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Abstract 

Multiple human pathogens establish chronic, sometimes life-long infections. Even if they are often latent, these infec‑
tions can trigger some degree of local or systemic immune response, resulting in chronic low-grade inflammation. 
There remains an incomplete understanding of the potential contribution of both persistent infections and human 
genetic variation on chronic low-grade inflammation. We searched for potential associations between seropositiv‑
ity for 13 persistent pathogens and the plasma levels of the inflammatory biomarker C-reactive protein (CRP), using 
data collected in the context of the UK Biobank and the CoLaus|PsyCoLaus Study, two large population-based 
cohorts. We performed backward stepwise regression starting with the following potential predictors: serostatus for 
each pathogen, polygenic risk score for CRP, and demographic and clinical factors known to be associated with CRP. 
We found evidence for an association between Chlamydia trachomatis (P-value = 5.04e − 3) and Helicobacter pylori 
(P-value = 8.63e − 4) seropositivity and higher plasma levels of CRP. We also found an association between pathogen 
burden and CRP levels (P-value = 4.12e − 4). These results improve our understanding of the relationship between 
persistent infections and chronic inflammation, an important determinant of long-term morbidity in humans.
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Introduction
Inflammation is a complex and necessary response of 
the immune system to harmful stimuli such as tissue 
injury, infection, or exposure to toxins [1]. During the 
acute phase that is characterized by blood flow changes 
and increased blood vessel permeability, plasma proteins 
and leukocytes migrate from the circulation to the site 
of inflammation [2]. This immediate protective response 
usually enables the elimination of the initial cause of the 
cell injury and the restoration of homeostasis. However, 
when the acute response fails to clear tissue damage, 

for example, because of prolonged exposure to stimuli, 
inflammation can become a chronic process [3]. A num-
ber of common diseases are at least partly caused by 
chronic inflammation, including coronary artery disease, 
type 2 diabetes, and some cancers [4]. Thus, although 
inflammation plays an important role in human defense 
against aggression, it also contributes to the patho-
physiology of multiple diseases of major public health 
importance.

Diagnostic tests are capable of detecting the pres-
ence and intensity of systemic inflammation [5]. The 
most commonly used inflammatory biomarker is the 
acute-phase reactant C-reactive protein (CRP). This 
ring-shaped protein is produced by hepatocytes upon 
stimulation by pro-inflammatory cytokines such as 
interleukin (IL)-1b, IL-6, and TNF-a. Although CRP is 
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commonly used as a sensitive indicator of inflammation, 
the factors influencing its baseline plasma levels are only 
partially understood. Circulating amounts of CRP are 
positively associated with age, body mass index (BMI), 
and smoking and inversely with male sex and physical 
activity [6–8]. In addition, large-scale genomic analyses 
have found multiple associations with hs-CRP levels, 
mainly in the loci enriched in hepatic, immune, and met-
abolic pathways, such as CRP, LEPR, IL6R, GCKR, 
APOE, and HNF1A-AS1 [9–14]. Altogether, genetic vari-
ation explains up to 16% of the variance in plasma CRP 
levels [14].

To get a more comprehensive view of the factors 
influencing chronic inflammation in the general popu-
lation, we used samples and data from the UK Biobank 
and the CoLaus|PsyCoLaus study to search for associa-
tions between baseline CRP levels and chronic infection 
by persistent/latent pathogens, after careful adjustment 
for all known demographic, clinical, and genomic influ-
ences. Indeed, some infectious agents causing long-term 
infections in humans have been shown to trigger some 
degree of local or systemic immune response, resulting in 
a chronic state of low-grade inflammation that may lead 
to deleterious health outcomes [15, 16].

Methods
Study cohorts
The UK Biobank is a population-based exploratory 
study of which the enrollment procedure has been out-
lined previously [17]. In brief, half a million men and 
women between the ages of 40 and 69 (45.6% male, 
mean age ± SD: 56.5 ± 8.1) visited one of 22 UK Biobank 
screening centers in England, Scotland, and Wales 
between 2006 and 2010. The evaluation included a sur-
vey, a personal interview, and a number of physical meas-
urements and blood. Urine and saliva samples were also 
collected for long-term storage. This research was under-
taken with approved access to UK Biobank data under 
application number 50085 (PI: Fellay). All UK Biobank 
study participants gave informed consent at the time of 
recruitment. Ethical approval for the UK Biobank study 
was obtained from the North West Centre for Research 
Ethics Committee (11/NW/0382).

