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Abstract 

Background:  The aim of this study is to investigate the association of retinal age gap with the risk of incident stroke 
and its predictive value for incident stroke.

Methods:  A total of 80,169 fundus images from 46,969 participants in the UK Biobank cohort met the image quality 
standard. A deep learning model was constructed based on 19,200 fundus images of 11,052 disease-free participants 
at baseline for age prediction. Retinal age gap (retinal age predicted based on the fundus image minus chronological 
age) was generated for the remaining 35,917 participants. Stroke events were determined by data linkage to hospital 
records on admissions and diagnoses, and national death registers, whichever occurred earliest. Cox proportional haz-
ards regression models were used to estimate the effect of retinal age gap on risk of stroke. Logistic regression models 
were used to estimate the predictive value of retinal age and well-established risk factors in 10-year stroke risk.

Results:  A total of 35,304 participants without history of stroke at baseline were included. During a median follow-
up of 5.83 years, 282 (0.80%) participants had stroke events. In the fully adjusted model, each one-year increase in 
the retinal age gap was associated with a 4% increase in the risk of stroke (hazard ratio [HR] = 1.04, 95% confidence 
interval [CI]: 1.00–1.08, P = 0.029). Compared to participants with retinal age gap in the first quintile, participants with 
retinal age gap in the fifth quintile had significantly higher risks of stroke events (HR = 2.37, 95% CI: 1.37–4.10, P = 
0.002). The predictive capability of retinal age alone was comparable to the well-established risk factor-based model 
(AUC=0.676 vs AUC=0.661, p=0.511).

Conclusions:  We found that retinal age gap was significantly associated with incident stroke, implying the potential 
of retinal age gap as a predictive biomarker of stroke risk.
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Background
Stroke is the second leading cause of death and a leading 
cause of disability worldwide [1, 2]. An accurate predic-
tion of stroke risk is of great importance in identifying 
individuals at high risks at an early stage to implement 
personalized preventative and therapeutic interventions 
[3]. Chronological age is one of the most important risk 
factors for stroke [4]. Of note, the trajectories of age-
ing vary significantly among individuals with the same 
chronological age [5]. Growing evidence has shown that 
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biological age, an integrated measurement reflecting the 
combined effects of environmental, lifestyle and genetic 
factors, could have more value than chronological age in 
the prediction of age-related diseases and mortality [6, 7].

This highlights the need for an accurate biomarker of 
biological ageing. A series of effective measurements 
have been developed by previous studies [8–11]. Notably, 
increased biological age measured by leukocyte telomere 
length, epigenetic clock or brain age has been associ-
ated with a higher risk of stroke [12–15]. However, these 
measurements are invasive, expensive and time-consum-
ing, and therefore, not suitable for widespread use.

The retina is considered as an extension of the central 
nervous system (CNS), offering a unique “window” that 
can non-invasively reflect the changes of brain neural tis-
sues and vasculature in vivo [16]. Mounting evidence has 
reported that various retinal parameters (such as tortu-
osity, fractal dimension) [17], retinal pathologies (such as 
arteriovenous nicking and microaneurysms) [18] or reti-
nal diseases (such as diabetic retinopathy, retinal artery 
or vein occlusion) [19–21] were associated with the risk 
of cerebrovascular diseases such as stroke. This might be 
explained by the similarities between the retina and the 
brain in terms of embryological origins, anatomy and 
physiology [22]. Therefore, the retina could potentially be 
used to measure systemic senescence. With the advances 
of deep learning (DL) technology in analyzing medical 
images [23], we have developed an algorithm that uses 
a retinal image as the input to predict the retinal age of 
an individual accurately. We also validated the retinal 
age gap, determined as retinal age derived from fundus 
images minus chronological age, was a robust biomarker 
associated with the risk of mortality. However, whether 
the retinal age gap can be used as a biomarker and/or a 
predictor of incident stroke remains unknown. There-
fore, we aimed to investigate the association between 
the retinal age gap and the risk of incident stroke, and its 
predictive capability of stroke based on data from the UK 
Biobank study.

