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Abstract 

Background:  Cervical squamous cell carcinoma (SCC) is known to arise through increasingly higher-grade squa-
mous intraepithelial lesions (SILs) or cervical intraepithelial neoplasias (CINs). This study aimed to describe sequential 
molecular changes and identify biomarkers in cervical malignant transformation.

Methods:  Multidimensional data from five publicly available microarray and TCGA-CESC datasets were analyzed. 
Immunohistochemistry was carried out on 354 cervical tissues (42 normal, 62 CIN1, 26 CIN2, 47 CIN3, and 177 SCC) to 
determine the potential diagnostic and prognostic value of identified biomarkers.

Results:  We demonstrated that normal epithelium and SILs presented higher molecular homogeneity than SCC. 
Genes in the region (e.g., 3q, 12q13) with copy number alteration or HPV integration were more likely to lose or gain 
expression. The IL-17 signaling pathway was enriched throughout disease progression with downregulation of IL17C 
and decreased Th17 cells at late stage. Furthermore, we identified AURKA, TOP2A, RFC4, and CEP55 as potential causa-
tive genes gradually upregulated during the normal-SILs-SCC transition. For detecting high-grade SIL (HSIL), TOP2A 
and RFC4 showed balanced sensitivity (both 88.2%) and specificity (87.1 and 90.1%), with high AUC (0.88 and 0.89). 
They had equivalent diagnostic performance alone to the combination of p16INK4a and Ki-67. Meanwhile, increased 
expression of RFC4 significantly and independently predicted favorable outcomes in multi-institutional cohorts of 
SCC patients.

Conclusions:  Our comprehensive study of gene expression profiling has identified dysregulated genes and biologi-
cal processes during cervical carcinogenesis. RFC4 is proposed as a novel surrogate biomarker for determining HSIL 
and HSIL+, and an independent prognostic biomarker for SCC.
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Background
Cervical cancer is the fourth most common cancer in 
females, with 604,127 new cases and 341,831 deaths esti-
mated for 2020 worldwide [1]. Squamous cell carcinoma 
(SCC) is the predominant histological type of cervical 
cancer, with adenocarcinoma (AC) occurring less fre-
quently [2]. Persistent high-risk human papillomavirus 
(HR-HPV) infection is associated with the development 
of cervical intraepithelial neoplasia (CIN), if untreated, 
which may progress to SCC over a period of 15 to 20 
years [3]. Currently, a two-tier system of low- and high-
grade squamous intraepithelial lesions (LSIL and HSIL) 
paralleling the terminology of the Bethesda System cyto-
logic reports was recommended to replace the old CIN 
classification by World Health Organization (WHO) [4].

Cervical carcinogenesis is a complex process occur-
ring as a consequence of multiple genomic alterations. 
Several expression microarray studies have been con-
ducted investigating transcriptome changes in this pro-
cess. Some research focused on specific dysregulated 
genes mediating the invasion of cervical cancer cells [5, 
6]. Other research was designed to identify molecular 
changes that drive cervical cancer development [7–9]. 
Of note, studies based on next-generation sequencing are 
rare, probably due to ethical reasons and difficulties in 
obtaining tissue samples. Driven by the need for a com-
prehensive molecular characterization of the carcino-
genic process, we performed a meta-analysis on publicly 
available gene expression profiles for an in-depth study.

This study is also motivated by the clinical desire to 
develop novel biomarkers of cervical carcinogenesis. 
On the diagnostic front, early detection of HSIL and 
subsequent surgical intervention are necessary to pre-
vent further progression [10]. However, the inter- and 
intra-observer reproducibility of SIL grade evaluation is 
often poor among different pathologists due to mimics 
of HSIL (e.g., atrophy, LSIL, and therapy changes) [11–
13]. In routine pathology practice, p16INK4A and Ki-67 
are the most commonly used biomarkers of HR-HPV 
infection and cell proliferation, respectively. It has been 
demonstrated that p16INK4a can distinguish HSIL from 
its mimics and improve the diagnostic consistency of 
precancerous lesions among pathologists [14, 15]. None-
theless, p16INK4a has a certain positive rate in normal 
cervical tissue, cervicitis, and LSIL, which limits specific-
ity for detecting HSIL [16–18]. On the prognostic front, 
although the incidence and mortality of cervical cancer 
are decreasing due to increased global vaccination and 
screening coverage, clinical outcomes of patients with 

