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Abstract 

Background:  Abnormal metabolism and perturbations in metabolic pathways play significant roles in the develop-
ment and progression of prostate cancer; however, comprehensive metabolomic analyses of human data are lacking 
and needed to elucidate the interrelationships.

Methods:  We examined the serum metabolome in relation to prostate cancer survival in a cohort of 1812 cases in 
the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Using an ultrahigh-performance LC-MS/MS 
platform, we identified 961 known metabolites in prospectively collected serum. Median survival time from diagnosis 
to prostate cancer-specific death (N=472) was 6.6 years (interquartile range=2.9–11.1 years). Cox proportional haz-
ards regression models estimated hazard ratios and 95% confidence intervals of the associations between the serum 
metabolites (in quartiles) and prostate cancer death, adjusted for age at baseline and diagnosis, disease stage, and 
Gleason sum. In order to calculate risk scores, we first randomly divided the metabolomic data into a discovery set 
(70%) and validated in a replication set (30%).

Results:  Overall, 49 metabolites were associated with prostate cancer survival after Bonferroni correction. Notably, 
higher levels of the phospholipid choline, amino acid glutamate, long-chain polyunsaturated fatty acid (n6) ara-
chidonate (20:4n6), and glutamyl amino acids gamma-glutamylglutamate, gamma-glutamylglycine, and gamma-
glutamylleucine were associated with increased risk of prostate cancer-specific mortality (fourth versus first quartile 
HRs=2.07–2.14; P-values <5.2×10−5). By contrast, the ascorbate/aldarate metabolite oxalate, xenobiotics S-carboxy-
methyl-L-cysteine, fibrinogen cleavage peptides ADpSGEGDFXAEGGGVR and fibrinopeptide B (1-12) were related to 
reduced disease-specific mortality (fourth versus first quartile HRs=0.82–0.84; P-value <5.2×10−5). Further adjustment 
for years from blood collection to cancer diagnosis, body mass index, smoking intensity and duration, and serum total 
and high-density lipoprotein cholesterol did not alter the results. Participants with a higher metabolic score based 
on the discovery set had an elevated risk of prostate cancer-specific mortality in the replication set (fourth versus first 
quartile, HR=3.9, P-value for trend<0.0001).
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Background
With a global estimate of 1.4 million new cases and 
375,000 deaths, prostate cancer is the second most com-
monly diagnosed malignancy and the fifth most frequent 
cause of cancer death among men in 2020, contributing 
to a considerable health burden among men both in the 
USA and worldwide [1]. Despite this reality, prostate can-
cer etiology and effective means for its prevention remain 
incompletely understood. The well-recognized risk fac-
tors for prostate cancer include older age, African ances-
try, family history of prostate cancer, and low-penetrant 
genetic variants, none of which are modifiable [1]. It is 
well-accepted that many prostate cancer cases, particu-
larly those diagnosed through prostate-specific antigen 
(PSA) screening, have microscopic foci of limited (i.e., 
non-life-threatening) clinical relevance, and research 
suggests that more aggressive and fatal prostate malig-
nancies have etiologies distinct from indolent disease 
[2–4]. Thus, there is a need for further study of prostate 
cancer survival.

A poor understanding of the etiology of prostate can-
cer survival limits our ability to make meaningful rec-
ommendations regarding prevention and effective risk 
stratification for men diagnosed with prostate cancer. 
Alterations in metabolism and perturbations in meta-
bolic pathways can play significant roles in the devel-
opment and progression of prostate cancer; however, 
substantial human data are needed to elucidate these 
associations [5, 6]. Recent advances of high-throughput 
metabolomics approaches enable the systematic meas-
urement of a broad spectrum of small compounds, and 
the unique metabolic profiles can reflect an integrated 
final molecular phenotype of endogenous and exogenous 
exposure, including influence from gene-environment 
interactions, that will facilitate the identification of novel 
risk factors and metabolic pathways associated with dis-
ease progression [7–9].

Metabolomic analyses of nested case-control sets 
within three major cohorts have explored associations 
between pre-diagnostic levels of circulating metabolites 
and risk of prostate cancer [10–14]. Associations between 
urine and tissue metabolites and risk of prostate cancer 
have also been reported in some clinical studies [15, 16]. 
To our knowledge, only two untargeted metabolomic 

analyses have been conducted examining fatal prostate 
cancer specifically. One investigation included 523 pros-
tate cancer cases in the Alpha-Tocopherol, Beta-Caro-
tene Cancer Prevention (ATBC) Study [13] and showed 
risk associations with glutathione-reactive oxygen spe-
cies (ROS) metabolites including thioproline, cysteine, 
and cystine, while another smaller study found endocan-
nabinoid N-oleoyl taurine and sterol/steroids metabo-
lites related to prostate cancer survival [17]. Thus, there 
remains a substantial research gap for the investigation of 
circulating metabolite profiles in relation to prostate can-
cer survival, that urgently warrants investigation.

We conducted a prospective untargeted metabolomic 
analysis with the aim to identify pre-diagnostic serum 
metabolic profiles and metabolic pathways that are asso-
ciated with survival among 1812 prostate cancer patients 
within the ATBC Study. We hypothesize that unique 
metabolomic profiles would be associated with prostate 
cancer-specific survival.

Methods
Study population
The ATBC Study was a double-blind, 2×2 factorial, 
randomized, placebo-controlled trial that enrolled par-
ticipants from 1985 to 1988, and the primary aim of this 
intervention study was to test whether supplementation 
of alpha-tocopherol and beta-carotene could reduce can-
cer incidence, especially for lung cancer. The ATBC Study 
enrolled 29,133 Finnish male smokers, who were aged 50 
to 69 years old from southwest Finland, and the eligible 
participants were assigned into 4 groups to receive the 
supplement daily (alpha-tocopherol, beta-carotene, both, 
or placebo) for 5–8 years until the end of the intervention 
(April 30, 1993). At enrollment, participants completed 
questionnaires that included detailed information on life-
style risk factors and a separate validated food frequency 
questionnaire. Height, weight, heart rate, and blood pres-
sure were measured, and overnight fasting blood samples 
were collected by research nurses. The blood samples 
were then aliquoted and stored at −70 °C until assayed.