The CoLaus|PsyCoLaus study is a prospective popula-
tion-based study initiated in 2003 in Lausanne, Switzer-
land (www.​colaus-​psyco​laus.​ch) [18]. It involves more 
than 6000 participants of European ancestry (47.5% male) 
initially aged 35 to 75 years (mean ± SD: 51.1 ± 10.9), thus 
representing a sample of approximately 10% of the inhab-
itants of Lausanne. Individuals were randomly recruited 
from the general population and are monitored every 
5 years regarding their lifestyle and health status. Detailed 
phenotypic information was obtained from each study 

participant through questionnaires, physical assessment, 
and biological measurements of blood and urine mark-
ers. The institutional Ethics Committee of the University 
of Lausanne, which afterward became the Ethics Com-
mission of Canton Vaud (www.​cer-​vd.​ch), approved the 
baseline CoLaus|PsyCoLaus study (reference 16/03, deci-
sions of 13 January and 10 February 2003), and written 
consent was obtained from all participants.

DNA genotyping and quality checks
Genotyping and imputation of UK Biobank individuals 
have been fully described by Bycroft et  al. [19]. Briefly, 
samples were genotyped on either the UK BiLEVE Axiom 
array (Affymetrix) or UK Biobank Axiom array (Applied 
Biosystems). Genotypes were phased using SHAPEIT3 
and the 1000 Genome phase 3 dataset as a reference, 
then imputed using IMPUTE4 using the Haplotype Ref-
erence Consortium data, 1000 Genomes phase 3, and 
UK10K data as references [20–22]. Post-imputation qual-
ity checks resulted in a total number of 9,349,624 single 
nucleotide polymorphisms (SNPs) available for analyses. 
DNA samples from 5399 CoLaus|PsyCoLaus participants 
were genotyped for 799,653 SNPs using the BB2 GSK-
customized Affymetrix Axiom Biobank array. Quality 
control procedures and imputation of genotypes have 
been previously described in Hodel et  al. [23]. A total 
of 9,031,263 SNPs from the CoLaus|PsyCoLaus data-
set were included for further analyses (flowchart of the 
inclusion/exclusion criteria are in Additional file  1: Fig. 
S1).

Measurement of inflammatory biomarkers
For the UK Biobank, non-fasting venous blood samples 
(∼ 50  mL) were collected at recruitment. Blood sam-
ples were shipped at 4  °C to the central processing and 
archiving facility in Stockport. Serum high-sensitivity 
CRP (hs-CRP) concentrations were measured in par-
ticipants by immunoturbidimetric assay on a Beckman 
Coulter AU5800. The manufacturer’s analytical range 
was 0.08 to 80  mg/L. Ninety-five individuals with a hs-
CRP level of 20  mg/L were removed from the analy-
sis. For CoLaus|PsyCoLaus, venous blood samples 
(≥ 50 mL) were drawn in the fasting state and allowed to 
clot. Serum blood samples were kept at 80 °C before the 
assessment of cytokines and sent in dry ice to the labo-
ratory. hs-CRP was assessed by immunoassay and latex 
HS (IMMULITE 1000–High, Diagnostic Products Cor-
poration, LA, CA, USA). For quality control, repeated 
measurements were conducted on 80 subjects randomly 
drawn from the initial sample. Forty-seven individuals 
with hs-CRP levels above 20 mg/L were assigned a value 
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of 20 by the manufacturer and were therefore removed 
from the hs-CRP analyses as they are indicative of acute 
inflammation.

Serological analyses
To assess the humoral responses to a total of 56 antigens 
derived from 24 persistent infectious agents (45 anti-
gens from 20 pathogens in UK Biobank, and 38 antigens 
from 18 pathogens in CoLaus|PsyCoLaus), serum sam-
ples were independently analyzed by the Infections and 
Cancer Epidemiology Division at the German Cancer 
Research Center (Deutsches Krebsforschungszentrum, 
DKFZ) in Heidelberg [24, 25]. Seroreactivity was meas-
ured at serum dilution 1:1000 using multiplex serology 
based on glutathione-S-transferase (GST) fusion capture 
immunosorbent assays combined with fluorescent bead 
technology. For each infectious agent tested, antibody 
responses were measured for one to six antigens and then 
expressed as a binary result (IgG positive or negative) 
based on predefined median fluorescence intensity (MFI) 
thresholds [26]. For our analysis, only antigens shared 
between the two cohorts were retained, resulting in a 
final combination of 27 antigens from 13 pathogens. To 
define the overall seropositivity against infectious agents 
when more than one antigen was used, we applied the 
pathogen-specific algorithms suggested by the manufac-
turer. Details of the methods on how the antigens were 
combined have been described previously [26].