advanced-stage or recurrence disease are still bleak and 
difficult to predict [19]. Driven by the need for effective 
biomarkers to improve the diagnosis of HSIL and the 
prognosis of SCC, we specifically focused on screening 
persistently altered genes involved in carcinogenesis.

Methods
Study design
The overall workflow of the present study is shown in 
Fig.  1. Briefly, the study was undertaken in two parts. 
First, an integrative bioinformatic analysis of gene 
expression microarray datasets was conducted to identify 
molecular changes and hub genes linked to SCC progres-
sion. Second, external datasets and multi-institutional 
cohorts were used to further validate the diagnostic and 
prognostic robustness of selected genes from the first 
step.

Data collection and preprocessing
As of Jun 06, 2020, we performed a systematic search of 
the Gene Expression Omnibus (GEO) and ArrayExpress 
databases. The inclusion criteria were as follows: (i) the 
datasets of mRNA expression profile; (ii) human tissue 
samples containing at least three disease stages from nor-
mal, LSIL (CIN1), HSIL (CIN2-3), and SCC; (iii) at least 
25 samples. Four microarray datasets were included, of 
which three Affymetrix-based datasets (GSE63514 [7, 
20], GSE27678 [5, 21], and GSE7803 [6, 22]) were used 
as discovery datasets. The remaining Agilent-based data-
set (GSE138080 [8, 23]) and another prospective study 
(GSE75132 [24, 25]) were selected as validation datasets. 
The characteristics of the microarray datasets are sum-
marized in Additional file 1: Table S1. The series matrix 
files and detailed information of array experiments were 
downloaded. All gene expression data had already been 
normalized, and a log2-based transformation was applied 
if the data were not log2 transformed. Boxplots of nor-
malized microarray data can be seen in Additional file 1: 
Fig. S1, which showed an essentially similar distribution 
of expression profiles among the samples in each dataset. 
Afterward, the probes were mapped to genes. Genes with 
multiple probes were represented by the probe with the 
highest mean expression level.

The clinical and molecular data (including mRNA 
expression and copy number) of primary cervical can-
cer patients were retrieved from The Cancer Genome 
Atlas (TCGA) database through the R package TCGA-
biolinks [26]. We downloaded gene expression quanti-
tated as fragments per kilobase of transcript per million 
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mapped reads upper quartile (FPKM-UQ) and Masked 
Copy Number Segment data generated by Affymetrix 
SNP 6.0 array. Moreover, we also downloaded the sur-
vival information from TCGA Pan-Cancer Clinical 
Data Resource [27].

Cervical tissue collection
The tissue specimens (n = 420) were obtained from 
Fanpu Biotech. Co., Ltd. (FBC; Guilin, China), Depart-
ment of Gynecological Oncology of Tongji Hospital 
(TJH; Wuhan, China), and Outdo Biotech. Co., Ltd. 

(OBC; Shanghai, China) (Additional file 1: Table S2). This 
study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Ethics Committee 
and Institutional Review Board of the three institutions 
above. Informed consent was obtained from all partici-
pants. Hematoxylin-eosin (H&E)-stained sections were 
reviewed by two independent pathologists (X.Y.W. and 
J.W.) blinded to the original diagnoses. A unanimous or 
majority diagnosis defined as agreement by at least two 
out of three diagnoses (original and the two new) was 
recognized as the final “gold standard” diagnosis. Finally, 

Fig. 1  Schematic workflow of the present study. TCGA-CESC, the cancer genome atlas-cervical squamous cell carcinoma and endocervical 
adenocarcinoma
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a total of 354 samples met the criteria for further study 
(Additional file 1: Fig. S2).