Outcome assessment
Via linkage to the Finnish Cancer Registry by using the 
International Classification of Disease (ICD-9) code of 

Conclusions:  The metabolic traits identified in this study, including for choline, glutamate, arachidonate, gamma-
glutamyl amino acids, fibrinopeptides, and endocannabinoid and redox pathways and their composite risk score, 
corroborate our previous analysis of fatal prostate cancer and provide novel insights and potential leads regarding the 
molecular basis of prostate cancer progression and mortality.
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185, we identified 1812 incident prostate cancer cases 
diagnosed through December 31, 2012, with available 
non-thawed baseline serum and non-missing cancer stage 
data. We used the underlying cause of death from the Sta-
tistics Finland Death Registry to identify prostate cancer-
specific mortality, based on the code 185 of ICD-9 and 
C61 of ICD-10. In the present study, we found 472 pros-
tate cancer deaths that occurred during the observational 
follow-up period through December 31, 2016. The sur-
vival time was computed from the date of prostate cancer 
diagnosis to the date of prostate cancer-specific mortality, 
or to the censor date (date of death due to other causes or 
December 31, 2016), whichever occurred first.

Metabolomic profiling assays
Serum metabolite profiling was conducted on a high-
resolution accurate mass (HRAM) platform, ultrahigh-
performance liquid chromatography/tandem mass 
spectrometry (LC-MS/MS) at Metabolon Inc. We meas-
ured 1195 metabolites, of which 234 were excluded 
due to being unidentified metabolites or metabolites 
for which more than 90% of subjects had values below 
the limit of detection, leaving 961 metabolites in the 
final analysis. For those metabolites remaining after 
these exclusions were applied, undetectable values were 
assigned to one-half minimum value of the metabo-
lite. Based on biochemical information from the Kyoto 
Encyclopedia of Genes and Genomics (KEGG) data-
base, and the Human Metabolome Database, identified 
known metabolites were classified into different chemi-
cal classes: amino acids or amino acid derivatives (further 
referred to as “amino acids”), carbohydrates, cofactors 
and vitamins, energy biochemicals, lipids, nucleotides, 
peptides or xenobiotics. In order to assess the reliability 
and reproducibility of the biochemical data, each metab-
olite’s intraclass correlation coefficient (ICC) and coeffi-
cient of variation (CV) were computed based on blinded 
quality control samples embedded in each batch (6%). 
The median ICC and CV for measured metabolites were 
0.95 (interquartile range=0.87 to 0.98) and 0.12 (inter-
quartile range=0.07 to 0.23), respectively.

Serum levels of alpha-tocopherol and retinol quanti-
fied by metabolomic profiling were highly correlated with 
concentrations originally assayed for the entire cohort at 
baseline using the reversed-phase isocratic high-perfor-
mance liquid chromatography (HPLC) method, suggest-
ing excellent validity and reproducibility for the present 
metabolomic assay platform (alpha-tocopherol: r=0.75, 
P-value <10−8; retinol, r=0.77, P-value <10−8).

Statistical analysis
In order to control for batch variation, metabolites were 
batch-normalized and divided by the batch median value. 

Then each metabolite was log-transformed and normal-
ized with a mean of 0 and a variance of 1. We used Cox 
proportional hazards regression models to calculate the 
hazard ratios (HRs) and 95% confidence intervals (CIs) 
of the associations between the serum metabolites and 
prostate cancer death, adjusted for age at baseline, age 
at prostate cancer diagnosis, disease stage, and Gleason 
sum, and we modeled standardized metabolites as both 
categorical (quartiles) and continuous variables (per 
1-standard deviation [SD] log-metabolite increment). 
In a separate Cox proportional regression model, we 
tested for linear trend by assigning the ordinal value of 
the quartile and treating this as a continuous variable. To 
control for multiple hypothesis testing [18], metabolite-
risk associations with a Bonferroni corrected threshold 
(a P-value of 5.2×10−5 or less, 0.05/961) were considered 
statistically significant.

In additional analyses, we further adjusted for body 
mass index (BMI, weight (kg)/height (m)2), number of 
cigarettes smoked daily, years of smoking, total serum 
cholesterol (mmol/L), serum high-density lipoprotein 
cholesterol (mmol/L), and calendar year of cancer diag-
nosis (all as continuous variables). We also performed 
analyses stratified by time from blood collection to pros-
tate cancer diagnosis (median split), disease stage at diag-
nosis (stage I–II and stage III–IV) and BMI (<25, 25–<30, 
and ≥30 kg/m2). In the entire dataset, we conducted a 
forward stepwise Cox proportional hazards regression 
to determine the set of metabolites that were condition-
ally independently associated with prostate cancer death, 
with an alpha-error, the Bonferroni corrected threshold 
of .05/961 to enter the model (i.e., top 49 signals) and 
P=.05 to remain in the model. For comparison of the 
ability for different clinical factors and selected metabo-
lites to distinguish between prostate cancer-specific 
mortality and non-prostate cancer-specific mortality, 
we utilized adjusted receiver operating characteristics 
(ROC) and adjusted area under the curve (AUC) analy-
ses. Differences between AUC were tested using the 
method proposed by DeLong et al. [19],

Pathway analyses evaluated the associations between 
chemical sub-classes of metabolites and risk of pros-
tate cancer-specific mortality. Due to the correlations 
between metabolites in the sub-class pathways, we used 
a parametric bootstrap method to calculate the P-value 
from each pathway level (based on 100,000 permuta-
tions), with the assumption that the Z-statistics of the 
component metabolites followed a multivariate normal 
distribution with a mean of 0 and estimated covariance 
matrix [20, 21]. For pathways associated with pros-
tate cancer-specific mortality, we conducted principal 
component analysis (PCA) using the varimax rotation 
method and defined the “pathway score” by the first 
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generated principal component. Cox proportional haz-
ards regression models were applied to estimate the HRs 
of prostate cancer-specific mortality for the resultant 
PCA score.

In order to calculate risk scores, we first randomly 
divided the metabolomic data into a discovery set (70%) 
and a replication set (30%). Within the discovery set, 
we used Cox proportional hazards regression models 
to select metabolites (Bonferroni corrected threshold, 
a P-value of 5.2×10−5 or less, 0.05/961) associated with 
prostate cancer-specific mortality (number of metabo-
lites=5). We then created a risk score (sum) of these 
metabolites in the replication set weighted by their coef-
ficients as obtained from the Cox regression models in 
the discovery set. The metabolite risk score was then 
normalized and modeled as both quartiles and as a con-
tinuous variable (with a mean=0 and SD=1) to estimate 
the association with prostate cancer-specific mortality, 
according to the Cox regression model and adjusted for 
the above-mentioned covariates.

All analyses were conducted using SAS version 9.4 
(SAS Institute, Cary, NC), and R version 3.6.1 (R Devel-
opment Core Team, Vienna, Austria). The reported sta-
tistical tests were two-sided.