Combining study cohorts
Upon completion of the genotyping and quality control 
(QC) analyses for each cohort, imputed datasets were 
matched on the strand, SNP ID, and genomic coordi-
nates. Additional analyses and QC checkpoints were 
performed to ensure proper merging. This resulted in a 
dataset of 12,055 unique individuals of European ances-
try and a total of 6,899,629 markers.

Polygenic risk score calculation for hs‑CRP level
We carried out a polygenic risk score (PRS) analysis 
to investigate the relationship between human genetic 
variation and hs-CRP levels. A CRP-PRS was calcu-
lated for each study participant based on the risk effects 
of common SNPs derived from GWAS summary sta-
tistics of hs-CRP. As a baseline cohort, we referred to 
the GWAS summary statistics of the CHARGE cohort 
(N = 204,402, heritability h2 = 6.5%) [10, 27]. These sum-
mary statistics were used to construct the CRP-PRS in 
our target cohort consisting of the merged UK Biobank 
and CoLaus|PsyCoLaus data using the clumping and 
thresholding method of the PRSice-2 v2.2.7 software 
[28]. We used a standardized method to obtain PRS, by 

multiplying the dosage of risk alleles for each variant 
by the effect size in the GWAS and summing the scores 
across all of the selected variants. SNPs were clumped 
based on linkage disequilibrium (LD) (r2 ≥ 0.1) within a 
250-kb window. Model estimates of the PRS effect were 
adjusted for sex, age, BMI, and the top 10 PCs. As an 
additional quality control, the distribution of PRS was 
checked in each cohort separately, to ensure that they fol-
lowed a normal distribution.

Analyses of the determinants of hs‑CRP levels
We used linear regression with backward selection to 
identify the factors significantly associated with hs-
CRP plasma levels. Tested covariates included serosta-
tus for each pathogen, polygenic risk score for CRP, age, 
sex, BMI, and the first 10 PCs of the genotyping data. 
P-value < 0.05 was considered statistically significant. The 
analysis was performed using the stepAIC function in R 
version 4.0.5 [29].

Results
Baseline characteristics of study participants
We studied a total of 12,055 individuals with available hs-
CRP level, serological results, and genome-wide genotyp-
ing data from two independent population-based studies: 
the UK Biobank (N = 8371) and the CoLaus|PsyCoLaus 
study (N = 3684) (Additional file  1: Fig. S1). Partici-
pants ranged in age from 35 to 75 years (mean age ± SD: 
55.68 ± 9.07), with a majority of women (55.4%) and 
a mean BMI of 26.80 (± SD: 4.73). The hs-CRP level 
was measured in all participants. The median hs-CRP 
level was 1.30  mg/L (10th, 90th percentiles: 0.35  mg/L, 
5.10 mg/L, respectively). Figure 1 shows the distributions 
of age, sex, BMI, and log10-transformed hs-CRP in both 
cohorts. We observed a very comparable distribution 
of all relevant variables in the two cohorts, which were 
merged for downstream analyses. Additional file  2: Fig. 
S2 shows the associations of hs-CRP with demographic 
and clinical factors. Higher levels of hs-CRP associ-
ated with female sex, age, and increased BMI (P-val-
ues = 1.5e − 3, 3.4e − 69, and ≈ 0, respectively).

The impact of genetic variation on hs‑CRP levels
The filtered genetic variants from the two cohorts were 
combined (see the “Methods” section) to increase the 
sample size. To estimate the sample variation, and to con-
trol for potential population structure and genotyping 
bias, principal component analysis (PCA) was performed 
using the correlation matrix of the genotyping data. PCA 
plots for the first ten principal components (PC1–PC10) 
are shown in Additional file 3: Fig. S3A, annotated by the 
original cohort from which the sample was drawn. We 
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observed that samples from both subgroups (UK Biobank 
and CoLaus|PsyCoLaus) were segregated on the first PC 
(PC1) and eighth PC (PC8), but not on the other PCs. 
The top 10 PCs explained 61% of the total variance and 
were used throughout the study to correct for stratifica-
tion (Additional file 3: Fig. S3B).