Methods
Study population
The UK biobank is a large-scale population-based pro-
spective cohort study of 502, 656 UK residents aged 40 
to 69 years who were registered with the National Health 
Service (NHS). The overall study protocols and data are 
available elsewhere [24]. Briefly, baseline assessments 
were performed between 2006 and 2010 in 22 assess-
ment centres across the UK. Participants completed 
electronic questionnaires to provide information on 
socio-demographics, lifestyle, environmental expo-
sures, medical history and cognitive functions. Physical 
examinations including blood pressure, heart rate, grip 

strength, anthropometrics and spirometry were done 
for all participants. Biological samples including stored 
blood, urine and saliva samples were collected. Follow-
up of medical conditions was performed mainly through 
data linkages to hospital records and mortality registries.

This study was reviewed and approved by the National 
Information Governance Board for Health and Social 
Care and the NHS North West Multicenter Research 
Ethics Committee (11/NW/0382) and the Biobank con-
sortium (application no. 62489). Since we used de-identi-
fied data in a public dataset, the Medical Research Ethics 
Committee of Guangdong Provincial People’s Hospital 
waived the requirements to obtain the ethical approval. 
The study was performed in accordance with the Dec-
laration of Helsinki. All participants provided informed 
consent.

Fundus photography
Between 2009 and 2010, ophthalmic examinations were 
introduced at six assessment centres across the UK [25]. 
The 45° non-mydriatic retinal fundus and optical coher-
ence tomography (OCT) imaging of the optic disc and 
macular were captured using a spectral domain OCT 
for each eye (Topcon 3D OCT 1000 Mk2, Topcon Corp, 
Tokyo, Japan). At baseline, ophthalmic examinations 
were completed in 66,500 participants, resulting in a total 
of 131,238 fundus images.

Deep learning model for age prediction
A total of 80,169 images from 46,969 participants passed 
the image quality check and were included in the analy-
sis. The characteristics of the participants stratified by 
the number of images passing the quality check were 
described in detail in Additional file 1: Table S1. Among 
46,969 participants, 11,052 participants did not report 
any previous disease at baseline. The DL model for age 
prediction was constructed based on fundus images of 
disease-free participants. To maximize the data avail-
able, binocular images, if available, were used for train-
ing and validation. The association between the retinal 
age gap and stroke was investigated using images from 
the remaining 35,304 participants who had no history 
of stroke at baseline. Images from the right eye were 
included in the test set to predict retinal age and images 
from the left eye were used only if images from the right 
eye were not available.

The methods of retinal age prediction using DL mod-
els were described in detail in a previous study [26]. Our 
previous study has assessed the performance of the DL 
model for age prediction. The DL model accurately pre-
dicted retinal age, as reflected by a strong correlation of 
0.80 (P<0.001) between predicted retinal age and chron-
ological age, as well as an overall mean absolute error 



Page 3 of 9Zhu et al. BMC Medicine          (2022) 20:466 	

(MAE) of 3.55 years. Attention maps retrieved from the 
DL model for age prediction mainly highlighted areas 
around the retinal vessels in the fundus images.

Retinal age gap definition
The retinal age gap was defined as the difference between 
the retinal age predicted by the DL model based on fun-
dus images and the chronological age. A positive retinal 
age gap indicated an ‘older’-appearing retina, while a neg-
ative one indicated a ‘younger’-appearing retina.

Stroke ascertainment
Stroke was ascertained by the UK Biobank Outcome 
Adjudication Group, and was defined by codes 430.X, 
431.X, 433.X1, 434.X1, 436.X in the 9th edition of the 
International Classification of Diseases (ICD-9) and 
ICD-10 codes I60, I61, I63, and I64. Stroke events were 
derived from linked electronic health records, including 
hospital records on admissions and diagnoses from hos-
pitals in England, Scotland and Wales, as well as cause of 
death obtained from national death registers. The date 
of the first known stroke after baseline assessment was 
recorded. The follow-up period for each participant was 
defined from the recruitment date of the UK Biobank 
study to 28th February 2018 (the last follow-up date), 
or to the date of the first known stroke, whichever came 
first.

