.

Taken together, mounting evidence supports the 
importance of the microbiome in depression, but a mech-
anistic understanding is lacking. Our study provides the 
first evidence of a triangular association between struc-
tural and functional microbiota parameters and depres-
sion scores, implicating a reduction of SCFA-producing 
genera and pathways and possibly impaired barrier func-
tion to be associated with depression. Future research 
should specifically address these pathways to increase 
our understanding of the development of extraintestinal 
symptoms in IBD.

Fatigue
Fatigue is a burdensome symptom that leads to a con-
siderably reduced QoL [84] and is reported by 50 to 80% 
of patients suffering from IBD [1]. Fatigue is a multidi-
mensional problem with different definitions used in dif-
ferent scientific backgrounds. Using the WEIMuS score, 
we addressed the two main domains of physical and 
mental fatigue [31], and while there is some association 
with depression and anxiety, fatigue has to be recog-
nised as an independent symptom [85]. Some therapeutic 
approaches have been investigated to relieve the patients’ 
burden, yet these interventions resulted in no or only 

minimal effect [86] despite covering a wide variety of 
approaches from electroacupuncture to cognitive behav-
ioural therapy to pharmacological interventions. There-
fore, a better understanding of the aetiology of fatigue 
in IBD patients is needed to provide a more promising 
approach to therapy. While the presence of fatigue and 
IBD are clearly connected and the prevalence of fatigue 
is higher in active disease, the impact of fatigue on the 
patient’s QoL may be independent of the activity of the 
IBD [87].

In the present study, neither CRP as a marker of active 
inflammation nor gut microbial alpha diversity were 
associated with fatigue symptom severity. This implies 
that these rather broad markers of inflammation and dys-
biosis cannot satisfyingly explain the variance in fatigue 
or distinguish between patients with and without fatigue 
in this sample with active inflammation, unlike a pre-
vious study reporting such an association in remitted 
patients [26]. Whether this finding results from a lack 
of power in our cohort or represents an independent 
finding has to be determined in a follow-up investiga-
tion. The same study also found a reduction in the serum 
levels of tryptophan, proline, methionine and sarcosine 
along with a reduction of F. prausnitzii and Roseburia 
hominis in the group of fatigued IBD patients. Therefore, 
we focused on the interaction between composition and 
function of intestinal microbiota with fatigue for further 
analysis. In the present study, we associated the changes 
in psychometry with changes in taxonomic and func-
tional microbial gene abundances. Our analysis showed 
that higher fatigue scores are associated with a decrease 
in the abundance of Intestinimonas and an increase in 
the amino acid metabolism pathway. Intestinimonas has 
the unique ability to degrade Amadori products (fruc-
tosamines) and especially fructoselysine into butyrate. 
Amadori products are non-enzymatic reaction products 
between sugars and free amino groups that are produced 
when food is heated. By ingesting a typical Western diet, 
a person can ingest 500–1200 mg of these Amadori prod-
ucts daily [88]. About 70–90% of these are not absorbed 
in the upper intestine but metabolised by gut bacteria. 
While Intestinimonas produces butyrate [89], fructosa-
mines can be used by other bacteria, e.g. E. coli [90] as 
a source for glucose, leaving lysine and other amino 
acids as additional products. While there is no proven 
link between these pathways and fatigue yet, both SCFA 
and amino acids [91, 92] have neuromodulatory proper-
ties and might therefore be relevant in the pathogenesis 
of fatigue in these patients. Furthermore, our analysis 
showed a positive correlation of fatigue scores with acti-
vation of the pentose phosphate pathway, especially the 
metabolisation of ribose 5 phosphate to fructose 6 phos-
phate. While we could not find any data connecting this 
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pathway directly with fatigue, one might speculate that 
it could be connected to a reduced or modified pool of 
SCFAs. A conceivable mechanism for this process is that 
the reduced prevalence of bacteria metabolising C5 and 
C6 sugars using the sedoheptulose-1,7-bisphosphate 
pathway [93] results in a reduction in the metabolisation 
of C5 and C6 sugars derived from plant-based polymers 
to SCFAs [94] while they get metabolised by transaldo-
lase positive bacteria, using the pentose phosphate path-
way, like Enterococcus faecalis that do not participate in 
SCFAs generation. Depletion of SCFA-producing taxa 
has also been previously reported in myalgic encepha-
lomyelitis/chronic fatigue syndrome [20] and fatigue 
symptoms in cancer [22], and this reduction in SCFA 
production might also be one of the components leading 
to fatigue in our patients.