We computed a CRP-PRS to investigate the effect 
of multiple gene variants on hs-CRP levels. A total of 
1809 SNPs were included at the best P-value threshold 
(P-value = 3.65e − 3). The PRS followed a normal distri-
bution in the merged cohort, as well as in each subco-
hort separately (Additional file  4: Fig. S4). To describe 
the influence of common human genetic variation on 
plasma hs-CRP levels, we quantified the trait variance 
(R2) explained by the derived PRS and covariates across 
individuals. We observed that the variance explained 
by the full model was 25.8%, with 21.5% attributed to 

the demographic and clinical covariates and 4.3% to the 
CRP-PRS. The association between the CRP-PRS and hs-
CRP levels was very strong (P-value = 6.58e − 123; Addi-
tional file  5: Fig. S5), with hs-CRP levels increasing by 
0.48 [standard error (SE) 0.02] for each standard devia-
tion increment in CRP-PRS.

Associations between persistent/latent infections 
and hs‑CRP levels
We searched for associations between hs-CRP levels 
and serostatus for the following persistent or frequently 
recurring human pathogens: 10 viruses (BK virus (BKV), 
Cytomegalovirus (CMV), Epstein–Barr virus (EBV), 
Human Herpes Virus (HHV)-6, HHV-7, Herpes Sim-
plex Virus (HSV)-1, HSV-2, JC virus (JCV), Kaposi’s 
sarcoma-associated herpesvirus (KSHV), and Varicella 

Fig. 1  Baseline characteristics of the study cohort. Distribution of A age, B gender, C body mass index (BMI), and D hs-CRP for participants by 
subcohort
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zoster virus (VZV)); two bacteria (Chlamydia trachoma-
tis (C. trachomatis) and Helicobacter pylori (H. pylori)); 
and one parasite (Toxoplasma gondii (T. gondii)) (Fig. 2). 
The overall seropositivity ranged from 6.57% (KSHV) 
to 95.25% (EBV). Cohort-separated seroprevalences are 
shown in Additional files 6 and 7: Figs. S6 and S7.

Using backward stepwise regression including all 
significantly identified persistent or frequently recur-
ring human pathogens, adjusted for CRP-PRS, sex, 

age, BMI, and the top 10 PCs, we observed signifi-
cant associations of hs-CRP levels with seropositivity 
for H. pylori (P-value = 8.63e − 4) and C. trachomatis 
(P-value = 5.04e − 3) (Table 1). The final regression model 
including all significant factors explained 25.9% of the 
variance of hs-CRP levels. This explained that the frac-
tion of the variance is similar to the value obtained 
without including the serological results (above), indi-
cating that the impact of H. pylori and C. trachomatis 

Fig. 2  Overall pathogen seropositivity and seroprevalence of tested antigens. List of the 13 pathogens and 27 antigens available from the 
combined study. The gray boxes indicate the pathogen on which the antigen protein is found, and the family to which the pathogen belongs. 
Percentages in parentheses after pathogen names indicate the overall seropositivity for the specified pathogen. The percentages on the right 
indicate the seroprevalence of antibodies against infectious disease antigens tested using the Multiplex Serology platform. For study-based figures, 
see Supplementary Figs. 6 and 7
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seropositivity on chronic inflammation, even if statisti-
cally significant, is likely to be minimal at the population 
level. We also investigated the interaction effect between 
the two identified pathogens on the hs-CRP level. No sig-
nificant interaction was observed, suggesting a joint inde-
pendent impact of H. pylori and C. trachomatis.

Pathogen burden associates with higher hs‑CRP levels
We then checked if the overall burden of chronic infec-
tions contributes to increased hs-CRP levels. Study 
participants were stratified according to their overall 
seropositivity index, calculated by summing the number 

of pathogens for which they were seropositive (range: 
0–13). The number of individuals in each serological stra-
tum ranged from 5 (index = 0) to 2717 (index = 7) and 
is presented in Fig. 3. We used a linear model to search 
for an association between pathogen burden and hs-CRP 
levels. hs-CRP levels were found to be significantly and 
positively associated with increasing pathogen burden 
(P-value = 4.12e − 4) (Fig. 3).