Results
Baseline and clinical characteristics of the 1812 pros-
tate cancer cases being studied are presented in Table 1. 
Through the end of follow-up, we observed 1522 deaths 
(84.0%) of which 472 died from prostate cancer (26.1% 
of all cases). Comparing cases who died from prostate 
cancer to those who did not, the median age at diagnosis 
was 69.0 years (interquartile range=65.0 to 73.0) and 71.0 
years (interquartile range= 68.0 to 75.0), respectively, and 
the median time from baseline blood collection to cancer 
diagnosis was 11.0 years (interquartile range=8.0 to 15.0) 
and 14.0 (interquartile range=11.0 to 18.0), respectively. 
The cancer stage distribution among cases who died from 
prostate cancer was 39.4% (cancer stage I or II), 15.3% 
(locally advanced disease, stage III), and 45.3% (meta-
static disease, stage IV), whereas for those who did not 
die from prostate cancer it was 81.9%, 12.6%, and 5.5%, 
respectively.

Cox proportional regression models found that 49 
of the 961 identified metabolites were associated with 
prostate cancer mortality at the Bonferroni corrected 
P-value threshold of 5.2×10−5 or less, including 18 pep-
tides, 14 amino acids, 12 lipids, two cofactors/vitamins, 
and one each of nucleotides, carbohydrates, and xeno-
biotics (Table  2). The two strongest metabolite asso-
ciations with prostate cancer death were for the lipid 
choline (fourth versus first quartile, HR=2.07, 95% 
CI:1.60–2.69, Ptrend across quartiles=7.2×10−11), and 

the amino acid glutamate (HR=2.31, 95% CI: 1.77–3.02, 
Ptrend=6.7×10−10). Other statistically significant positive 
associations included the following: 11 gamma-glutamyl 
amino acids (fourth versus first quartile, HRs=1.58–
2.14; 1.3×10−9≤P≤3.1×10−5), three endocannabinoids 
(HRs=1.62–1.69; 3.1×10−5≤P≤4.6×10−5), three dipep-
tides (HRs=1.83–1.97; 3.0×10−7≤P≤4.9×10−6), two 
metabolites in the glycine-serine-threonine metabolism 
pathway (HRs=1.81–1.95; 3.7×10−8≤P≤3.3×10−6), two 
metabolites in the methionine-cysteine-SAM-taurine 
pathway (HRs=1.96–2.06; 2.8×10−8≤P≤2.5×10−7), 
two lysophospholipids (HRs=1.61–1.76; 
2.7×10−6≤P≤2.7×10−5), one fibrinogen cleavage pep-
tide, fibrinopeptide B (1-9) (HR=1.80, 95% CI:1.38–2.36; 
Ptrend=4.0×10−6), and the glutathione metabolite 5-oxo-
proline (HR=1.67, 95% CI:1.30–2.16; Ptrend=2.3×10−6). 
We also observed significant inverse associations for 
three fibrinogen cleavage peptides (fourth versus first 
quartile, HRs=0.54–0.60; 5.1×10−6≤P≤5.2×10−5), 
the three glutathione metabolites cysteine-glutathione 
disulfide, Cys-Gly, and oxidized cysteinylglycine 
(HRs=0.53–0.59; 1.4 ×10−5≤P≤4.1×10−5), and two 
ascorbate-aldarate metabolites, oxalate and threonate 
(HRs=0.75 and 0.80; Ptrend=3.0×10−6 and 3.2×10−5, 
respectively) (Table 2).

Further model adjustment for BMI, number of ciga-
rettes smoked daily, years of smoking, serum total cho-
lesterol, serum high-density lipoprotein cholesterol and 
calendar year of prostate cancer diagnosis did not alter 
the observed associations (Additional File 1: Tables S1).

Figure  1 shows the heat-map of Pearson correlation 
coefficients for metabolites that were significantly asso-
ciated with prostate cancer-specific mortality after Bon-
ferroni correction. Stronger positive correlations were 
found within the gamma-glutamyl amino acid chemical 
sub-class pathway.

Stratifying cases by cancer stage at diagnosis, the 
observed metabolite associations with prostate can-
cer mortality were generally stronger for men with ear-
lier stage cancers (i.e., I/II), with statistically significant 
stronger associations for 5-oxoproline (1-SD HR 1.54 and 
1.17 for earlier versus late cancer stage), fibrinopeptide B 
(1–12) (HR 0.70 and 0.90), fibrinopeptide B (1–11) (HR 
0.70 and 0.91), gamma-glutamylisoleucine (HR 1.57 and 
1.17), and gamma-glutamylleucine (HR 1.55 and 1.18) 
(all P for interaction <3.4×10−4, Bonferroni correction 
for 49×3 tests, Additional File 1: Tables S2). There was 
no statistically significant effect modification of metabo-
lite associations by BMI or time from blood collection to 
cancer diagnosis (Additional File 1: Tables S1 ).

Using the forward stepwise selection analysis, we iden-
tified five metabolites that were independently statisti-
cally significantly associated with prostate cancer death 
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up to model step five, including gamma-glutamylgluta-
mate, heptenedioate (C7:1-DC), oxalate, arachidonate 
(20:4n6), and linoleoyl ethanolamide (Additional File 
1: Tables S3). The corresponding adjusted ROC had an 
adjusted AUC of 0.82 (95% CI = 0.80 to 0.85) for clinical 
factors including age at blood collection, age at diagno-
sis, cancer stage at diagnosis, Gleason score at diagnosis, 
cigarettes smoked per day, and BMI, and 0.86 (95% CI = 
0.84 to 0.88) for those clinical factors and five metabolites 

selected from the forward stepwise regression models, 
including gamma-glutamylglutamate, heptenedioate 
(C7:1-DC), oxalate, arachidonate (20:4n6) and linoleoyl 
ethanolamide. The adjusted AUC was significantly influ-
enced and improved from 0.82 to 0.86 by the five selected 
metabolites (AUC 0.86 versus 0.82, P value = 0.04; Fig. 2).