Bioinformatics analysis
Differentially expressed gene (DEG) analysis was con-
ducted between lesions and normal tissue (LSIL/HSIL/
SCC vs. Normal, respectively) using the R package 
limma [28], with the criteria of Benjamini-Hochberg 
(BH) adjusted p-value < 0.05 and absolute fold change 
> 2. “Cross-study” longitudinal analysis was performed 
to obtain Gene Sets1, which referred to the union of 
upregulated genes and the union of downregulated 
genes per comparison after removing DEGs exhibiting 
inconsistent direction of change in any two discovery 
datasets (Fig. 1, Additional file 1: Table S3). The signif-
icance of copy number variations (CNVs) was assessed 
from the segmented data using GISTIC2.0 in GenePat-
tern [29, 30]. Gene-level copy number values and fre-
quency of CNVs were extracted for further analysis. 
The OmicCircos package in R [31] was utilized to 
visualize the expression patterns of the Sets1 genes 
according to a gradient of disease severity. The R pack-
age clusterProfiler [32] was used for the enrichment of 
Gene Sets1 and total DEGs. Cytoband enrichment was 
performed using positional gene sets (C1 collection 
available from MSigDB) with a q-value < 0.05. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were 
carried out to determine the biological significance 
with a q-value < 0.1. Selected pathway was visualized 
through the R package Pathview [33]. For GO enrich-
ment in terms of biological process, we used the sim-
plify function of clusterProfiler to remove redundant 
enriched terms. Then the R package GOSemSim [34] 
was used to estimate the pairwise semantic similarity 
between simplified terms for clustering. The abun-
dance of Th17 cells was assessed with Immune Cell 
Abundance Identifier (ImmuCellAI) [35].

“Cross-stage” horizontal analysis was performed 
to obtain Gene Sets2, which referred to the intersec-
tion of DEGs and “stepwise genes” (showed gradually 
increasing/decreasing expression with progression of 
cervical lesions) per discovery dataset (Fig.  1, Addi-
tional file 1: Table S3). The protein-protein interaction 
(PPI) networks for Gene Sets2 were constructed with 
the STRING database and visualized with Cytoscape 
(version 3.7.1) [36, 37]. Then, we used the plug-in cyto-
Hubba (version 0.1) [38] to rank and explore essential 
nodes in the interactome network. The top 10 nodes 
from each of the nine ranking methods (Betweenness, 
Bottleneck, Closeness, Degree, EPC, DMNC, MNC, 
Radiality, and Stress) were collected per study, and sub-
PPI networks were established based on them. Any 

overlap in three sub-PPI networks was regarded as the 
“Hub Gene” of the present study.

Immunohistochemistry (IHC) and scoring
Firstly, the tissue sections were baked at 65 °C for 30 min 
and then deparaffinized in xylene and passed through 
graded alcohol followed by antigen retrieval with 1 mM 
EDTA, pH 9.0 (G1203, Servicebio, Wuhan, China) in a 
microwave at 50 °C for 10 min, and then 30 °C for 10 min. 
The sections were incubated in 3% H2O2 for 25 min to 
quench endogenous peroxidase activity and then washed 
carefully in phosphate-buffered saline (PBS, pH 7.4) three 
times. 3% bovine serum albumin (G5001, Servicebio, 
Wuhan, China) was added onto the sections to cover the 
tissue evenly and incubated for 30 min at room tempera-
ture. The sections were subsequently incubated with the 
diluted antibodies (p16INK4a, Ki-67, AURKA, TOP2A, 
RFC4, CEP55) overnight at 4 °C. The details of antibod-
ies are summarized in Additional file  1: Table  S4. After 
carefully rinsing the sections with PBS, the sections were 
treated using the Pika general antibody (G1211, Servicebio, 
Wuhan, China; horseradish peroxidase-conjugated rabbit/
mouse antibody) for 50 min, followed by diaminobenzidine 
(G1211, Servicebio, Wuhan, China) to detect expression 
under the microscope. Finally, the sections were counter-
stained with hematoxylin, dehydrated, and covered.