Discussion
Mounting evidence suggests that exposure to multiple 
pathogens, even when they do not cause obvious disease, 
can affect the immune system and human health [18, 30, 
31]. In an effort to better understand the variability of 
humoral immune response and inflammation patterns in 
response to pathogen exposure, we selected 27 antigens 
from 13 persistent infectious agents, which we evaluated 

using multiplex serology to detect specific immunoglob-
ulin G levels in two well-characterized population-based 
cohorts.

We first investigated the relationship between common 
genetic variation and hs-CRP levels by calculating a PRS 
for all study participants. The PRS explained about 4% of 
the variation in hs-CRP levels, in agreement with previ-
ously published results [9]. We also found that BMI was 
the major non-genetic predictor of hs-CRP, with approxi-
mately 19% of the variance explained.

Next, we studied the impact of persistent infections 
on chronic inflammation after adjustment for known 

Table 1  Linear regression analysis results for hs-CRP

CI Confidence interval

Characteristic Beta 95% CI P-value

C. trachomatis 0.005

  Seronegative – –

  Seropositive 0.02 0.01, 0.04

H. pylori  < 0.001

  Seronegative – –

  Seropositive 0.03 0.01, 0.04

Age 0.01 0.01, 0.01  < 0.001

BMI 0.04 0.04, 0.04  < 0.001

Sex  < 0.001

  M – –

  F 0.07 0.06, 0.09

CRP-PRS 0.10 0.09, 0.10  < 0.001

Fig. 3  Levels of hs-CRP by infectious burden. Boxplots showing the hs-CRP value for each pathogen load group. The black bold line within the 
boxplot indicates the median of the hs-CRP measurement. The boxes are colored by sample size. The sample size and median for each group are 
shown above the box
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influencing factors, including age, sex, BMI, and human 
genetic variability, as explored above. We observed an 
association between increased levels of hs-CRP and 
seropositivity for C. trachomatis and H. pylori. The two 
gram-negative bacteria C. trachomatis and H. pylori do 
not cause life-long, latent infections. Nevertheless, they 
are responsible for some of the most frequent chronic 
infections in humans.

H. pylori can colonize the gastric epithelium for long 
periods of time, leading to chronic inflammation of 
the gastric mucosa. Even if the majority of individuals 
infected with H. pylori have no symptoms, the bacte-
rium has been causally linked with gastritis, gastric 
ulcer, and an increased risk of gastric cancer [32, 33]. 
Our results suggest a systemic impact of chronic H. 
pylori infection beyond the known local inflammatory 
effect on the gastric mucosa, confirming an observation 
made previously in a cross-sectional population-based 
study [34].

C. trachomatis causes genital and ocular infections. 
The ocular manifestation of the infection, trachoma, is 
the world’s leading cause of preventable blindness and 
is endemic in many developing countries. This clinical 
presentation is however highly unlikely to contribute to 
the 25% seroprevalence of anti-chlamydia antibodies 
detected in the Swiss and UK cohorts included in our 
study. More relevant here, C. trachomatis is the etiologi-
cal agent of human chlamydia urogenital tract infection, 
which is the most common bacterial sexually transmit-
ted disease. Chronic or recurrent forms of the disease 
are frequently observed. To our knowledge, no study has 
examined the direct association between C. trachomatis 
infection and hs-CRP levels at the population level. How-
ever, studies conducted in the context of associations 
between C. trachomatis and tubal factor-related subfer-
tility and preterm delivery have also shown elevated hs-
CRP levels [30, 31, 35]. Altogether, these results confirm 
the role of chronic or recurrent bacterial infections in 
low-grade inflammation, reflected by a small but con-
sistent increase in hs-CRP levels in seropositive indi-
viduals. In addition, we found an association between 
increased pathogen burden and hs-CRP levels by strati-
fying individuals according to their cumulative number 
of positive serological results. This indicates that latent 
infections might play an enhancing role in chronic low-
grade inflammation, even if that effect is too small to be 
detected at the individual pathogen level.

