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Polygenic risk score improves the accuracy 
of a clinical risk score for coronary artery disease
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Abstract 

Background:  The value of polygenic risk scores (PRSs) towards improving guideline-recommended clinical risk mod‑
els for coronary artery disease (CAD) prediction is controversial. Here we examine whether an integrated polygenic 
risk score improves the prediction of CAD beyond pooled cohort equations. 

Methods:  An observation study of 291,305 unrelated White British UK Biobank participants enrolled from 2006 to 
2010 was conducted. A case–control sample of 9499 prevalent CAD cases and an equal number of randomly selected 
controls was used for tuning and integrating of the polygenic risk scores. A separate cohort of 272,307 individuals 
(with follow-up to 2020) was used to examine the risk prediction performance of pooled cohort equations, integrated 
polygenic risk score, and PRS-enhanced pooled cohort equation for incident CAD cases. The performance of each 
model was analyzed by discrimination and risk reclassification using a 7.5% threshold.

Results:  In the cohort of 272,307 individuals (mean age, 56.7 years) used to analyze predictive accuracy, there were 
7036 incident CAD cases over a 12-year follow-up period. Model discrimination was tested for integrated polygenic 
risk score, pooled cohort equation, and PRS-enhanced pooled cohort equation with reported C-statistics of 0.640 
(95% CI, 0.634–0.646), 0.718 (95% CI, 0.713–0.723), and 0.753 (95% CI, 0.748–0.758), respectively. Risk reclassification for 
the addition of the integrated polygenic risk score to the pooled cohort equation at a 7.5% risk threshold resulted in a 
net reclassification improvement of 0.117 (95% CI, 0.102 to 0.129) for cases and − 0.023 (95% CI, − 0.025 to − 0.022) for 
noncases [overall: 0.093 (95% CI, 0.08 to 0.104)]. For incident CAD cases, this represented 14.2% correctly reclassified to 
the higher-risk category and 2.6% incorrectly reclassified to the lower-risk category.

Conclusions:  Addition of the integrated polygenic risk score for CAD to the pooled cohort questions improves the 
predictive accuracy for incident CAD and clinical risk classification in the White British from the UK Biobank. These 
findings suggest that an integrated polygenic risk score may enhance CAD risk prediction and screening in the White 
British population.
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Background
Cardiovascular disease (CVD) is a major cause of death 
worldwide [1]. Risk estimates for CVD have become par-
ticularly important for disease prevention and clinical 

practice [2–5]. Current guidelines from the American 
College of Cardiology and American Heart Association 
suggest lipid-lowering treatments for individuals with 
greater than a 7.5% 10-year absolute risk of develop-
ing CVD based on pooled cohort equations (PCE) [6]. 
Because of the central role of accurate risk estimates 
in CVD prevention, improving accuracy beyond those 
already used in clinical practice like PCE could save lives 
by better identifying high-risk individuals.
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Substantial advancements have been made over the 
past decades in identifying genetic variants associ-
ated with coronary artery disease (CAD) [7–10]. Recent 
advances in polygenic risk scores (PRSs) have sparked 
a great interest in enhancing disease risk prediction by 
using the information on millions of variants across the 
genome [11–14]. However, population health utility of 
PRSs in CAD risk prediction is controversial. Several 
studies have shown that PRSs can improve risk prediction 
accuracy for incident and prevalent CAD cases compared 
with individual conventional risk factors [15, 16] and 
combining risk prediction models (like PCE) with PRS 
improves the performance in terms of net reclassifica-
tion improvement [17]. On the other hand, several stud-
ies [18, 19] integrating PRSs into PCE to assess possible 
clinical utility have concluded that the current benefits of 
incorporating PRSs were minimal (although statistically 
significant) and were not considered clinically significant 
to warrant their use over current clinical used prediction 
models. In this manuscript, we investigate why different 
studies have reached different and controversial conclu-
sions. Specifically, we analyzed UK Biobank data to test 
the hypothesis that integrated PRSs leveraging multiple 
newly developed PRS methods, and several genome-wide 
association study (GWAS) datasets, can improve risk 
prediction for CAD over the widely used PCE and thus 
provide improved clinical utility in European popula-
tions [9, 20–25]. Furthermore, in secondary analysis, we 
extended our integrated method to analyze its predictive 
performance in non-European populations.

Methods
Study populations
Our study utilized the UK Biobank which includes 
502,536 participants ranging in age from 40 to 69 at base-
line recruitment [26]. Biomarker data were collected 
from stored serum and red blood cells, details of which 
are described elsewhere [27]. Ethical approval for the UK 
Biobank study was obtained from the National Health 
Service’s National Research Ethics Service North West 
(11/NW/0382). The current research project (application 
number 48240) was approved by UK Biobank. Our study 
design is outlined in Fig. 1.