Immunohistochemical interpretations were performed 
independent of the H&E diagnosis by the two patholo-
gists mentioned above. Unqualified sections were firstly 
discarded, and the remaining sections were evaluated for 
positive or negative staining, stained cellular compart-
ment (Additional file  1: Fig. S2). For noninvasive squa-
mous epithelia, a summary of the immunohistochemical 
scoring system is given in Additional file 1: Table S5. Put 
simply, p16INK4a immunopositivity was determined fol-
lowing the modified version of the criteria described 
by Darragh et  al. [39]. The cell-layer level of Ki-67 and 
TOP2A expression was evaluated (parabasal layer, 0; 
lower third of the epithelium, 1+; lower two thirds, 2+; 
more than lower two thirds up to full thickness, 3+). 
The TOP2A scores of 2+ and 3+ were grouped as 2+. 
AURKA and CEP55 expressions were evaluated for the 
staining intensity (no staining, 0; weak, 1+; moderate, 
2+; strong, 3+). RFC4 expression was evaluated based 
on staining intensity and distribution. For SCC, samples 
with > 10% positive cancer cells were considered positive 
for all markers.

Meanwhile, AURKA, TOP2A, and RFC4 staining in 
SCC were assessed using the semi-quantitative histo-
logic score (HSCORE) system. The staining intensity 
(0, 1+, 2+, or 3+) of cells and percentage (0–100%) of 
cells at each staining intensity level were estimated. The 
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HSCORE was assigned using the following formula: 
HSCORE = [1 × (% cells 1+) + 2 × (% cells 2+) + 3 × 
(% cells 3+)], with a ranking between 0 and 300. Only the 
staining intensity of CEP55 was estimated for its diffuse 
staining in SCC.

Survival analysis
Three independent cohorts of SCC patients (TCGA, 
n = 252; TJH, n = 56; OBC, n =106) were included for 
survival analysis. The clinical and pathological charac-
teristics of the cohorts are summarized in Additional 
file  1: Table  S6. The analysis consists of three steps. 
Firstly, patients in the TCGA cohort were dichotomized 
according to the optimal cutoff value for FPKM-UQ of 
hub genes. The association of gene expression (mRNA) 
with clinical outcomes was evaluated. Secondly, patients 
in the TJH cohort were dichotomized according to the 
optimal cutoff value for HSCORE or staining intensity of 
hub genes to validate the association at the protein level. 
Finally, the OBC cohort was entered into the TJH cohort 
to construct an Extended cohort (n = 162) for more reli-
able validation of the selected gene.

Different clinical outcome endpoints, overall survival 
(OS), progress-free interval (PFI), and disease-free sur-
vival (DFS), were defined in three cohorts. In the TCGA 
cohort, OS was defined as the time from initial diagnosis 
until death from any cause. PFI was defined as the time 
from initial diagnosis until recurrence of tumor, includ-
ing locoregional recurrence, distant metastasis, new pri-
mary tumor, or death with tumor [27]. In the TJH and 
OBC cohorts, OS was defined as the time from primary 
surgery or the last day of therapy if no surgery until death 
from any cause. DFS was defined as the time from pri-
mary surgery or the last day of therapy if no surgery until 
recurrence of tumor or death from any cause. Patients 
who did not experience the event of interest were cen-
sored at the date of the last available follow-up or 5 
years (whichever came first). Survival curves were plot-
ted using the Kaplan-Meier method and compared using 

the log-rank test. Multivariate Cox regression analysis 
was performed to determine the prognostic value of the 
selected gene with considering clinical factors. The R 
packages survival, survminer, and timeROC [40] were 
utilized to perform the survival analysis and visualization.