Pathway and principal component analyses highlighted 
the potentially relevant importance of eight metabolic 
chemical pathways that were significantly associated with 

Table 1  Selected baseline and clinical characteristics of men with prostate cancer

a  Values are means (standard deviation) unless otherwise indicated

Characteristic a Died from prostate cancer
(N = 472)

Did not die from 
prostate cancer (N = 
1340)

Age at blood collection, years, median (interquartile range) 58.0 (54.0–62.0) 57.0 (53.0–61.0)

Age at cancer diagnosis, years, median (interquartile range) 69.0 (65.0–73.0) 71.0 (68.0–75.0)

Time from baseline to cancer diagnosis, years, median (interquartile range) 11.0 (8.0–15.0) 14.0 (11.0–18.0)

BMI (kg/m2) 26.2 (3.6) 26.3 (3.6)

Serum total cholesterol (mmol/L) 6.2 (1.1) 6.2 (1.1)

Serum HDL cholesterol (mmol/L) 1.2 (0.3) 1.2 (0.3)

Serum α-tocopherol (mg/L) 11.8 (3.1) 11.8 (3.1)

Serum β-carotene (μg/L) 228 (205) 225 (178)

Serum retinol (μg/L) 601 (128) 595 (129)

Cigarette per day 19 (8) 20 (9)

Years of cigarette smoking 36 (9) 35 (9)

Diagnosis period, No. (%)

  1986–1994 191 (40.4) 253 (18.9)

  1995–2000 165 (35.0) 478 (35.7)

  2001–2010 116 (24.6) 609 (45.5)

Cancer stage, No. (%)

  Stage I 73 (15.5) 580 (43.3)

  Stage II 113 (23.9) 517 (38.6)

  Stage III 72 (15.3) 169 (12.6)

  Stage IV 214 (45.3) 74 (5.5)

Gleason score, No. (%)

  1–6 112 (23.7) 698 (52.1)

  7 103 (21.8) 282 (21.0)

  8–10 120 (25.4) 131 (9.8)

  Unknown 137 (29.0) 229 (17.1)

Median survival time for all case patients (years) 5.0 (4.1) 8.3 (5.4)

Median survival time for case patients by stage (years)

  Stage I 7.8 (4.4) 8.3 (5.1)

  Stage II 6.4 (3.8) 8.5 (5.7)

  Stage III 5.9 (4.3) 9.3 (5.6)

  Stage IV 3.1 (3.0) 5.3 (5.0)

Median survival time for case patients by Gleason score (years)

  1–6 6.5 (4.6) 8.8 (5.5)

  7 5.0 (3.6) 8.1 (4.8)

  8–10 3.8 (3.1) 6.2 (5.0)

  Unknown 5.0 (4.5) 8.5 (6.1)
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Table 2  Hazard ratios and 95% confidence intervals for the association between prostate cancer mortality and prediagnostic serum 
metabolites achieving the Bonferroni corrected threshold based on 1812 prostate cancer cases in the ATBC study a

Metabolite and chemical class Chemical sub-class 
pathway

Quartile of metabolite HR (95% CI) per 
1-SD

P-value for 
trend b

1 2 3 4

Amino acids and amino acid 
derivatives

HR HR (95% CI) HR (95% CI) HR (95% CI)

  Aspartate Alanine and aspartate 
metabolism

1.00 1.44 (1.07, 1.94) 1.12 (0.83, 1.50) 2.24 (1.71, 2.92) 1.35 (1.24, 1.46) 2.5×10−8

  Glutamate Glutamate metabolism 1.00 1.36 (1.01, 1.83) 1.38 (1.03, 1.84) 2.31 (1.77, 3.02) 1.36 (1.26, 1.47) 6.7×10−10

  5-Oxoproline Glutathione metabolism 1.00 0.88 (0.65, 1.18) 1.08 (0.81, 1.43) 1.67 (1.30, 2.16) 1.30 (1.22, 1.40) 2.3×10−6

  Cysteine-glutathione disulfide Glutathione metabolism 1.00 0.59 (0.46, 0.76) 0.70 (0.56, 0.89) 0.53 (0.40, 0.69) 0.84 (0.78, 0.91) 1.4×10−5

  Cysteinylglycine Glutathione metabolism 1.00 0.62 (0.49, 0.80) 0.64 (0.49, 0.82) 0.59 (0.46, 0.76) 0.78 (0.72, 0.84) 3.8×10−5

  Cys-gly, oxidized Glutathione metabolism 1.00 0.53 (0.41, 0.68) 0.61 (0.48, 0.78) 0.57 (0.44, 0.73) 0.77 (0.72, 0.83) 4.1×10−5

  Serine Glycine, serine, and threonine 
metabolism

1.00 1.10 (0.82, 1.47) 1.32 (0.99, 1.77) 1.95 (1.49, 2.54) 1.34 (1.23, 1.47) 3.7×10−8

  Glycine Glycine, serine and threonine 
metabolism

1.00 1.07 (0.80, 1.43) 1.12 (0.84, 1.48) 1.81 (1.39, 2.36) 1.26 (1.15, 1.38) 3.3×10−6

  Histidine Histidine Metabolism 1.00 0.97 (0.73, 1.29) 1.28 (0.98, 1.68) 1.63 (1.26, 2.12) 1.21 (1.11, 1.33) 1.4×10−5

  Cysteine sulfinic acid Methionine, cysteine, SAM, 
and taurine metabolism

1.00 1.10 (0.82, 1.46) 1.17 (0.88, 1.54) 2.06 (1.59, 2.67) 1.28 (1.19, 1.38) 2.8×10−8

  Methionine sulfoxide Methionine, cysteine, SAM, 
and taurine metabolism

1.00 1.19 (0.89, 1.59) 1.25 (0.94, 1.67) 1.96 (1.50, 2.57) 1.28 (1.18, 1.39) 2.5×10−7

  Phenylalanine Phenylalanine metabolism 1.00 1.02 (0.77, 1.36) 1.04 (0.78, 1.38) 1.91 (1.48, 2.47) 1.34 (1.23, 1.46) 1.1×10−7

  N-Formylphenylalanine Tyrosine metabolism 1.00 1.26 (0.94, 1.68) 1.35 (1.03, 1.77) 1.72 (1.32, 2.23) 1.25 (1.13, 1.38) 4.3×10−5

  Arginine Urea cycle; arginine and 
proline metabolism

1.00 1.31 (0.99, 1.75) 1.23 (0.92, 1.64) 1.99 (1.53, 2.57) 1.31 (1.20, 1.43) 4.0×10−7

Carbohydrates

  Erythronate Amino sugar metabolism 1.00 1.40 (1.06, 1.86) 1.34 (1.01, 1.76) 1.96 (1.50, 2.57) 1.24 (1.13, 1.36) 4.4×10−6

Cofactors and vitamins

  Oxalate (ethanedioate) Ascorbate and aldarate 
metabolism

1.00 0.60 (0.47, 0.77) 0.54 (0.42, 0.69) 0.58 (0.45, 0.75) 0.75 (0.69, 0.82) 3.0×10−6

  Threonate Ascorbate and aldarate 
metabolism

1.00 0.86 (0.68, 1.09) 0.62 (0.48, 0.80) 0.63 (0.49, 0.82) 0.80 (0.73, 0.87) 3.2×10−5

Lipids

  Linoleoyl ethanolamide Endocannabinoids 1.00 0.90 (0.68, 1.21) 1.03 (0.79, 1.35) 1.62 (1.27, 2.07) 1.25 (1.14, 1.37) 3.1×10−5