The primary endpoint for our study was CAD, for 
which several large GWAS results are available [8, 28, 29]. 
We limited our primary investigation to unrelated White 
British individuals (as defined by UK Biobank data-field 
22,006) to reduce the influence of population heteroge-
neity and related samples; unrelated individuals were 
obtained by only keeping individuals with no relative 
3rd degree or closer [30]. We further excluded outliers 
for heterozygosity or genotype missing rates (0.2 > miss-
ing rate). Participants with inconsistent reported and 

genotypic inferred sex and withdrawn consent were like-
wise removed.

In the secondary analysis, we focused on African and 
East Asian ancestry participants in the UK Biobank. Fol-
lowing others [31, 32], we used imputed data released by 
the UK Biobank to determine continental ancestry (Afri-
can (AFR), East Asian (EAS), European (EUR), South 
Asian (SAS)) and projected participants onto genetic 
principal components calculated in the 1000 Genome 
Project (N = 2000: AFR = 504; EAS = 504; EUR = 503; 
SAS = 489) [33]. We excluded populations identified as 
African Caribbeans in Barbados (ACB) and Americans 
of African Ancestry in SW (ASW) from the AFR popula-
tion and all individuals of American ancestry (AMR) due 
to their complex admixture patterns. Participants were 
assigned to ancestries based on likelihoods calculated 
from their first 5 principal components. Samples were 
assigned via random forest to an ancestry when their 
likelihood for a given ancestry was > 0.3. If two ancestries 
exceeded 0.3, we assigned ancestries as AFR over EUR, 
SAS over EUR, and EUR over EAS. Participants were 
excluded if no likelihood was > 0.3 or if 3 ancestry groups 
were > 0.3 (n = 8). The same quality control used in the 
primary analysis was then applied to the resulting AFR 
and EAS ancestry populations.

The study population was divided into (1) a case–con-
trol study (tuning dataset) established from prevalent 
CAD cases (see the “Cardiovascular outcome defini-
tions” section for details) and randomly selected controls 
and (2) an independent prospective cohort study (testing 
dataset) of participants with no history of CAD at base-
line recruitment. The tuning dataset was used for build-
ing risk prediction models and the testing dataset was 
used for unbiasedly evaluating their performance. Of 
note, there were no overlapping participants between 
these two datasets, ensuring the testing results were 
valid.

Definition of risk score variables
The updated pooled cohort equation (PCE) model, a clin-
ically used risk prediction model, was used as our base-
line. We matched variables available in the cohort to the 
predictors of the updated PCE [3], including information 
on age, sex, race and ethnicity, smoking status, total and 
HDL cholesterol, systolic blood pressure, diabetes, and 
the use of lipid-lowering and blood pressure-lowering 
medications. Definitions for type 1 and type 2 diabetes, 
blood pressure-lowering and lipid-lowering medication 
use, and categorization of smoking status were defined 
based on UK-recommended QRISK3 scores [34, 35]. 
Details of variable definitions and protocol for handling 
missing values are relegated to Additional file 1 [27, 36, 
37]. The PCE model categorizes race as a binary variable 
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Fig. 1  Study design and flowchart for coronary artery disease (CAD). A Selection of PRS in the case–control study. B The cohort study. To select the 
parameters for each method with the best discrimination based on the area under the curve (AUC), clumping and thresholding, LDpred, lassosum, 
PRS-CS, sBayesR, LDpred-funct, and DBSLMM were used to calculate polygenic risk scores (PRSs) on the case–control set consisting of prevalent 
cases. For these calculations, summary data for three genome-wide association studies (GWAS) on CAD (CARDIoGRAMplusC4D, Finngen Biobank, 
Japan Biobank) that excluded the UK Biobank and data on linkage disequilibrium were used. The calculated PRSs were applied to a nonoverlapping 
set of participants from the UK Biobank with no preexisting CAD, aged 40 to 69 at baseline, and who were followed up for incident CAD events. In 
this population, the pooled cohort equations (PCE) model was calculated and different models (PRS, PCE, PRS-enhanced PCE) were compared in 
terms of their predictive accuracy based on discrimination, calibration, and reclassification metrics
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(“Black” = 1, “White/Other” = 0); therefore, in the sec-
ondary analysis, the EAS population was categorized as 
“Other” for PCE calculations.

Cardiovascular outcome definitions
The UK Biobank data have been linked to Hospital Epi-
sode Statistics (HES) and national death and cancer 
registries. HES records diagnosis information via Interna-
tional Classification of Diseases (ICD)-9th and 10th Revi-
sions and codes operative procedures via OPCS-4. Death 
registries include the death date and both primary and 
secondary causes of death coded in ICD-10. We defined 
CAD by combining HES, death registries, and operation 
codes [34, 35], as well as related self-reported diagnoses 
and previous procedure codes (Additional file  2: Tables 
S1 and S2). Following others [18], CAD was defined as 
myocardial infarction, including related sequelae.

The date of the event was determined via recorded epi-
sode date, admission date, or operation date indicated 
in the hospital statistics. For participants with multiple 
CAD event dates, the earliest recorded date was used as 
the date of the event. Age of event was determined by 
self-reported age and calculated age based on the date 
of the event; when both ages were available, the smaller 
value was used [15]. Prevalent cases at baseline were 
defined as individuals with an age of event earlier than 
the age at UK Biobank enrollment time. Follow-up time 
was calculated as the number of days from the assess-
ment date until the event of interest (CAD event), a com-
peting cause of death, or censorship date (2020/12/31) 
occurred.