Statistical analysis
All statistical analyses were performed in the R statistical 
computing environment (version 3.5.3). Either Pearson’s 
or Spearman’s correlation coefficients were calculated to 
ascertain bivariate correlations. Prior to comparison, data 
normality was evaluated by Shapiro-Wilk test, and homo-
geneity of variances was evaluated by Levene’s test. Stu-
dent’s t test, Wilcoxon rank-sum test, one-way ANOVA 
test, and Kruskal-Wallis test were used for numerical 
variables. Chi-square test and McNemar’s test were used 
for independent and paired categorical variables, respec-
tively. For analysis of the association between IHC find-
ings of biomarkers and histological evaluation, sensitivity, 
specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), and area under the receiver operat-
ing characteristic (ROC) curve (AUC) were calculated. 
Cohen’s kappa coefficient (κ) was calculated to deter-
mine the agreement between tested IHC markers. Sur-
vival analysis has been described above. All p-values were 
two-sided, with p < 0.05 indicating statistical significance 
unless otherwise stated.

Results
Cervical inter‑ and intralesional heterogeneity assessment
The principal component analysis (PCA) showed that 
normal and LSIL were not clearly discriminated in 
GSE63514. However, there was a distinct separation 
between normal and other disease stages in other data-
sets. The inconsistent result may be due to the different 
HPV statuses in normal tissue. LSIL showed higher simi-
larity with normal epithelium with HR-HPV infection 
than those without HR-HPV infection (Fig.  2A, Addi-
tional file 1: Table S1). Pairwise correlation coefficients of 

(See figure on next page.)
Fig. 2  Integrated analysis. A Principal component analysis of the most variable 1000 genes in three datasets. The first two principal components are 
displayed and colored according to the disease stage. The shaded ellipses represent the 95% confidence intervals. B Boxplots representing Pearson 
correlation coefficient distribution between cases at each stage. Kruskal-Wallis test followed by pairwise Wilcoxon rank-sum test with Bonferroni 
correction was used to compare correlations. *** p < 0.001. C Heatmap displaying Pearson correlations between pairwise comparisons for all 
samples. D Bar plot representing the number of DEGs in each disease stage across discovery datasets. E UpSet diagrams showing the intersection 
size of DEGs in HN and CN across discovery datasets. The colors of the matrix background represent up- (red) and downregulated (blue) genes. 
Orange bars represent the number of DEGs explained by unique genes to GPL570. Pale violet-red dots indicate inconsistently changed genes 
among different studies. F Venn diagram showing the number of shared and unique genes annotated in GPL96, GPL570, and GPL571. G Circos plot 
illustrating landscape of chromosomal positions, expression, CNVs, and significant chromosomal bands. Autosomes 1–22 and sex chromosome 
X are shown in the right half of the circle. Zoomed chromosomes 1, 3, and 19 are displayed in the left half. Tracks from innermost to outermost: 
expression heatmap of Sets1 genes along lesion severity gradient (LN-HN-CN, Track 1-3), frequency of gains (red), and losses (blue) for regions of 
each chromosome from TCGA-SCC (Track 4), chromosome cytobands (Track 5), and significantly enriched cytobands in zoomed chromosomes 
(Track 6). H Dot plot showing the results of cytoband enrichment. Dot color indicates the q-value of the enrichment test; dot size represents the 
fraction of genes annotated to each cytoband. Q-value < 0.05 is considered as statistically significant
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Fig. 2  (See legend on previous page.)
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gene expression profiles were calculated for cases at the 
corresponding stage to measure intralesional heterogene-
ity. In GSE63514, we observed significantly lower correla-
tions for SCC as compared with HSIL, LSIL, and normal 
(mean Pearson’s r: 0.91 vs. 0.94 vs. 0.94 vs. 0.93, all p < 
0.05), reflecting a molecular intralesional heterogene-
ity in SCC. Similar results were obtained from GSE7803 
(Fig. 2B). Correlation heatmap of pairwise samples indi-
cated a certain similarity between noninvasive squamous 
epithelium samples (Fig. 2C).