  N-Oleoylserine Endocannabinoids 1.00 1.20 (0.90, 1.61) 1.39 (1.06, 1.84) 1.69 (1.30, 2.20) 1.14 (1.03, 1.26) 4.0×10−5

  N-Stearoylserine Endocannabinoids 1.00 1.16 (0.87, 1.54) 1.40 (1.06, 1.85) 1.65 (1.27, 2.14) 1.21 (1.10, 1.33) 4.6×10−5

  Heptenedioate (C7:1-DC) Fatty acid, dicarboxylate 1.00 1.10 (0.83, 1.45) 1.47 (1.12, 1.93) 1.71 (1.30, 2.25) 1.28 (1.15, 1.43) 9.6×10−6

  13-HODE + 9-HODE Fatty acid, monohydroxy 1.00 1.07 (0.81, 1.43) 1.34 (1.02, 1.76) 1.70 (1.31, 2.20) 1.28 (1.18, 1.38) 1.1×10−5

  Glycerol 3-phosphate Glycerolipid metabolism 1.00 1.22 (0.91, 1.63) 1.35 (1.02, 1.78) 1.74 (1.33, 2.27) 1.22 (1.12, 1.32) 3.4×10−5

  Arachidonate (20:4n6) Long-chain polyunsaturated 
fatty acid (n3 and n6)

1.00 1.14 (0.84, 1.54) 1.35 (1.02, 1.80) 2.12 (1.63, 2.77) 1.29 (1.19, 1.40) 1.7×10−9

  Dihomolinolenate (20:3n3 or 3n6) Long-chain polyunsaturated 
fatty acid (n3 and n6)

1.00 1.39 (1.05, 1.84) 1.44 (1.09, 1.92) 1.79 (1.38, 2.32) 1.23 (1.14, 1.34) 1.8×10−5

  1-Palmitoyl-GPA (16:0) Lysophospholipids 1.00 1.07 (0.80, 1.43) 1.19 (0.90, 1.58) 1.76 (1.37, 2.28) 1.34 (1.23, 1.46) 2.7×10−6

  1-Arachidonoyl-GPA (20:4) Lysophospholipids 1.00 0.81 (0.60, 1.08) 0.75 (0.56, 1.00) 1.61 (1.26, 2.06) 1.25 (1.15, 1.36) 2.7×10−5

  Choline Phospholipid metabolism 1.00 0.92 (0.68, 1.23) 1.32 (0.99, 1.75) 2.07 (1.60, 2.69) 1.34 (1.24, 1.43) 7.2×10−11

  Sphinganine Sphingolipid synthesis 1.00 1.04 (0.77, 1.39) 1.35 (1.02, 1.78) 1.63 (1.26, 2.12) 1.24 (1.15, 1.35) 1.9×10−5

Nucleotides

  N6-Methyladenosine Purine metabolism, adenine 
containing

1.00 1.00 (0.73, 1.37) 1.30 (1.01, 1.68) 1.64 (1.29, 2.08) 1.30 (1.19, 1.43) 1.4×10−5

Peptides

  Glycylvaline Dipeptide 1.00 1.21 (0.90, 1.63) 1.18 (0.88, 1.59) 1.97 (1.50, 2.58) 1.32 (1.22, 1.44) 3.0×10−7

  Valylleucine Dipeptide 1.00 1.11 (0.84, 1.47) 1.08 (0.81, 1.45) 1.83 (1.42, 2.37) 1.28 (1.18, 1.39) 1.8×10−6

  Leucylglycine Dipeptide 1.00 1.27 (0.95, 1.70) 1.21 (0.90, 1.62) 1.85 (1.42, 2.42) 1.31 (1.21, 1.42) 4.9×10−6
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prostate cancer mortality at the Bonferroni-corrected 
threshold of 5.3×10−4, including endocannabinoid, 
glycine-serine-and-threonine, gamma-glutamyl amino 
acid, glutamate, eicosanoid, sphingolipid synthesis, glu-
tathione, and dipeptide (Table 3). Seven of these pathways 
were positively associated with prostate cancer-specific 
mortality (fourth versus first quartile: HRs=1.61–1.94, 
4.5×10−7≤P-value≤2.0×10−4), and only the glutathione 
metabolism pathway was inversely associated (fourth 
versus first quartile: HR=0.62, P-value=1.7×10−4).

We combined the five metabolites selected from Cox 
regression model in the 70% discovery set with those 
achieving Bonferroni corrected threshold (<5.2×10−5) 
to generate a metabolite risk score and observed statis-
tically significantly increased mortality in the replication 
set for cases having a higher score (per 1-SD HR=1.48, 
95% CI: 1.30 to 1.68, Table 4). In the categorized analysis 
of the risk score quartiles, we found cases in the second 
through fourth quartiles experienced an 83%, 85%, and 
290% higher risk of prostate cancer-specific mortality, 
when compared with those in the lowest quartile (P for 
trend<0.0001, Table 4).

Discussion
In this large prospective metabolomic analysis, we 
found 49 metabolites that were statistically significantly 
associated with prostate cancer mortality, with top 

signals including choline, glutamate, arachidonate, and 
gamma-glutamyl amino acids. Additionally, we identified 
metabolites in the endocannabinoid, glycine-serine-and-
threonine-metabolism, eicosanoid, sphingolipid synthe-
sis, dipeptide, and redox pathways being most strongly 
associated with risk of prostate cancer mortality. Of note, 
the risk in men with prostate cancer was elevated four-
fold in those in the highest metabolite risk score category.

As the top signal in this present metabolomic analysis, 
serum choline was positively associated with risk of pros-
tate cancer mortality. Abnormal choline metabolism has 
been characterized as a cholinic phenotype and a meta-
bolic hallmark, related to increased oncogenic signal-
ing and tumor progression [22]. In a case-only survival 
analysis within the Health Professionals Follow-Up Study, 
the authors showed that post-diagnostic intake of dietary 
choline was related to an increased risk of lethal prostate 
cancer, with a 70% increased risk for men in the highest 
quintile of intake [23]. Furthermore, a prospective nested 
case-control study within the ATBC cohort showed 
that men with greater serum choline levels had a 3-fold 
increased risk of developing colorectal cancer [24].