Polygenic risk scores (PRSs)
Information on genotyping and imputation has been 
described in detail elsewhere [27, 38]. Standard qual-
ity-control procedures were applied to the imputed UK 
Biobank genotype data. Briefly, we restricted our analyses 
to autosomal genetic variants, kept variants with impu-
tation information score (INFO) score > 0.3, minor allele 
frequency > 1%, Hardy–Weinberg equilibrium P > 10−10, 
and genotype missing rate < 10%. We further removed 
variants with ambiguous strands (A/T or C/G).

PRS for CAD was derived as weighted sums of risk 
alleles using 3 CAD GWAS datasets (CARDIoGRAM-
plusC4D, FinnGen Biobank, Japan Biobank) that had 
no overlap with the present UK Biobank study (Fig.  1) 
[8, 28, 29]. The 3 GWAS datasets were filtered to only 
include SNPs present in the imputed UK Biobank 
data. For all datasets, we aligned β and allele frequen-
cies to the hg19 alternate allele. First, we performed 
a fixed-effect meta-analysis focused on GWAS data-
sets with subjects of European ancestry, specifically the 

CARDIoGRAMplusC4D and FinnGen datasets, using 
METAL [39]. Second, the PRSs were calculated by 
using either Japan Biobank data or combined European 
data and their corresponding population-specific 1000 
Genome Project constructed LD reference panels.

Tuning of the PRS was implemented using seven 
methods: (1) clumping and thresholding using PRSice-2 
software (version 2.3.3), (2) LDpred, (3) lassosum, 
(4) PRS-CS, (5) sBayesR, (6) LDpred-funct, and (7) 
DBSLMM [20–24, 40, 41]. Detailed information on 
each PRS method and their associated parameters are 
described in Additional file  3 [42, 43]. All methods uti-
lized were adjusted for genotype measurement batch and 
the first five genetic principal components calculated by 
the UK Biobank. Since different PRS methods and data-
sets may capture different information, we constructed 
the integrated PRS by 

∑q
j=1

β̂jPRSj , where βj is the esti-
mated coefficient of PRSj in the logistic regression using 
the tuning dataset and PRSj is the jth PRS [44]. Selection 
of PRS methods for the integrated model was determined 
based on area under the curve (AUC) results from the 
tuning dataset. Methods with the largest AUC improve-
ment over the PCE model were selected and analyzed in 
the testing dataset until the inclusion of additional PRS 
methods failed to improve the predictive performance of 
the integrated model. Specifically, we selected the PRS 
methods with maximal AUC values in the logistic regres-
sion model, where CAD status was the outcome and 
the constructed PRS and baseline variables [PCE, first 5 
principal components, and genotype array] were covari-
ates. The AUC values for each PRS method are provided 
in Tables S3 and S4 in Additional file 4. We assessed the 
performance of the integrated model against the individ-
ual PRS methods in the testing dataset as well as models 
combining the European meta-analysis data and Japan 
Biobank data.

Statistical analysis
Participants were excluded from the study for multi-
ple factors, including missing genetic data, mismatches 
in reported and genotypic sex, withdrawal of informed 
consent, and missing predictor values. Using previously 
published baseline coefficients for each predictor variable 
and baseline hazard, we calculated the updated pooled 
cohort equation scores (PCE) [3]. We examined several 
models as defined in previous studies [18, 19]: (1) PCE, 
(2) (integrated) PRS for CAD, and (3) PCE and (inte-
grated) PRS. We performed Cox proportional hazard 
regression using follow-up time as the time variable in 
the testing data. As a sensitivity analysis, all models were 
reexamined after removing participants that reported 
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taking lipid-lowering medications at baseline of the UK 
Biobank study.

We examined the discrimination of each model via 
Harrell’s C-statistic and its 95% confidence interval 
[45–47]. In brief, the C-statistic is a measure of the dis-
criminatory power of a risk prediction model, with val-
ues ranging from 0.5 (no discrimination) to 1.0 (perfect 
discrimination). Calibration and recalibration of the 
baseline models were graphically assessed by compar-
ing observed probabilities via Kaplan–Meier estimates to 
the mean predicted probability within tenths of the pre-
dicted probabilities. During recalibration, the baseline 
survival function was estimated in the testing cohort and 
combined with predicted hazard ratios from the valida-
tion dataset in a Cox model to obtain recalibrated pre-
dicted probabilities [3, 18]. We assessed the recalibration 
results via the calibration slope and Greenwood-Nam-
D’Agostino test [48].

We evaluated risk prediction accuracy using the net 
reclassification improvement (NRI) [49] at a threshold of 
7.5% (clinically used in the USA), continuous NRI, and 
associated integrated discrimination improvement (IDI) 
[50]. These metrics quantify how well a new model (PCE 
plus PRS) reclassifies individuals compared to an old 
model (PCE); a brief explanation of these metrics can be 
found in Additional file 3 [51–53].