Previous studies have shown that pro-inflammatory 
cytokines and chronic inflammation are associated with 
cellular aging (“inflammaging”) and a number of non-
communicable diseases, including certain cancers, type 
2 diabetes, and cardiovascular disease [3, 4, 36, 37]. It 
would therefore not be surprising to find that infections 

also play a key role in these diseases and that the reacti-
vation of these pathogens can contribute to the deterio-
ration of the overall health of older individuals. Finally, 
CRP-PRS was also found to be significantly associated 
in the analysis including both genetics and serological 
results, confirming that human genetic variation plays a 
modulating role in systemic inflammation.

Our study has some limitations. Firstly, we cannot rule 
out the effects of other non-measured infections at the 
time of hs-CRP measurement that may have influenced 
the level of inflammatory biomarkers. Also, we did not 
adjust our models for all known influencing factors (e.g., 
smoking, anti-inflammatory or anti-infective drugs, or 
possible inflammatory diseases). However, participants in 
both studies were assumed to be in good overall health 
at the time of data collection, and the data were filtered 
before analysis to detect the levels indicative of acute 
infection. Secondly, some pathogens had relatively low 
or high seroprevalences and should be reexamined in a 
larger study. In particular, it will be interesting to repeat 
the analysis once serological data for all individuals in the 
UK Biobank are available. This will allow for greater reli-
ability in terms of statistical power. Third, hs-CRP was 
the only inflammatory biomarker studied. Other pro-
inflammatory cytokines such as IL-1β, IL-6, and TNF-α 
are regulators of host responses to infection and positive 
mediators of inflammation. Consideration of these other 
biomarkers would give insight into more specific inflam-
matory pathways and provide a more comprehensive 
picture of the overall inflammatory status. Fourth, we 
only observed associations with the presence of chronic 
inflammation, and our study design does not allow us 
to infer any kind of causality. In particular, we cannot 
exclude the possibility that higher levels of inflammation 
are responsible for the reactivation of a pathogen, result-
ing in detectable seropositivity. [38, 39]

In conclusion, we found that seropositivity for C. 
trachomatis and H. pylori antigens is associated with 
increased levels of hs-CRP. Together with demographic, 
clinical, and genetic factors, persistent infections con-
tribute to chronic low-grade inflammation, which can 
have deleterious long-term consequences on health.
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Additional file 1: Fig. S1. Flowchart illustrating the inclusion/exclusion 
of individuals in the study. Orange boxes indicate the number of included 
antigens and pathogens.

Additional file 2: Fig. S2. Scatterplot and regression line (with 95% confi‑
dence intervals) to describe the relationship of hs-CRP with characteristics 
of study participants. Relationship between hs-CRP and A) age, B) sex, C) 
BMI and D) polygenic risk score (PRS). For linear regressions, linear regres‑
sion equation, R-squared and P-value are shown.
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Additional file 3: Fig. S3. Principal component analysis (PCA) of com‑
bined genotyping data. A) PCA plot of the first ten PCs of the genotyping 
data. Samples are colored by cohort. B) Histogram explaining the variance 
of each PC component. In the histogram, the variance explained by each 
eigenvalue is labeled on top.

Additional file 4: Fig. S4. Distribution of polygenic risk score (PRS) 
values. Density distribution of standardized PRS values by subcohort 
(CoLaus|PsyCoLaus and UKB) and across all participants (combined).

Additional file 5: Fig. S5. Polygenic risk score for hs-CRP (CRP-PRS) was 
significantly associated with hs-CRP levels. Scatter plots with linear regres‑
sion line of polygenic risk scores predicting hs-CRP levels for individuals in 
the cohort. 95% confidence interval is showed in grey shade.

Additional file 6: Fig. S6. Seroprevalence of tested antigens in 
the CoLaus|PsyCoLaus. List of the 27 antigens available from the 
CoLaus|PsyCoLaus study that are shared with the UK Biobank. The 
percentages indicate the seroprevalence of antibodies against infectious 
disease antigens tested using Multiplex Serology platform. The grey boxes 
indicate the pathogen on which the antigen protein is found, and the 
family to which the pathogen belongs.

Additional file 7: Fig. S7. Seroprevalence of tested antigens in the UK 
Biobank. List of the 27 antigens available from the UK Biobank that are 
shared with the CoLaus|PsyCoLaus study. The percentages indicate the 
seroprevalence of antibodies against infectious disease antigens tested 
using Multiplex Serology platform. The grey boxes indicate the pathogen 
on which the antigen protein is found, and the family to which the 
pathogen belongs.
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