The second top signal identified was glutamate, with 
higher levels related to an elevated risk of prostate cancer 
mortality. Glutamate is catabolized from glutamine and in 
turn incorporated into the tricarboxylic acid (TCA) cycle 
and lipogenesis [25]. A large portion of glutamine-derived 

Abbreviations: ATBC Alpha-Tocopherol, Beta-Carotene Cancer Prevention, HR hazard ratio, SD standard deviation, SAM S-adenosylmethionine
a  HRs and 95% CIs were estimated from Cox proportional hazards regression models adjusted for age at baseline, age at diagnosis, cancer stage at diagnosis (stage I–
IV), and Gleason scores at cancer diagnosis. Metabolites are shown sorted by chemical class and sub-class pathway and then by P-value
b  P-value for trend was calculated by including in the regression model the ordinal value of the quartile of each metabolite and treating this as a continuous variable

Table 2  (continued)

Metabolite and chemical class Chemical sub-class 
pathway

Quartile of metabolite HR (95% CI) per 
1-SD

P-value for 
trend b

1 2 3 4

  ADPSGEGDFXAEGGGVR Fibrinogen cleavage peptide 1.00 0.60 (0.46, 0.77) 0.65 (0.51, 0.83) 0.54 (0.42, 0.70) 0.78 (0.72, 0.84) 5.1×10−6

  Fibrinopeptide B (1–9) Fibrinogen cleavage peptide 1.00 1.17 (0.87, 1.58) 1.31 (0.98, 1.75) 1.80 (1.38, 2.36) 1.27 (1.16, 1.39) 4.0×10−6

  Fibrinopeptide B (1–12) Fibrinogen cleavage peptide 1.00 0.57 (0.44, 0.73) 0.59 (0.46, 0.75) 0.60 (0.47, 0.77) 0.82 (0.77, 0.87) 2.3×10−5

  Fibrinopeptide B (1–11) Fibrinogen cleavage peptide 1.00 0.54 (0.42, 0.69) 0.66 (0.52, 0.85) 0.57 (0.45, 0.73) 0.82 (0.77, 0.87) 5.2×10−5

  Gamma-glutamylglutamate Gamma-glutamyl amino acid 1.00 1.05 (0.78, 1.42) 1.24 (0.93, 1.66) 2.07 (1.60, 2.69) 1.35 (1.26, 1.45) 1.3×10−9

  Gamma-glutamylglycine Gamma-glutamyl amino acid 1.00 1.23 (0.91, 1.66) 1.46 (1.10, 1.95) 2.12 (1.62, 2.77) 1.32 (1.23, 1.41) 4.0×10−9

  Gamma-glutamylleucine Gamma-glutamyl amino acid 1.00 1.31 (0.98, 1.76) 1.17 (0.87, 1.56) 2.14 (1.65, 2.78) 1.31 (1.22, 1.40) 2.4×10−8

  Gamma-glutamylvaline Gamma-glutamyl amino acid 1.00 1.39 (1.04, 1.87) 1.18 (0.88, 1.58) 2.14 (1.64, 2.79) 1.33 (1.24, 1.42) 7.8×10−8

  Gamma-glutamylphenylalanine Gamma-glutamyl amino acid 1.00 1.35 (1.02, 1.81) 1.30 (0.96, 1.75) 2.08 (1.59, 2.71) 1.32 (1.23, 1.42) 8.7×10−8

  Gamma-glutamylserine Gamma-glutamyl amino acid 1.00 1.13 (0.85, 1.52) 1.05 (0.78, 1.42) 1.99 (1.53, 2.59) 1.35 (1.21, 1.49) 1.5×10−7

  Gamma-glutamylisoleucine Gamma-glutamyl amino acid 1.00 1.20 (0.90, 1.62) 1.09 (0.82, 1.46) 1.97 (1.51, 2.58) 1.31 (1.22, 1.41) 5.7×10−7

  Gamma-glutamylthreonine Gamma-glutamyl amino acid 1.00 1.15 (0.86, 1.54) 1.26 (0.94, 1.67) 1.84 (1.42, 2.39) 1.30 (1.21, 1.40) 1.2×10−6

  Gamma-glutamylmethionine Gamma-glutamyl amino acid 1.00 1.21 (0.91, 1.61) 1.25 (0.95, 1.66) 1.89 (1.46, 2.46) 1.28 (1.18, 1.38) 1.3×10−6

  Gamma-glutamyl-alpha-lysine Gamma-glutamyl amino acid 1.00 0.74 (0.55, 0.99) 0.92 (0.69, 1.21) 1.58 (1.24, 2.03) 1.29 (1.20, 1.39) 8.0×10−6

  Gamma-glutamyltyrosine Gamma-glutamyl amino acid 1.00 1.22 (0.92, 1.61) 1.13 (0.84, 1.52) 1.74 (1.35, 2.25) 1.29 (1.20, 1.40) 3.1×10−5

Xenobiotics

  S-Carboxymethyl-L-cysteine Drug - other 1.00 0.57 (0.45, 0.73) 0.63 (0.49, 0.82) 0.53 (0.41, 0.69) 0.81 (0.75, 0.88) 3.4×10−6
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glutamate is secreted from cells via cystine/glutamate 
transporters in exchange for cystine, which plays vital roles 
in redox homeostasis [26]. Moreover, the secreted gluta-
mate can stimulate cancer cell proliferation via glutamate 
receptors [26], consistent with serum glutamate being cor-
related with Gleason sum in prostate cancer patients [25] 
and in vivo studies demonstrating that reduced glutamate 
excretion inhibited tumor xenograft growth, including 
prostate cancer [27, 28]. In addition, expression of the cys-
tine/glutamate transporter SLC7A11 is upregulated in dif-
ferent cancers including prostate [26, 29].

Consistent with our previous analysis of fatal prostate 
cancer risk in a smaller set of 523 cases-control sets [13], 
serum dipeptides including leucylglycine, valylleucine, 
glycylvaline, and gamma-glutamyl amino acids were 
associated with an increased risk of prostate cancer-
specific mortality here. As a key enzyme in the gamma-
glutamyl cycle, gamma-glutamyl peptidase (GGT) is 
known for degradation of extracellular glutathione and 
liberation of free gamma-glutamyl peptides and is char-
acterized as a clinical indicator of prostate cancer [13]. 
Experimental data also demonstrate that GGT can be 

Fig. 1  Heatmap of Pearson correlation coefficients for top metabolites associated with prostate cancer-specific mortality that achieved Bonferroni 
corrected threshold. Directions and magnitudes of the correlation coefficients are represented by the color (i.e., red=positive correlations; 
blue=negative correlations) and circle sizes (i.e., larger circles for stronger correlations)
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involved in cellular detoxification and apoptotic balance 
pathways [30]. For example, in  vitro and in  vivo studies 
report that inhibition of the GGT pathway can impact 
cancer cell growth through cell-cycle regulation, and 
enhance the sensitivity to chemotherapy [31]. Consistent 
with our findings, earlier human data showed that circu-
lating gamma-glutamyl peptides were associated with an 
increased risk of hepatocellular carcinoma, and elevated 
serum GGT was related to an increased risk of overall 
and site-specific cancers, including prostate cancer [32].