Statistical analyses were conducted in R software, ver-
sion 4.0.0 (R Project for Statistical Computing) [54]. Ana-
conda, version 3.8.3, was also used for PRS methods that 
utilized Python programming language [55].

Results
Following the removal of participants with missing data 
and selecting for only unrelated white British partici-
pants, the UK Biobank dataset contained 291,305 partici-
pants which were subsequently divided into case–control 
and cohort study datasets (Fig. 1). The case–control study 
contained 9499 prevalent CAD cases and an equal num-
ber of controls used for tuning of the PRS methods. The 
independent cohort study was comprised of 272,307 indi-
viduals (mean age: 56.7) with 7036 incident cases. Par-
ticipants with CAD at baseline were not included in the 
cohort study population. The cohort study had a median 
follow-up time of 12.33 years (interquartile range, 1.42), 
while incident CAD cases had a median follow-up time 
of 5.02  years (interquartile range, 4.07). Baseline char-
acteristics (such as age, smoking status, cholesterol, and 
systolic blood pressure) were similar for participants 
included in the cohort analysis and excluded due to miss-
ing covariates (Additional file 4: Tables S5-S7).

For the case–control study, each PRS method for CAD 
was performed across multiple parameter settings to 
determine optimal values that would be combined for 

the cohort study. We classified the “optimal” parameter 
values as those achieving the highest AUC values for that 
individual method. Specific details on each method’s tun-
ing parameters and individual AUC values were provided 
in Tables S8 and S9 in Additional file 4 for the European 
meta-analysis (EUR) and Japan Biobank (Japan) datasets. 
We combined the PRS for CAD based on the combina-
tion of the three GWAS datasets. As expected, because 
the combined EUR + Japan methods fully utilized all 
three GWAS datasets and several complementary PRS 
methods, it achieved the highest AUC [0.641 (95% CI, 
0.635–0.648)] and thus we focused on this PRS (denoted 
by integrated CAD PRS or simply PRS) for the remain-
ing analysis. Our integrated PRS was determined to be 
weakly, but significantly correlated with CAD events 
[r = 0.0845; p-value < 2.2 × 10−16]. The maximal inte-
grated CAD PRS model for this study was determined 
to include the EUR- and Japan-derived clumping and 
thresholding, LDpred, lassosum, PRS-CS, and LDpred-
funct methods. During this step, we evaluated the PRS 
methods for collinearity concerns and determined the 
different methods tended to not be highly correlated 
(Additional file 5: Fig. S1).

In the cohort analysis, following the selection of white 
British participants, as well as excluding individuals with 
missing data, and selecting the case–control subjects, 
272,307 participants were used. The discrimination of the 
integrated CAD PRS remained similar as that in the tun-
ing case–control study; the C-statistic for the integrated 
CAD PRS was 0.640 (95% CI, 0.634–0.646) (Table  1). 
The discrimination of the PCE (C-statistics, 0.718 [95% 
CI, 0.713–0.723]) was higher than the integrated CAD 
PRS. The addition of individual PRSs to the PCE resulted 
in improved discrimination of the model with PRS-CS 
applied to the European meta-analysis showing the high-
est discrimination (C-statistics, 0.749 [95% CI, 0.744–
0.754]) (Additional file 4: Tables S10-S12). We observed 
the most significant improvement in discrimination 
when the integrated CAD PRS were added to the PCE, 
showing a C-statistic increase to 0.753 (95% CI, 0.748–
0.758), an associated change over the PCE alone of 0.035 
(95% CI, 0.03–0.04; p-value = 1.91 × 10−80) (Table  1 and 
Fig. 2). We further stratified the population by age group 
(younger and older than 55  years of age) and sex (men 
and women) separately and observed higher discrimina-
tion in women than men and higher discrimination in the 
younger age group than in the older age group (Table 1). 
Participants that were not receiving lipid-lowering medi-
cation at baseline were also examined and demonstrated 
similar discrimination performance (Table 1).

When evaluating model performance, we com-
pared observed and predicted cumulative incidences 
of CAD events across each tenth of predicted risk and 
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Table 1  C-statistics for coronary artery disease for full population and stratified by sex and age  group (younger and older than 
55 years of age)A,B

A Cox proportional hazard models for CAD using recalibrated polygenic risk score, pooled cohort equations, and both combined models
B C-statistics shown for combined European meta-analysis + Japan Biobank PRS methods. Results are presented for both White British and African ancestry 
populations

C-statistic (95% CI)

All Men Women Participants 
aged < 55 y

Participants 
aged ≥ 55 y

Participants not 
receiving lipid-
lowering treatment at 
baseline

A. White British ancestry
  Participants, no 272,307 124,155 148,152 102,330 169,977 235,172

  Cases, no 7036 5093 1943 1276 5760 5091

  Polygenic risk score .64 (.634–.646) .643 (.636–.651) .641 (.629–.654) .69 (.626–.705) .632 (.625–.639) .646 (.638–.653)