Covariates
Covariates in the present analyses included socio-demo-
graphic factors (baseline age, sex, ethnicity, Townsend 
deprivation indices [TDI], education attainment), life-
style factors (smoking status, drinking status, physical 
activity level), and general health status. Baseline age and 
sex were obtained from central registry or self-reported 
questionnaires. Self-reported ethnicity was divided 
into white or non-white. TDI was a proxy measure of 
socioeconomic status based on the postcode. Education 
attainment was classified into college/university degree 
or above, or others. Smoking and drinking status were 
categorized as current/previous users, or never. Physi-
cal activity level was categorized into reaching moder-
ate/vigorous/walking recommendation or not. General 
health status was classified as excellent/good or fair/poor. 
Body mass index (BMI) was calculated as the weight 
of an individual in kilograms divided by their height in 
meters squared. Obesity was defined as a BMI of 30 kg/
m2 or above. Diabetes mellitus was defined as any record 
of self-reported or doctor-diagnosed diabetes mellitus, 
or the use of anti-hyperglycaemic medications or insulin. 
Hypertension was defined as self-reported, or doctor-
diagnosed hypertension, or the use of antihypertensive 

drugs, or an average systolic blood pressure ≥ 130 mmHg 
or an average diastolic blood pressure ≥ 80 mmHg.

Statistical analyses
Continuous variables were reported as means and stand-
ard deviations (SDs), while categorical variable was 
reported as numbers and percentages. Unpaired t-tests 
and Chi-square tests were performed to examine the 
differences of the continuous and categorical variables, 
respectively. The log-rank test was used for comparing 
the survival distributions among different retinal age 
gap groups. Cox proportional hazards regression mod-
els were used to estimate the effect of retinal age gap 
on the risk of stroke. Each variable was assessed for the 
proportional hazards assumption and all of them met 
the assumption. Retinal age gap was introduced into the 
models as a continuous variable (per one-year increase) 
and a categorical variable (quintiles), respectively. Model 
I adjusted for baseline age, sex, and ethnicity. Model II 
adjusted for all variables in model I, and also TDI, edu-
cational level, smoking status, drinking status, physical 
activity level, diabetes mellitus, hypertension, obesity and 
general health status. Logistic regression models were 
used to estimate the predictive value of the well-estab-
lished conventional risk factor-based model (including 
age, gender, smoking status, history of diabetes, systolic 
blood pressure, and total cholesterol to HDL-cholesterol 
ratio) [27] and the retinal age-based model in 10-year 
stroke risk. Area under the receiver-operating-character-
istic curve (AUC) was used to describe the discrimina-
tion of the models in predicting 10-year stroke risk.

Sensitivity analysis was performed to adjust for the age-
squared term in the final models in addition to age. We 
also investigated whether retinal age acceleration residual 
(defined as the residuals from regressing predicted retinal 
age against chronological age) was a biomarker of stroke 
in the second sensitivity analysis.

A two-sided p value of < 0·05 indicated statistical 
significance. All analyses were performed using R (ver-
sion 3.3.0, R Foundation for Statistical Computing, 
www.R-​proje​ct.​org, Vienna, Austria) and Stata (ver-
sion 13, StataCorp, TX, USA).

Results
Study sample
A total of 35,304 participants without any stroke history 
at baseline were included in the analyses (mean age 56.7 
± 8.04 years, 55.9% females and 93.2% white ethnicity). 
Table 1 depicts the baseline characteristics of the partici-
pants overall and stratified by retinal age gap quintiles. 
All features were significantly different across quintiles of 
retinal age gap, except for a history of diabetes mellitus.

http://www.r-project.org


Page 4 of 9Zhu et al. BMC Medicine          (2022) 20:466 

Incident stroke
During a median follow-up of 5.83 years (interquartile 
range [IQR]: 5.74–5.97), a total of 282 (0.80%) partici-
pants had stroke events. Table 2 shows the baseline char-
acteristics of participants with and without incident stroke 
events. Participants who experienced a stroke were more 
likely to be older, of male gender, less educated, less physi-
cally active, obese, and with a history of diabetes mellitus 
and hypertension, and with a poorer general health status.

Retinal age gap and stroke
As shown in Table  3, after adjusting for age, gender and 
ethnicity, each one-year increase in the retinal age gap was 

independently associated with a 5% increase in the risk of 
stroke (Hazard Ratio [HR] = 1.05, 95% confidence interval 
[CI]: 1.01–1.08, P = 0.006). This finding remained signifi-
cant after further adjustments for other confounding fac-
tors (HR=1.04, 95% CI: 1.00–1.08, P = 0.029).