Perturbations in endocannabinoid and glycine-serine-
threonine metabolism have been related to the risk of 
prostate cancer survival. Endocannabinoids are endog-
enous ligands of cannabinoid receptors (CB1 and CB2) 
[33], and dysregulation of the endocannabinoid sys-
tem has been associated with multiple health outcomes 
including cardiovascular disease, neurodegenerative 
disorders, and cancer [33]. Several components of the 
endocannabinoid system were overexpressed in prostate 
cancer cell lines and correlated with prostate cancer grade 
and progression in epithelial cells of prostate cancer tis-
sue samples [34]. Our current and previous findings show 
positive associations between serum endocannabinoids 
(i.e., N-oleoyl taurine, N-stearoyl serine, N-oleoyl serine, 
and linoleoyl ethanolamide) and risk of prostate cancer 
survival [17]. Furthermore, biosynthesis and metabolism 
of serine, aspartate, and glycine are required for cancer 
cell growth and progression [35, 36], for example, malig-
nant cells upregulate de novo serine and glycine synthesis 
and secretion [37, 38] which may help maintain a sup-
portive tumor microenvironment [37].

Fig. 2  Adjusted receiver operating characteristics (ROC) and 
adjusted area under the curve (AUC) for clinical factors and selected 
metabolites associated with risk of prostate cancer-specific mortality. 
Results for red ROC curve: AUC=0.82 (95% CI = 0.80 to 0.85) for 
clinical factors including age at blood collection, age at diagnosis, 
cancer stage at diagnosis, Gleason score at diagnosis, cigarettes 
smoked per day and BMI. Results for blue ROC curve: AUC=0.86 
(95% CI = 0.84 to 0.88) for clinical factors and five metabolites 
selected from the forward stepwise regression models, including 
gamma-glutamylglutamate, heptenedioate (C7:1-DC), oxalate, 
arachidonate (20:4n6) and linoleoyl ethanolamide (AUC 0.86 versus 
0.82, P value = 0.04)

Table 3  Pathway analysis and principal components analysis (PCA) for the association between chemical sub-classes of serum 
metabolites and prostate cancer-specific mortality in the ATBC Study a

Abbreviations: HR hazard ratio, CI confidence interval, ATBC Alpha-Tocopherol, Beta-Carotene Cancer Prevention
a  Pathway analysis: We examined the association between 95 chemical sub-classes of serum metabolites and prostate cancer-specific mortality and tested a single 
P-value for pathways using a parametric bootstrap method. Within each bootstrap replication, P-values were generated from a vector of score test statistics from an 
estimated covariance matrix with a multivariate normal distribution (mean=0). The pathway P-values are calculated based on 100,000 permutations
b  Models were adjusted for age at baseline, age at diagnosis, cancer stage at diagnosis (stage I–IV), and Gleason scores at cancer diagnosis
c  Bonferroni-corrected threshold = 5.3×10−4, 0.05/95

Chemical sub-class pathway Pathway analysis PCA analysis for pattern score (by quartiles) b

 No. of 
contributing 
metabolites

P-value Q1 Q2 Q3 Q4 P-value c

Referent HR (95% CI) HR (95% CI) HR (95% CI)

Endocannabinoids 10 <10−5 1.00 1.25 (0.94, 1.67) 1.54 (1.16, 2.04) 1.92 (1.46, 2.51) 4.5×10−7

Glycine, serine, and threonine metabolism 10 <10−5 1.00 1.22 (0.92, 1.63) 1.43 (1.08, 1.88) 1.92 (1.47, 2.51) 6.5×10−7

Gamma-glutamyl amino acids 18 <10−5 1.00 1.30 (0.97, 1.72) 1.26 (0.94, 1.69) 1.94 (1.49, 2.52) 9.5×10−7

Glutamate metabolism 13 <10−5 1.00 1.14 (0.87, 1.51) 1.39 (1.05, 1.83) 1.71 (1.32, 2.23) 1.5×10−5

Eicosanoid 3 <10−5 1.00 0.93 (0.70, 1.25) 1.22 (0.93, 1.60) 1.62 (1.25, 2.10) 1.8×10−5

Sphingolipid synthesis 3 <10−5 1.00 1.08 (0.81, 1.44) 1.36 (1.03, 1.78) 1.61 (1.24, 2.08) 5.5×10−5

Glutathione metabolism 7 <10−5 1.00 0.59 (0.46, 0.75) 0.63 (0.49, 0.80) 0.62 (0.48, 0.79) 1.7×10−4

Dipeptides 6 <10−5 1.00 1.17 (0.87, 1.56) 1.08 (0.81, 1.45) 1.65 (1.27, 2.15) 2.0×10−4
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The positive association we observed between eicos-
anoids and prostate cancer mortality is also biologi-
cally plausible in that eicosanoids have been found to 
promote cancer cell growth in an autocrine fashion by 
activating their receptors implicated in the regulation 
of cell proliferation, apoptosis, migration, and inva-
sion [39]. Also, eicosanoid signaling inhibitors (e.g., 
CAY10404 and celecoxib) decrease prostate cancer 
cell proliferation [40], and eicosanoids are reported to 
have immunosuppressive effects which alter the tumor 
microenvironment and T cell profiles, potentially serv-
ing as a therapeutic target for prostate cancer [39].

Alterations in sphingolipid biosynthesis and metab-
olism have been associated with elevated prostate 
cancer mortality, and serum sphingolipids concentra-
tions are related to colorectal cancer and hepatocel-
lular carcinoma [41, 42]. Sphingolipids with their fatty 
acid tail and sphingoid ring base have significant cell 
membrane roles in regulating various cellular biologi-
cal processes including cell proliferation, apoptosis, 
and inflammatory response [43, 44], and emerging 
evidence supports their potential use as cancer thera-
peutic targets [44]. The essential amino acid methio-
nine also plays a critical role in tumor cell proliferation 
and metabolism [45], including glutathione formation, 
polyamine synthesis, and methyl group donation [45]. 
Reduced methionine status through dietary restriction 
or enzymatic degradation can inhibit prostate tumor 
growth [46]. Another of our metabolite signals, argi-
nine, also plays multiple roles in cellular physiology, 
including nitric oxide and polyamines synthesis, cell 
proliferation, cellular signaling, and immune system 

regulation [47, 48], and can activate rapamycin com-
plex 1 (mTORC1), a nutrient-sensing kinase directly 
involved in tumorigenesis [48].