  Pooled cohort 
equation

.718 (.713–.723) .663 (.656–.67) .706 (.695–.717) .749 (.736–.761) .665 (.658–.671) .73 (.724–.737)

  Polygenic risk 
score + pooled 
cohort equation

.753 (.748–.758) .714 (.708–.721) .741 (.73–.751) .793 (.781–.806) .705 (.699–.712) .766 (.76–.772)

B. African ancestry
  Participants, no 6753 2901 3852 4528 2225 5896

  Cases, no 88 46 42 42 46 63

  Polygenic risk score .542 (.485–.6) .574 (.494–.654) .6 (.511–.634) .548 (.46–.637) .543 (.462–.624) .534 (.464–.604)

  Pooled cohort 
equation

.714 (.659–.769) .674 (.595–.753) .734 (.653–.815) .657 (.572–.742) .721 (.656–.787) .698 (.628–.768)

  Polygenic risk 
score + pooled 
cohort equation

.716 (.665–.768) .695 (.622–.768) .732 (.654–.81) .679 (.597–.761) .696 (.629–.763) .707 (.64–.774)

Fig. 2  Receiver operator characteristic curves and C-statistics for different models in cohort analyses of White British and African ancestry 
populations. PCE indicates pooled cohort equation; PRS indicates integrated polygenic risk score. A is the White British population of 272,307 
individuals over a mean of 12 years of follow-up with 7036 incident CAD cases and B is the African ancestry population of 6753 individuals over a 
mean of 13 years of follow-up with 88 incident CAD cases
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determined the addition of our integrated PRS method to 
the baseline model overestimated risk. Following others 
[17, 18], we recalibrated the model by fitting predicted 
log-HRs as covariates in the model, resulting in consider-
able improvement in model calibration (Additional file 5: 
Fig. S2).

We investigated the potential of the PRS-enhanced 
PCE model in the risk assessment of CAD. We found 
that an individual’s integrated CAD PRS were generally 
uncorrelated (Pearson correlation coefficient r, 0.01) with 
their PCE, which partially explains why adding integrated 
CAD PRS to the PCE model (denoted by PRS-enhanced 
PCE) improves the discrimination power. We evalu-
ated the hazard ratios HR via a Cox regression. The PCE 
model had an adjusted HR of 1.653 (95% CI: 1.628–1.679) 
per standard deviation increase (p < 0.001) while the PRS-
enhanced PCE model reported an adjusted HR of 1.77 
(95% CI: 1.745–1.796) per standard deviation increase of 
PRS (p < 0.001). The PRS-enhanced PCE model further 
improves the discrimination power of the PCE model 
(Fig.  3). For example, in the PRS-enhanced PCE model, 
there was a 7.77-fold (95% CI: 7.61- to 7.92-fold) risk 
of CAD for individuals in the top quintile compared to 
those in the bottom quintile. The PCE model, in compar-
ison, reported a 5.29-fold (95% CI: 5.21- to 5.39-fold) risk 
of CAD between the top and bottom quintiles.

After adding PRS for CAD to the PCE model, pre-
dicted risk changed by greater than 1% for 35.5% of par-
ticipants while changing by 5% or greater for 1.9% of 
participants (Fig.  4A). There were 7005 incident CAD 
cases and 256,072 noncases at the 10-year follow-up; 
9230 individuals were censored due to lack of disease or 
follow-up at 10 years. At the suggested 7.5% risk thresh-
old, 992 of 7005 cases (14.2%) were correctly reclassified 
to the higher-risk category and 182 of 7005 cases (2.6%) 
were incorrectly moved to the lower-risk category. For 
noncase participants, 3443 of 256,072 (1.3%) were cor-
rectly moved down to the lower-risk category while 9331 
of 256,072 (3.6%) were incorrectly moved up to the high-
risk category (Fig. 4B).

When comparing the integrated PRS for CAD model 
to the PCE model, the NRI for cases was 11.7% (95% CI, 
10.2 to 12.9%) and − 2.3% (95% CI, − 2.5 to − 2.2%) for 
noncases (Fig.  4C). Following the addition of the inte-
grated CAD PRS to PCE, the IDI metric indicated an 
increase in risk difference between cases and noncases 
of 0.056 (95% CI, 0.053 to 0.059) (Fig. 4C). Stratification 
by sex indicated higher NRI improvement in men over 
women; stratification by age group saw similar overall 
NRI improvement (Additional file 4: Table S13).

Fig. 3  Cumulative absolute risk of developing CAD. Cumulative absolute risk of developing CAD by quintiles of the overall polygenic score in A the 
PCE model and B the PRS-enhanced PCE model. The shaded portions correspond to the 95% confidence interval
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Secondary analyses
There were 6971 participants in the AFR ancestry popu-
lation that were divided into case–control and cohort 
datasets. The case–control dataset consisted of 109 prev-
alent CAD cases and an equal number of controls. The 
cohort population was composed of 6753 participants 
(median follow-up: 12.75, interquartile range: 1.25) in 
which 88 incident CAD cases were observed (median fol-
low-up: 5.97, interquartile range: 3.3). Baseline character-
istics are presented in Tables S14-S16 in Additional file 4.