Participants in different retinal age gap quintiles had dif-
ferent survival distributions of incident stroke based on 
log-rank test (P < 0.001). After adjusting for confounding 
factors, participants whose retinal age gaps were in the 
fifth quintile had significantly higher risks of stroke com-
pared to those whose retinal age gaps were in the first 
quintile (HR = 2.37, 95% CI: 1.37–4.10, P = 0.002). How-
ever, participants with retinal age gaps in the second, third 

Table 1  Baseline characteristics of the study participants and stratified by quintiles of retinal age gap

SD standard deviation, PA physical activity, Q quintile

Baseline characteristics Total Retinal age gap P value

Q1 Q2 Q3 Q4 Q5

N 35,304 7061 7061 7061 7061 7060 -

Age, mean (SD), years 56.7 (8.04) 63.4 (4.59) 60.5 (6.02) 57.1 (6.84) 53.0 (7.39) 49.4 (6.18) <0.001
Gender, No. (%)

  Female 19,730 (55.9) 3557 (50.4) 3929 (55.6) 3963 (56.1) 4135 (58.6) 4146 (58.7) <0.001
  Male 15,574 (44.1) 3504 (49.6) 3132 (44.4) 3098 (43.9) 2926 (41.4) 2914 (41.3)

Ethnicity, No. (%)

  White 32,908 (93.2) 6652 (94.2) 6661 (94.3) 6612 (93.6) 6476 (91.7) 6507 (92.2) <0.001
  Others 2396 (6.79) 409 (5.79) 400 (5.66) 449 (6.36) 585 (8.28) 553 (7.83)

Deprivation index, mean (SD) −1.10 (2.95) −1.46 (2.79) −1.33 (2.81) −1.10 (2.96) −0.93 (3.02) −0.68 (3.08) <0.001
Education level, No. (%)

  College/university 12,306 (34.9) 2148 (30.4) 2291 (32.5) 2416 (34.2) 2629 (37.2) 2822 (40.0) <0.001
  Others 22,998 (65.1) 4913 (69.6) 4770 (67.5) 4645 (65.8) 4432 (62.8) 4238 (60.0)

Smoking status, No. (%)

  Never 19,517 (55.5) 3826 (54.5) 3856 (54.8) 3817 (54.3) 3957 (56.3) 4061 (57.8) <0.001
  Former/current 15,614 (44.5) 3191 (45.5) 3176 (45.2) 3212 (45.7) 3069 (43.7) 2966 (42.2)

Drinking status, No. (%)

  Never 1547 (4.40) 358 (5.08) 282 (4.00) 299 (4.24) 305 (4.34) 303 (4.31) 0.025
  Former/current 33,652 (95.6) 6684 (94.9) 6768 (96.0) 6747 (95.8) 6726 (95.7) 6727 (95.7)

Obesity, No. (%)

  No 26,203 (74.6) 5320 (75.8) 5291 (75.3) 5282 (75.2) 5195 (74.0) 5115 (72.8) <0.001
  Yes 8922 (25.4) 1699 (24.2) 1739 (24.7) 1747 (24.8) 1829 (26.0) 1908 (27.2)

Meeting PA recommendation, No. (%)

  No 5212 (18.0) 886 (15.6) 967 (16.9) 1043 (18.1) 1100 (18.9) 1216 (20.5) <0.001
  Yes 23,706 (82.0) 4803 (84.4) 4748 (83.1) 4728 (81.9) 4713 (81.1) 4714 (79.5)

History of diabetes, No. (%)

  No 33,026 (93.6) 6600 (93.5) 6605 (93.5) 6597 (93.4) 6644 (94.1) 6580 (93.2) 0.274

  Yes 2278 (6.45) 461 (6.53) 456 (6.46) 464 (6.57) 417 (5.91) 480 (6.80)

History of hypertension, No. (%)

  No 8624 (24.4) 1186 (16.8) 1403 (19.9) 1723 (24.4) 1984 (28.1) 2328 (33.0) <0.001
  Yes 26,680 (75.6) 5875 (83.2) 5658 (80.1) 5338 (75.6) 5077 (71.9) 4732 (67.0)