DEG identification and cytoband enrichment analysis
To further explore the transcriptional landscape dur-
ing carcinogenesis, we performed differential expression 
analyses between LSIL, HSIL, SCC, and normal tissues 
(LSIL/HSIL/SCC vs. Normal: LN, HN, CN), respectively. 
The number of identified DEGs was limited in LN, fol-
lowed by an increase in progression (Fig. 2D). On the one 
hand, we observed a reasonable consensus representation 
of DEGs across discovery datasets in HN and CN, indi-
cating results reliability. On the other hand, GSE63514 
displayed the highest proportion of study-specific DEGs 
(HN: 78.5%, CN: 84.0%), about a third of which could be 
explained by platform-specific genes (Fig. 2 E, F). Given 
the aforementioned reasons, we applied “cross-study” 
analysis to generate the union of up- and downregulated 
genes separately for each comparison (including LN_UP/
DN, HN_UP/DN, and CN_UP/DN, termed Gene Sets1) 
to combine data from multiple independent microarray 
datasets.

Chromosome mapping of Gene Sets1 revealed a 
genome-wide distribution, and regions with high-
frequency chromosomal aberrations contained more 
specific DEGs (Fig. 2G). The deregulated genes were sig-
nificantly clustered on 1q21, 1q32, 2q31, 3q, 8q13, 12q13, 
17q21, 19q13, and 19p13, which correspond to previ-
ously reported HPV integration or CNV regions linked to 
cervical cancer. Interestingly, 1q21 and 19q13 previously 
described as amplification regions showed enrichment of 
downregulated genes. Enriched chromosome bands 3q13 
and 19q13 were observed in HN and CN and only 17q21 
in LN (Fig. 2H, Additional file 2: Table S7).

Functional and signaling transition in cervical 
carcinogenesis
GO enrichment of Gene Sets1 and total DEGs revealed 
a similar enrichment pattern of HN and CN. Eight dis-
tinct clusters were determined, and each was assigned 
a unique enrichment signature (Fig.  3A). We observed 
that upregulated genes of HN and CN showed a strong 
enrichment for cell cycle and related terms (Clusters 1, 3, 
4). Intriguingly, the positive regulation of cell cycle term 
was enriched with LN_DN, HN_UP/DN, and CN_UP 

genes, indicating a dynamic regulation of cell cycle con-
trol. Consistent with dysmaturation of keratinocytes 
throughout disease progression, downregulated genes of 
HN and CN showed significant enrichment for cornifica-
tion term (Cluster 8). In addition, LN_UP genes were not 
enriched in any term, while LN_DN genes were mainly 
enriched in Clusters 1, 5–8 (Fig.  3A, Additional file  2: 
Table S8).

KEGG enrichment of total DEGs showed a great agree-
ment between HN and CN. While in the enrichment of 
downregulated genes, HN appears to be a transitional 
state since the enriched pathways of HN were partially 
overlapped with that of CN and LN (Additional file  1: 
Fig. S3). DNA repair pathways [homologous recombina-
tion (HR), base excision repair (BER), nucleotide excision 
repair (NER) and mismatch repair (MMR)], cell cycle-
related pathways (cell cycle, DNA replication, and cellular 
senescence), and oncogenic p53 signaling pathways were 
enriched with upregulated genes of HN and CN (Fig. 3B, 
Additional file 2: Table S9). Downregulated genes of LN 
and HN were enriched in more cancer-related pathways 
(e.g., MAPK, ErbB, PI3K/AKT, TGF-β, and Wnt signaling 
pathways) than that of CN. Some pathways above, such 
as PI3K/AKT and Wnt pathways, could also be enriched 
in CN when considering total DEGs (Fig. 3B, Additional 
file 2: Table S9).

Human T-cell leukemia virus 1 (HTLV-1) infection and 
immune-related IL-17 signaling pathway were enriched 
in all disease stages among DEGs (Fig. 3B). Many DEGs 
of HN and CN enriched in HTLV-1 infection signal-
ing were cell cycle-related genes, and most of which 
are upregulated. Ten genes in HTLV-1 infection sign-
aling were differentially expressed in LN, and all serum 
response factor (SRF) pathway genes (SRF, FOS, FOSL1, 
EGR1, and EGR2) were involved and downregulated 
(Additional file 1: Fig. S4, Additional file 2: Table S9). IL17 
cytokine family comprises IL17A, IL17B, IL17C, IL17D, 
IL17E (also known as IL25), and IL17F. Among these 
cytokine genes, only IL17C was founded to be differen-
tially expressed (downregulated) in HN and CN (Fig. 3C, 
Additional file  2: Table  S9). IL17C was produced pri-
marily by keratinocytes, gradually replaced by abnormal 
epithelial cells in malignant transformation. Although 
Th17-associated cytokine genes (IL17A and IL17F) were 
not affected, we still observed that Th17 cells showed sig-
nificantly decreased abundance at the late stage of cancer 
progression (Fig. 3D), which is inconsistent with previous 
findings [41].