In the case–control analysis, the optimized integrated 
CAD PRS model that achieved the highest AUC (0.717 
[95% CI, 0.644–0.769]) was determined to include the 
EUR clumping and thresholding, LDpred, PRS-CS, and 
LDpred-funct methods as well as the Japan LDpred, 
PRS-CS, and sBayesR methods. In the cohort analysis, 
the integrated CAD PRS C-statistic was 0.542 (95% CI, 
0.485–0.6) (Fig.  1). Discrimination of the PCE model 
(0.714 [95% CI, 0.659–0.769]) outperformed the inte-
grated CAD PRS. In contrast to the White British pop-
ulation, the incremental value of the addition of the 
integrated CAD PRS to the PCE model was minimal 
(increase in C-statistic, 0.002 [95% CI, 0.006 to − 0.001; 
p-value = 0.824]) (Table  1). We further stratified by 
gender and age and observed higher discrimination in 
women and in the older age group; however, we noticed 
a slightly greater improvement in discrimination with the 
addition of our integrated CAD PRS in both men and the 
younger age group. Participants not on lipid-lowering 
medication at baseline saw slightly higher, but still mini-
mal discrimination improvement than the full popula-
tion (Table 1). C-statistics for the European meta-analysis 
and Japan Biobank datasets are presented in Table S17 in 
Additional file 4. NRI and IDI metrics were likewise min-
imal and incrementally smaller than in the White British 
population (Additional file 4: Table S18).

There were 2274 participants in the EAS population 
that were similarly divided into case–control and cohort 
datasets. The case–control dataset consisted of 31 prev-
alent cases and matching number of controls, while the 

cohort dataset consisted of 2212 individuals (median fol-
low-up: 13.08; interquartile range: 1.5) in which 27 inci-
dent CAD cases were observed (median follow-up: 4.85; 
interquartile range: 3.51). Baseline characteristics for the 
case–control and cohort datasets, as well as excluded 
participants, can be found in Tables S19-S21 in Addi-
tional file 4.

C-statistics and NRI performance metrics for the EAS 
population are presented in Tables S22-S24 in Addi-
tional file  4. In the case–control study, an optimized 
CAD PRS model achieved the highest AUC (0.801 [95% 
CI, 0.726–0.875]) when incorporating the EUR LDpred, 
LDpredfun, and DBSLMM methods as well as the Japan 
clumping and thresholding, LDpred, and LDpredfun 
methods. Discrimination of the PCE model (0.774 [95% 
CI, 0.706–0.841]) and the PCE model with the addition 
of the integrated CAD PRS (0.799 [95% CI, 0.726–0.872]) 
were both higher in the EAS population compared to the 
White British and AFR populations (Additional file  4: 
Table S22). However, the incremental value of model per-
formance was determined not to be significant (increase 
in C-statistic 0.025 [95% CI, 0.02–0.31; p-value = 0.209]). 
Stratification by gender and age group demonstrated the 
same trend as that in European and African, with higher 
discrimination observed in women and the under 55 age 
group. C-statistic results for the European meta-analysis 
and Japan Biobank datasets are presented in Table  S23 
in Additional file 4. Participants not receiving lipid-low-
ering medication had similar discrimination improve-
ments. As the incremental value of model performance 
was minimal, it was expected that the reported NRI con-
fidence intervals would overlap zero (Additional file  4: 
Table S24).

Discussion
In our analysis, the addition of genetic information to 
the PCE clinical risk score was associated with a mod-
erate improvement in predictive accuracy for CAD. The 
addition of PRS to the baseline PCE model resulted in 
a 3.5% improvement in model concordance as well as a 

Fig. 4  Change in predicted probabilities and risk reclassification. A Difference between 10-year risk by PCE and PRS-enhanced PCE. B PCE + PRS 
10-year risk reclassification. C Net reclassification improvement and integrated discrimination improvement results. A Change in the predicted 
probabilities of the recalibrated pooled cohort equations (PCE) model after the addition of polygenic risk scores (PRSs) for CAD. The x-axis shows 
the predicted probability from the baseline PCE model. The y-axis is the difference in 10-year risk probabilities of a CAD event between the 
PRS-enhanced model and the baseline PCE model. The scatterplot has a random draw of 1% of the participants shown. The histogram x- and 
y-axes are based on the full population. B Reclassification table of predicted probabilities by PCE and PRS-enhanced PCE models at 7.5% threshold. 
Rows indicating an improved classification with the PRS-enhanced PCE model are marked by a plus sign while rows indicating a deteriorated 
classification are marked by a minus sign. C Table of net reclassification improvement (NRI) and integrated discrimination improvement (IDI). 
NRIa is defined in the continuous case as the sum of proportions of cases and noncases with improved combined score minus the sum of 
proportions with a deteriorated combined score. In the categorical case, NRI is defined by change at a 7.5% threshold predicted probability. A 
positive NRI indicates a better combined score overall. IDIb measures the difference of average probabilities of an event in cases and noncases. 
A larger IDI indicates more discrimination in the combined score. aNRI = P(up|case) − P(down|case) − P(up|noncase) + P(down|noncase). 
bIDI = PPCE+PRS(case) − PPCE+PRS(noncase) − PPCE(case) + PPCE(noncase)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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9.3% net reclassification improvement (NRI) of incident 
CAD cases and noncases over the baseline PCE model at 
a 7.5% risk threshold. In comparison, the integrated risk 
tool and Elliott et al. [17, 18] achieved 2.7% (in the Euro-
pean population) and 4.0% (in all UK Biobank subjects) 
improvement in terms of NRI, respectively. While both 
studies improve the performance by integrating PRS into 
PCE, they reached different conclusions regarding its 
clinical utility, highlighting the importance of building a 
more powerful and accurate risk prediction model.