Fatigue and depression in IBD
In the investigation of fatigue and depression in IBD, it 
is noteworthy that these symptoms can be challenging to 
disentangle. Not only do they show considerable symp-
tom overlap, but they also influence each other. Patients 
with IBD who suffer from fatigue may have an underly-
ing depression or feel depressed because of the lack of 
energy. One way to address this issue and attempt to 
understand shared or possible fatigue- or depression-
specific underlying biochemical microbiota-dependent 
mechanisms is to collect information on both symp-
toms in the same cohort. Shared microbial associations 
that were associated with both depression and fatigue 
scores in our cohort implicate the genus Anaerotruncus, 
a butyrate producer [95]. Anaerotruncus species have 
previously been connected to autoimmune [96] as well as 
metabolic disorders [97, 98].

As SCFA production was associated with both depres-
sion and fatigue in this and other studies, interventional 
research regarding this relationship in IBD is warranted. 
Of note, SCFA production is strongly connected to 
nutrition and especially fibre intake. Studies have exam-
ined the relationship between nutrition and depression 
[99–101] and promoted “anti-inflammatory” microbiota-
directed diets that may reduce fatigue [102] and depres-
sion [101, 103]. The impact of nutrition on the onset 
[104] and course of IBD has been under investigation for 
many years, indicating an impact of nutrition on both 
intestinal inflammation and associated extraintestinal 
symptoms. The results of the present study underline the 
potential of microbiota-directed dietary interventions 
with the specific aim of reducing fatigue and depression 
in persons with IBD.

While decreased SCFA metabolism may contribute to 
both depression and fatigue, functional modules identi-
fied by triple association indicate separate pathways by 

which the microbiome may be contributing to the devel-
opment of these symptoms, which should be investigated 
in future research.

Limitations
We have to acknowledge several limitations of this study. 
The sample size is limited and heterogeneous with regard 
to diagnosis, age and (previous) medication due to the 
exploratory character of this study and the screening of 
consecutive patients with active disease. The cross-sec-
tional design and the undirected and correlative nature 
of the analysed joint network do not provide causal 
information, and our findings remain to be confirmed 
in longitudinal and interventional studies. Furthermore, 
the dimensional approach to extraintestinal symptoms 
in this unselected patient sample (i.e. not selected with 
regard to depression or fatigue) was not designed to dis-
tinguish patients with clinically relevant depression or 
fatigue from others. However, we believe that a dimen-
sional approach can reduce the risk of selection bias. 
Also, given the distribution of fatigue and depression 
scores with many patients scoring close to recommended 
cut-off scores for relevant symptom load on both sides, a 
categorical approach might have induced a false separa-
tion between the groups and thus led to additional bias. 
With regard to nuisance variables, we did not control 
for alcohol consumption, which was shown to influence 
microbiota composition in an important recent study 
[42]. Unfortunately, as the mentioned work was pub-
lished after the recruitment period of our study, alcohol 
consumption was not assessed in our cohort. It was also 
unfeasible to control for stool consistency [42], as this 
information was not provided by all patients. These limi-
tations with respect to unmeasured potential confound-
ers might be a source of bias in our results. Finally, we 
used short self-reported questionnaires to measure the 
symptoms of interest, which in the case of depression 
may not be as reliable as a psychiatric interview. How-
ever, the HADS is commonly used in IBD research and 
was previously compared to structured psychiatric inter-
views in patients with IBD, where its validity and reliabil-
ity to detect depressive symptoms were confirmed along 
with the highest specificity for depression among the 
examined scales [30]. The chosen instrument to meas-
ure fatigue symptoms (WEIMuS) is not an IBD-specific 
questionnaire. Although it has been used in IBD stud-
ies before [32], it has not been formally validated in an 
IBD cohort. It was primarily chosen because at the time 
of the study, no German IBD-specific fatigue question-
naire was available, and a questionnaire for multiple 
sclerosis as another immune-mediated inflammatory dis-
order appeared more suitable than other available, mostly 
cancer-related, instruments. Also, the comprehension of 
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cognitive as well as physical fatigue in this questionnaire 
appeared suitable for our purposes.

Conclusions
This study provides the first evidence of co-occurring 
taxonomic and functional microbiota changes associ-
ated with symptoms of depression and fatigue in persons 
with active IBD. Genera and functional pathways associ-
ated with depression indicate a role of SCFA-producing 
taxa as well as glycan and pectin metabolisms. Fatigue 
was also associated with a decrease in SCFA producers 
and functional changes in amino acid as well as central 
carbohydrate metabolism. While fatigue and depression 
are highly overlapping syndromes and often co-occur 
in patients with active IBD, triangular motifs implicate 
shared yet partly separate pathways that may be involved 
in the development of these extraintestinal symptoms. 
These findings increase our understanding of extraintes-
tinal symptoms in active IBD with considerable impact 
on quality of life and open possibilities for future research 
targeting these symptoms by addressing microbiota-
brain-gut interactions in IBD.
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