Identification of the potential genes associated 
with carcinogenesis
To identify pivotal DEGs and provide clues for early 
diagnosis and intervention of precancerous lesions, we 
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Fig. 3  Functional enrichment and Th17 cell infiltration. A Heatmap showing the GO biological process terms enriched by up- and downregulated 
genes (Gene Sets1, 1 to 6 columns) and total DEGs (7 to 9 columns) of each comparison. The simplified GO terms significantly enriched by at least 
one comparison group were included and hierarchically clustered. Eight distinct clusters of GO terms that show high semantic similarity were 
identified. The color intensities indicate the −log10(q-value) of the enrichment test. See Additional file 2: Table S8 for the entire list of the enriched 
GO terms. B Dot plot showing the top 8 significantly enriched KEGG pathways in up- and downregulated genes (Gene Sets1, left panel) and total 
DEGs (right panel) of each comparison. Dot color indicates the q-value of the enrichment test; dot size represents the fraction of genes annotated 
to each pathway. The entire list of the enriched pathways and comparison can be seen in Additional file 2: Table S9 and Additional file 1: Fig. S3. C 
Volcano plots of GSE63514. Red and blue dots represent up- and downregulated genes, respectively; gray dots represent non-statistically significant 
genes. Vertical dashed lines indicate a 2-fold change cutoff in either direction, and horizontal dashed lines indicate an adjusted p-value cutoff of 
0.05. IL17A through IL17F were circled and labeled with gene symbols. D Boxplots showing the abundance of Th17 cells changes over the disease 
stages. ** p < 0.01; * p < 0.05; † p < 0.1
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applied “cross-stage” analysis to generate the intersection 
of DEGs and “stepwise genes” for each discovery dataset 
(termed Gene Sets2). Through PPI network analysis of 
Sets2 genes, four genes (AURKA, TOP2A, CEP55, and 
RFC4) occurring in at least two datasets were considered 

as “Hub Genes” (Fig. 4A, Additional file 1: Fig. S5). Hub 
gene expression increased significantly during progres-
sion from normal to SCC (all p < 0.05, Additional file 1: 
Fig. S6), which were also validated in GSE138080 (all p < 
0.05, Fig. 4B). Furthermore, these genes had been proved 

Fig. 4  Hub genes identification and validation. A PPI network of important DEGs selected by Cytohubba. The nodes with white and blue rings 
denote progressively up- and downregulated genes with the development of cervical lesions (Spearman, p < 0.05). Edge thickness is proportional 
to the interaction score. B Boxplots showing the correlations between hub gene expression and severity of cervical lesion in GSE138080, with 
Spearman’s rho and p-values presented in the upper left corner. C Scatter plots showing the correlations between hub gene expression (Z 
score-transformed log2 (FPKM-UQ+1) values) and CNAs in TCGA-CESC dataset, with Spearman’s rho and p-values presented in the lower right 
corner. Adenocarcinoma (AC) samples are shown in black and squamous cell carcinoma (SCC) samples are shown in blue. D Boxplots showing 
hub gene expression in HPV-neg, HPV-S (HPV16 persistent infection without progression), and HPV-P (HPV16 persistent infection with progression) 
women from GSE75132. Statistical comparisons were performed using Wilcoxon rank-sum test. * 0.01 < p < 0.05; † p < 0.1; ns, p ≥ 0.1
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to be involved in the malignant transformation of several 
different types of tumors, like Barrett’s adenocarcinoma, 
colorectal carcinoma, head and neck squamous cell car-
cinoma (HNSCC), etc. As expected, they tended to dis-
play a linear expression pattern with tumor progression 
(Additional file 1: Table S10).