General health status, No. (%)

  Excellent/good 24,562 (70.0) 5118 (72.8) 5051 (71.8) 4950 (70.5) 4783 (68.2) 4660 (66.5) <0.001
  Fair/poor 10,549 (30.0) 1916 (27.2) 1985 (28.2) 2074 (29.5) 2230 (31.8) 2344 (33.5)
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and fourth quintiles had comparable risks of stroke com-
pared to those with retinal age gaps in the first quintile. 
(HR = 1.16, 95% CI: 0.80–1.69, P = 0.433; HR = 1.10, 95% 
CI: 0.72–1.70, P = 0.660; HR = 1.29, 95% CI: 0.78–2.1, P 
= 0.323, respectively). A trend in the prediction accuracy 
of stroke across different quintiles of retinal age gaps (HR 
trending = 1.17, 95% CI: 1.03–1.33, P = 0.016) was noted.

Sensitivity analysis
Results comparable to those of the main analysis were 
noted when the age-squared term was included in the 
final model (Additional file  1: Table  S2). We also found 
that retinal age acceleration residual was significantly 

associated with incident stroke (Additional file  1: 
Table S3).

Predictive value of retinal age in stroke
The predictive value of a well-established risk factor-
based model (including age, gender, smoking status, 
history of diabetes, systolic blood pressure, and total 
cholesterol to HDL-cholesterol ratio) and retinal age-
based model in the prediction of 10-year stroke risk was 
shown in Fig. 1. The AUCs of the retinal age-based model 
was slightly higher than that of risk factor-based model 
(0.676, 95% CI: 0.644–0.708; 0.662, 95% CI: 0.630–0.693), 
while the difference did not reach significance (p=0.511).

Discussion
In this large prospective cohort study, we found that 
retinal age gap was associated with an increased risk of 
incident stroke independent of classic stroke risk fac-
tors. Each 1-year increase in retinal age gap contrib-
uted to a 4% increase in the risk of stroke. Compared to 
participants with retinal age gaps in the lowest quintile, 
those with retinal age gaps in the highest quintile had a 
2.37-fold increase in the risk of incident stroke. Further, 
retinal age demonstrated a predictive value compared to 
well-established risk factor-based model, indicating that 
accelerated biological ageing manifested as increased ret-
inal age gaps could be a predictor for the development of 
stroke.

Our study linked the retinal age gap, as a holistic meas-
ure of age-related neuronal and vascular changes, with 
the risk of stroke and demonstrated the predictive value 
of retinal age in future risk of stroke. This is the first 
study to prove the concept of the association between 

Table 2  Baseline characteristics stratified by incident stroke

SD standard deviation, PA physical activity

Baseline characteristics Non-stroke group Stroke group P value

N 35,022 282 -

Age, mean (SD), years 56.7 (8.04) 62.0 (6.42) <0.001
Gender, No. (%)

  Female 19,603 (56.0) 127 (45.0) <0.001
  Male 15,419 (44.0) 155 (55.0)

Ethnicity, No. (%)

  White 32,641 (93.2) 267 (94.7) 0.325

  Others 2381 (6.80) 15 (5.32)

Deprivation index, mean 
(SD)

−1.10 (2.95) −0.98 (3.09) 0.507

Education level, No. (%)

  College/university 12,226 (34.9) 80 (28.4) 0.022
  Others 22,796 (65.1) 202 (71.6)

Smoking status, No. (%)

  Never 19,375 (55.6) 142 (51.1) 0.132

  Former/current 15,478 (44.4) 136 (48.9)

Drinking status, No. (%)

  Never 1529 (4.38) 18 (6.38) 0.102

  Former/current 33,388 (95.6) 264 (93.6)

Obesity, No. (%)

  No 26,019 (74.7) 184 (66.0) 0.001
  Yes 8827 (25.3) 95 (34.0)

Meeting PA recommendation, No. (%)

  No 5159 (18.0) 53 (24.1) 0.019
  Yes 23,539 (82.0) 167 (75.9)

History of diabetes, No. (%)

  No 32,788 (93.6) 238 (84.4) <0.001
  Yes 2234 (6.38) 44 (15.6)

History of hypertension, No. (%)