Our studies are innovative and are different from exist-
ing studies evaluating the clinical utility of adding PRS 
over existing clinical risk models in the following aspects 
[18, 19, 56, 57]. While matching our definition of CAD to 
that of a previous study performed with the UK Biobank 
[18], we were able to take advantage of more recent inci-
dent CAD data. We also utilized a stricter definition for 
our target population in the UK Biobank data as opposed 
to the entire UK Biobank data, which contain individuals 
of diverse ancestry. Recent studies have shown popula-
tion-specific bias and limited use of specific PRS meth-
ods when used on non-European populations [58, 59]. 
We also used three distinct GWAS datasets to build the 
PRS and integrated results from several advanced and 
more recent PRS methods [21–24], improving the dis-
crimination power of our integrated CAD PRS.

We found that integrating PRS to the baseline PCE 
model resulted in significant continuous and categori-
cal NRI. Categorical NRI for incident cases was 11.7% 
and − 2.3% for noncases. Our model greatly improved 
reclassification for cases over previous studies [17–19], 
but resulted in more misclassification in noncase individ-
uals. This difference in performance for noncases may be 
due in part to model specifications and cohort selection. 
In contrast to Moseley et al. [19] in which the 2013 PCE 
model was used, we utilized the updated 2018 PCE as 
our baseline. The 2013 model was noted to overestimate 
risk across all risk groups, prompting the development 
of the updated PCE model [3]. We also used a younger 
cohort compared to the two cohorts in Moseley et  al. 
(mean age 56.7 years compared to 62.9 and 61.8, respec-
tively). As noted, we included only White British ancestry 
in our primary cohort. The inclusion of other ethnicities 
in the cohort may significantly decrease the discrimi-
nation power of the PRS constructed. This is shown in 
our secondary analysis of African ancestry, where the 
PRS results based on a European ancestry GWAS data-
set vastly underperformed compared to the White Brit-
ish population (C-statistics 0.715 vs 0.752, respectively) 
(Additional file 4: Tables S10 and S17).

Our results suggest an association between predictive 
accuracy of PRS and incident CAD events that varies 
based on age and sex. Men showed significantly higher 

C-statistic improvement than women (0.051 vs 0.035) 
in the PRS-enhanced PCE model over the baseline PCE 
model. This is complemented by an 11.6% overall cat-
egorical NRI improvement in men compared to 3.6% 
in women (Additional file  4: Table  S13). Recent studies 
using PRS in the UK Biobank demonstrated comparable 
results with higher risks for incident CAD in men than 
women [15, 57, 60]. The improved performance in men 
may be attributed to the overrepresentation of male CAD 
cases in the case–control and cohort studies. The use of 
sex-specific data may lead to the improved prediction 
accuracy of PRS.

Our results also suggest a genetic component to early-
onset cases of CAD and a possible application of PRS in 
identifying individuals at heightened risk of these cases, 
as the predictive accuracy of incident CAD cases was 
higher in participants < 55  years of age. The observed 
C-statistic for the integrated PRS-enhanced PCE model 
was 0.793 compared to 0.705 observed in the ≥ 55 age 
group. This observation supports two recent studies that 
found high-risk score predictions in genetic variants 
strongly associated with early-onset CAD (< 40 years old) 
as well as improved risk classification of early-onset CAD 
to higher-risk categories that were not classified as such 
by PCE [9, 61].

When analyzing both the AFR and EAS populations, 
we found that the addition of our integrated CAD PRS 
to the PCE model resulted in more varied results. Model 
discrimination improvement was minimal in the AFR 
population (C-statistic increase 0.002 [95% CI, 0.006 
to − 0.001; p-value = 0.824]) with likewise minimal NRI 
improvement from the integrating the CAD PRS to PCE 
(Additional file 4: Table S18). The loss of prediction accu-
racy in the AFR population when training the PRS with a 
non-AFR GWAS has been demonstrated before with one 
study finding 42% lower PRS effect sizes in AFR popula-
tions compared to EUR populations [62, 63]. This differ-
ence in PRS performance may be attributed to greater, on 
average, genetic distances between African and European 
ancestry populations [33, 64]. As African populations 
are among the most under-represented populations in 
GWAS studies [62], this result highlights an urgent need 
to collect more GWAS data in these under-represented 
populations and develop more powerful cross-ancestry 
PRS methods to achieve more powerful risk prediction.