We also observed associations between elevated 
fatty acid metabolites arachidonate, 9-hydroxyoc-
tadecadienoic acid (HODE), and 13-HODE and 
increased prostate cancer mortality. 9-HODE and 
13-HODE can be synthesized by cyclooxygenase 
(COX) and 15-lipoxygenase 1(15-LOX 1) from lin-
oleic acid [49, 50], and activation of the 15-lipoxy-
genase 1/13(S)-HODE axis can promote prostate 
cancer cell growth through the epidermal growth fac-
tor receptor (EGFR) signaling pathway [50]. Consist-
ent with our findings, a nested case-control study in 
the Prostate, Lung, Colorectal, and Ovarian (PLCO) 
Cancer Screening Trial cohort reported positive asso-
ciations between serum concentrations of 9-HODE 
and 13-HODE and increased risk of developing ovar-
ian cancer, highlighting the possible roles of linoleic 
acid metabolites in cancer etiology [51]. In addition, 
N6-methyladenosine (m6A) is one of the most prev-
alent internal posttranscriptional modifications of 
RNA and participates in RNA metabolism, including 
mRNA translation, splicing, folding, and degradation 
[52]. Growing evidence suggests a key role for m6A in 
tumorigenesis, including for prostate cancer [52] and 
its progression [53], and tumor data from the Cancer 
Genome Atlas database indicate overexpression of 
m6A methylation regulators in the aggressive prostate 
tumor tissues [54]. These findings are in line with the 
current data suggesting a positive association between 
serum m6A and prostate cancer mortality.

Table 4  Association between metabolite risk score and prostate cancer-specific mortality in the 30% replication set of 543 prostate 
cancer cases

Abbreviations: HR hazard ratio, CI confidence interval, SD standard deviation
a  The metabolite risk score was constructed in the replication set by summing the top metabolites that achieved Bonferroni corrected threshold (0.05/961) weighted 
by their Cox regression coefficients from the discovery set. The metabolic risk score is generated as

(Log-glutamate)× 0.256 + (Log-gamma-glutamylglutamate)× (0.237) + (Log-methionine sulfoxide)× (0.236) + (Log-arachidonate (20:4n6)×0.227) + (Log-
choline)×(0.223)
b  Hazard ratio for prostate cancer-specific mortality using Cox proportional hazards regression model and adjusted for age at baseline, age at diagnosis, cancer stage 
at diagnosis (stage I–IV), and Gleason scores at cancer diagnosis

Quartile of metabolite risk score a Deaths Total No. of cases Person-years HRs b 95% CI

1 20 135 1056.4 1.00 Referent

2 33 136 1054.9 1.83 1.04, 3.25

3 29 136 987.2 1.85 1.03, 3.33

4 60 136 918.4 3.90 2.32, 6.55

P for trend <0.0001

Metabolite risk score as continuous variable 
(per 1-SD)

1.48 1.30, 1.68

P-value (per 1-SD) <0.0001
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We have validated findings from our previous metabo-
lomics studies including gamma-glutamyl amino acids, 
fibrinopeptides, endocannabinoids, and redox metabo-
lites. Additionally, based on the larger sample size of 
the present study, we identified new metabolites associ-
ated with poor prostate cancer survival, including cho-
line, glutamate, and arachidonate. When we compared 
the present findings with the 34 metabolites identified 
in our previous study of lethal prostate cancer in 523 
case-control sets [13], 25 metabolites were validated 
in the present study, three metabolites were not meas-
ured in the current panel (histidylalanine, valyglycine, 
and leucylglutamine), four metabolites were marginally 
associated in the same direction but with lower statisti-
cal significance (P value range of 0.08 to 0.11; C-glycosyl-
tryptophan, 1-linoleoyl-GPC (18:2), 5,6-dihydrouridine 
and 5-methyluridine), and only two metabolites were 
not validated by the present study (cystine and pseudou-
ridine, HRs=1). Differences in our findings between the 
current analysis and our previous studies may be due to 
its larger sample size and different study design; e.g., our 
previous study compared lethal prostate cancer cases to 
cancer-free controls, whereas the present study exam-
ined prostate cancer survival among men diagnosed with 
the disease. Further studies will be needed to understand 
these nuances.

Our study has several important and novel strengths, 
including its quite large sample size, a prospective 
study design, and complete, long-term follow-up 
identification of prostate cancer diagnoses and mor-
tality outcomes. We used a stringent statistical thresh-
old, namely the Bonferroni correction, to reduce the 
potential for false-positive findings. Importantly, 
metabolomic profiles were measured in serum sam-
ples that were collected up to a median of 14 years 
(interquartile range = 10 to 17 years) prior to prostate 
cancer diagnosis, thus minimizing the possibility of 
reverse causality. In addition, the untargeted metabolic 
platform with excellent laboratory reproducibility was 
highly reliable and enabled us to measure more than 
900 known metabolites simultaneously reflecting a 
wide range of biological pathways relevant to prostate 
carcinogenesis. Our study is one of the few prospec-
tive cohort studies that collected blood samples from 
participants after an overnight fast, minimizing post-
prandial fluctuations in the metabolome which affect 
most other studies. It should also be noted that the 
ATBC Study was conducted in Finland, where pop-
ulation-based PSA screening was not implemented, 
resulting in most of the cases being clinically diag-
nosed which allowed us to examine which metabo-
lites were related to fatal disease compared to other 

clinically relevant cases. In most US cohorts, by con-
trast, a great deal of investigational “noise” is intro-
duced through the inclusion of indolent, PSA-detected 
cases. As most of the studies have been focused on 
the metabolomics and prostate cancer incidence, our 
findings highlight multiple potentially important novel 
metabolites and biological pathways that may play key 
roles in the progression and mortality of prostate can-
cer. Some study limitations should also be mentioned. 
We did not have an external validation set and relied 
on the internal replication set; to our knowledge, 
however, other studies have not measured this large 
a number of metabolites using an HRAM LC-MS/MS 
platform. Prostate cancer molecular sub-type data 
were not available for examination of unique metabo-
lite relationships (i.e., ETS-related gene [ERG]-positive 
or negative tumors). We cannot preclude residual con-
founding from other factors that may have influenced 
the observed associations, although we have controlled 
for several potential confounding factors in our mod-
els, and found no strong evidence of confounding. The 
homogenous nature of the study population of male 
Finnish smokers aged 50–69 years may limit the gen-
eralizability of our findings to non-smokers, younger 
men, and other racial/ethnic groups.

Conclusions
Our prospective serum metabolomic investigation 
of 1812 men with prostate cancer elucidated a panel 
of metabolites and a composite metabolite risk score 
from blood collected prior to diagnosis that were asso-
ciated with later risk of prostate cancer-specific mor-
tality. These findings provide novel, biologically based 
insights and potential leads regarding the molecular 
basis of prostate cancer progression and mortality, and 
may identify a high-risk group of men in whom pre-
vention strategies may be implemented and for whom 
more specific screening recommendations may be 
developed.
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