  No 8590 (24.5) 34 (12.1) <0.001
  Yes 26,432 (75.5) 248 (87.9)

General health status, No. (%)

  Excellent/good 24,408 (70.1) 154 (55.4) <0.001
  Fair/poor 10,425 (29.9) 124 (44.6)

Table 3  Association between retinal age gap with incident of 
stroke

Model I adjusted for age, gender, and ethnicity

Model II adjusted for covariates in Model I+deprivation, education level, 
smoking status, drinking status, obesity, physical activity, diabetes mellitus, 
hypertension and general health status

Q quintile, HR hazard ratio, CI confidence interval

Retinal age gap Model I Model II

HR (95% CI) P value HR (95% CI) P value

Retinal age gap, 
per one age 
(years)

1.05 (1.01–1.08) 0.006 1.04 (1.00–1.08) 0.029

Retinal age gap

  Q1 1 [Reference] - 1 [Reference] -

  Q2 1.24 (0.90–1.70) 0.188 1.16 (0.80–1.69) 0.433

  Q3 1.07 (0.74–1.57) 0.708 1.10 (0.72–1.70) 0.660

  Q4 1.45 (0.95–2.22) 0.086 1.29 (0.78–2.14) 0.323

  Q5 2.06 (1.26–3.36) 0.004 2.37 (1.37–4.10) 0.002
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the retinal age gap and risk of stroke, the observed asso-
ciation between ageing features or pathological changes 
observed in the retina and the risk of stroke is supported 
by previous studies [19, 28–30]. It was found in cross-
sectional studies that patients with stroke have decreased 
central retinal artery equivalent (CRAE) and arteriolar-
to-venule ratio (AVR) and are more likely to have focal 
arterial narrowing, arteriovenous nicking (AV nicking) 
and retinopathies [31–34]. As well, in cohort studies, 
multiple retinal vessel measurements such as tortuosity 
and fractal dimension, hypertensive or diabetic retinopa-
thies, and retinal vessel occlusion were found to be sig-
nificantly associated with future stroke risk [17–21].

In addition, our findings that the predictive value of 
retina age alone is comparable to the well-established 
clinical risk factor-based model suggested the retinal age 
can provide clues informative of end-organ damage in 
the eye. There are previous studies investigating the pre-
dictive values of retinal measurements or features which 
are supportive to our findings. Mitchell et al. found reti-
nal microvascular signs (e.g. retinopathy, AV nicking and 
focal arteriolar narrowing) could predict incident stroke 
events independent of other risk factors of stroke [29]. 
Cheung et  al. found that the accuracy of stroke predic-
tion was improved by incorporating retinal microvascu-
lar signs, including retinopathy and widening of venous 
calibre, into the traditional risk factors [35]. Compared 
to previous studies which relied on grading or extraction 
of specific retinal features or pathologies, or definitions 
of retinal diseases, our concept of retinal age provides a 

different angle to examine the association between the 
retina and stroke. The present DL model could learn the 
appropriate predictive features based on a large sample 
of fundus images automatically and integrate all of the 
features from one image to generate an instant estimate 
of the biological age to predict stroke, which holds the 
advantage of less bias, the ability to capture the implicit 
retinal features and comprehensively describe the ageing 
characteristics that can be reflected through the retina.

Our findings also add new evidence to the limited body 
of knowledge about biological age and stroke. Brain age, 
a measurement of biological age, was reported to have an 
association with stroke [14, 36]. Biological age, estimated 
by DNA methylation, has also been associated with the 
risk of stroke and prognosis [12, 15, 37, 38]. The brain age 
was less accurate compared to the retinal age, when com-
paring the prediction accuracies in biological age [10, 26]. 
Notably, most studies about the brain age and stroke were 
cross-sectional studies, thus the accuracy of the brain age 
in predicting stroke was not clear. Although DNA meth-
ylation has been reported to independently predict the 
risk of stroke [38, 39], retinal age has the advantage of 
being non-invasive and cost-effective.