C-statistics for both the PCE and integrated PRS and 
PCE models were highest in the EAS population (0.774 
and 0.799, respectively). Discrimination improvement 
was greater (increase in C-statistic 0.025 [95% CI, 0.02–
0.31; p-value = 0.209]), but the small number of cases 
limits the extent to which this result can be generalized 
to a larger population. This is seen in the NRI results 
where continuous NRI looks promising, but the small 
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size resulted in large confidence intervals that extended 
to either side of zero (Additional file 4: Table S24). This 
result aligns with other studies [17] that have found 
weak results due in part to the lack of EAS participants 
in the UK Biobank population. While the discrimina-
tions observed are the highest of all populations in this 
analysis, previous studies have pointed out that the PCE 
tends to overestimate risk in EAS populations [65], and 
as such, the performance may be elevated due to this and 
the small incident case sample size. Previous work has 
demonstrated PRSs in larger EAS populations have had 
similar performance [10], and as such, further studies in 
populations with larger EAS populations may yield more 
significant results.

As a remark, we constructed and evaluated PRS for 
each ancestry because the PCE model considered dif-
ferent ancestries and different continental ancestries 
have different linkage disequilibrium (LD) matrices as 
well as having different minor allele frequencies (MAF) 
of highly predictive SNPs between different ancestry 
groups, highlighting the need of constructing PRS for 
different ancestries. This study design also allowed us to 
show that constructed PRS was beneficial for White Brit-
ish and highlight the urgent need to improve the diversity 
of GWAS datasets to reduce the health disparity among 
populations.

There are limitations in our study. First, our study was 
conducted in the UK Biobank and is, therefore, limited by 
the characteristics of the cohort. The UK Biobank cohort 
is composed of primarily European ancestries (further 
restricted to White British ancestry in this study) and 
limited to an age range of 40 to 69  years, restricting its 
application to other ancestries and age groups. In addi-
tion, participants in the UK Biobank assessment tend to 
be healthier and more well-off compared to the general 
UK population, [66] and thus, population-level CAD risk 
may be underestimated in our study. In the secondary 
analysis, the limited genetic diversity of the UK Biobank 
cohort is apparent and resulted in significantly smaller 
tuning and testing. The extent to which our results can 
be applied to larger non-European ancestries, in particu-
lar African and East Asian ancestries, warrants further 
investigation. These results also highlight the urgency of 
developing novel cross-ancestry PRS methods [10, 17, 
67–69] and using more diverse cohorts to construct PRSs 
[17]. In addition, as the case–control and cohort analyses 
are derived from the same study, more broad generaliza-
bility of the results requires further investigation. Second, 
this study included PRS for low frequency and common 
genetic variants (MAF ≥ 1%) and did not examine the 
predictive accuracy of rare variants known to affect CAD 

risk. Third, the algorithm for the selection of CAD cases 
utilizes self-report, death, and hospital inpatient data for 
the definition of prevalent and incident CAD cases. As 
such, misclassification of cases is possible. Fourth, tun-
ing of each PRS method in the case–control study used 
prevalent CAD cases, which could introduce survival 
bias. However, simulation studies have demonstrated 
a limited effect of survival bias on estimated genetic 
effects of event risks [70]. Fifth, participants with at least 
1 missing predictor value were excluded from the study. 
Excluded participants were not considerably different 
demographically from those included and thus the miss-
ing data are unlikely to have a significant effect on the 
reported estimates. Sixth, while adding integrated PRS to 
the PCE model significantly improved the performance 
of the PCE model in the White British population, such 
improvement was minimal in African and East Asian 
populations, which has raised health disparity concerns 
and impeded its clinical implementation [71]. These 
results further highlight the urgent need to develop more 
powerful cross-ancestry PRS methods and collect larger 
and more diverse GWAS data. Seventh, the current study 
was focused on evaluating adding PRS to the PCE model 
and as such was focused on clinical risk factors. How-
ever, incorporating socio-demographic, family history, 
lifestyle, and other environmental variables may further 
improve the performance of the risk prediction model. 
Future research that incorporates these factors may fur-
ther improve the clinical utility of risk models.

Conclusions
The addition of the integrated CAD PRS to the PCE 
resulted in a statistically significant improvement in 
predictive accuracy for incident CAD, especially in 
individuals under the age of 55  years old in the White 
British population. It was also associated with moderate 
improvement in risk reclassification across all subgroups. 
However, the benefits of adding integrated CAD PRS to 
the PCE are minimal for the African population. In sum-
mary, the inclusion of genetic information to the pooled 
cohort equation can help improve clinical risk classifica-
tion and demonstrates the potential for genetic screen-
ing in early life to improve clinical risk prediction in the 
White British population.
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