Several mechanisms may explain our findings. Firstly, 
the retina could act as a “window” to the body. The reti-
nal and cerebral circulation undergo similar changes in 
morphology, blood flow and metabolic demand dur-
ing the ageing process [22]. This might be explained by 
the common mechanisms underlying vascular ageing, 
such as endothelial dysfunction, oxidative stress and 

Fig. 1  The predictive value of retinal age-based model and risk factor-based model in 10-year stroke risk. The AUC of retinal age-based model was 
0.676 (95% CI: 0.644–0.708), which is slightly higher than the risk factor-based model (0.662, 95% CI: 0.630–0.693), but no significant difference was 
found (p=0.511)
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inflammation [40, 41]. Secondly, well-established risk 
factors of stroke could manifest themselves as retinal 
features on fundus images. For example, hypertension, 
as a risk factor of stroke, could cause retinal arteriolar 
changes in an early stage, including arteriolar narrow-
ing and AV nicking, which were reported to be associ-
ated with stroke events [29]. Thirdly, growing evidence 
has showed that retinal diseases have the potential to 
predict stroke such as diabetic retinopathy and retinal 
artery and venous occlusion [20, 42, 43]. This is consist-
ent with our findings that the attention maps of the DL 
models focused on the areas surrounding the retinal ves-
sels, highlighting the important role of pathophysiologi-
cal changes in retinal vasculature in predicting incident 
stroke [26].

Future directions and outlook
Future studies are still needed to improve the DL algo-
rithm and investigate into its real-world application and 
extrapolate its clinical value. First of all, external valida-
tions using other datasets comprising populations of 
different demographic features, such as older age and 
different ethnicities, and even using different retinal 
imaging modalities as input, such as optic coherence 
tomography data, are needed to improve the generaliz-
ability of the model and refine the algorithm for more 
large-scale application. In addition, given the heteroge-
neity of stroke types and pathogenesis such as ischaemic 
stroke and hemorrhagic stroke, subgroup analyses for 
stroke subtypes are needed to further streamline the use 
of retinal age gap in the prediction of stroke and provide 
clues to disentangle different mechanisms of stroke pre-
diction using retinal images by the DL algorithm.

Our findings have the potential to provide several 
important public health and clinical implications after 
future refinement and clinical proof-of-concept studies. 
Retinal age gap has great potential to be used as a novel 
screening tool for individuals at high risks of stroke. 
Compared with those well-established prediction tools 
based on classic risk factors, such as the Framingham 
Stroke Risk Score [44], the retinal age gap assessment 
is characterized by convenient, non-invasive and cost-
effective features, showing an enormous potential for fur-
ther applications. For example, this DL algorithm may be 
incorporated into mobile devices, making the assessment 
of the retinal age gap and risk of stroke more easily acces-
sible. This could facilitate the early referral of patients 
at high risks of stroke for preventative and therapeutic 
interventions to reduce the burden of stroke for individu-
als and society as a whole.

Despite the strengths of the present study includ-
ing the large sample size, the long follow-up duration, 

comprehensive adjustments for confounding factors and 
standard acquisition of fundus images, several limita-
tions should be considered. First, no external validation 
was performed for the retinal age prediction model, given 
that we have currently no access to external datasets with 
long-term follow-up and enough stroke events. Secondly, 
the UK Biobank cohort is comprised of relatively young 
participants (within the age range of 40–69 years). More-
over, the quality check tends to exclude the images of 
participants with older age. Considering the high risk of 
stroke in the more elderly population, our findings may 
be subject to generalizability. Further studies are needed 
to investigate the association between the retinal age gap 
and incident stroke in the elderly population. Neverthe-
less, the limited generalizability would not affect the 
association between the retinal age gap and stroke [45]. 
Thirdly, due to the low incidence rate of stroke and the 
lack of data on the causes of stroke, further subgroup 
analyses could not be conducted. Fourthly, due to the 
observational design of the study, we could not infer the 
causal effect of the ageing features of the retina on inci-
dent stroke. Lastly, we could not completely exclude the 
possibility of residual confounding.

Conclusions
We found that retinal age gap, estimated based on retinal 
images, was associated with incident stroke. As a novel 
biomarker for stroke risk, the retinal age gap has great 
potential in enabling more accurate, accessible, efficient, 
cost-effective and non-invasive stroke screening. Further 
studies are warranted to confirm our findings in differ-
ent populations and to explore the effect of the dynamic 
changes of retinal age gap in predicting risks of stroke.
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