The observed disease stage-dependent expression 
changes could be induced by multi-factors such as genetic 
and epigenetic alterations, small RNAs, and HPV integra-
tions. This study assessed associations between hub gene 
expression level and corresponding copy number altera-
tions (CNAs) in AC and SCC. We found a strong positive 
correlation between expression level and CNAs for RFC4 
(Spearman’s rho: 0.70 and 0.80, all p < 0.05), and a mod-
erate correlation for AURKA (Spearman’s rho: 0.65 and 
0.44, all p < 0.05) and CEP55 (Spearman’s rho: 0.40 and 
0.42, all p < 0.05) in AC and SCC (Fig. 4C). Interestingly, 
CNAs of TOP2A have a tumor subtype-specific role in 
contributing to gene expression variability. AC shows a 
tighter correlation than SCC between those two param-
eters (Spearman’s rho: 0.50 vs. 0.17, Fig. 4C).

Moreover, we examined whether the expression levels 
of hub genes were predictive for developing high-grade 
cervical lesions in a prospective cohort study (GSE75132). 
The study enrolled HPV-negative and persistently 
HPV16-infected women. HPV-infected women were 
divided into progressor (HPV-P) and sustainer (HPV-S) 
groups according to whether they progressed to CIN3+ 
or not during follow-up (Additional file 1: Table S1). We 
noted a trend toward a higher median expression level 
of RFC4 and TOP2A in HPV-P women than in HPV-S 
and HPV-negative women. Their expression differences 
between HPV-P and HPV-negative women were signifi-
cant or marginally significant, respectively (p = 0.034 for 
RFC4 and p = 0.08 for TOP2A, Fig. 4D).

Diagnostic assessment of hub genes for HSIL and HSIL+
Hierarchical clustering of hub genes revealed a good 
separation between normal/LSIL and HSIL+ (HSIL and 
SCC) (Fig.  5A). Thus, we performed IHC for p16INK4a, 
Ki-67, and four hub genes to validate the identified tran-
scriptomic changes at the protein level and explore their 
clinical utility in diagnosing HSIL and HSIL+. Corre-
sponding to changes in mRNA, the protein expression 
of all tested markers gradually increased from normal to 
CIN3 (Fig.  5B, Additional file  1: Table  S11). Because of 
different scoring systems, we could not compare marker 
expression between normal/CINs and SCC by IHC score. 
However, the neoplastic epithelial cells of SCC showed 
stronger staining (increased positive intensity and more 
diffuse expression) than those of CIN3 according to sub-
jective visual estimation (Fig. 5B).

Cellular markers were classified into three categories 
based on their biological function, including cell cycle 
regulation marker (p16INK4a, AURKA, RFC4), cell divi-
sion marker (CEP55), and proliferation marker (Ki-67 
and TOP2A). Then we developed an individual scor-
ing system to evaluate staining intensity and extent 
(Additional file 1: Fig. S7, Table S5). The positive rates 
of all markers significantly increased with the severity 
of cervical lesion, especially in HSIL and SCC (Fig. 5C). 
For p16INK4a and Ki-67, our results were in good cor-
respondence with previous studies, which improved 
confidence in the reliability of IHC and comparability 
of evaluation. Meanwhile, the previously reported fre-
quency of positive TOP2A and ProExC (MCM2 and 
TOP2A) in cervical lesions were also collected (Addi-
tional file 1: Table S12). The concordance analysis dem-
onstrated a strong agreement of 90.2% (κ = 0.8) in the 
whole stages and 97.1% (κ = 0.84) in HSIL for Ki-67 
and TOP2A (Fig. 5D, Additional file 1: Table S13).

For detecting HSIL, sensitivities, specificities, PPVs, 
NPVs, and AUCs of six markers are shown in Additional 
file 1: Table S14. Of note, CEP55 and AURKA with high 
sensitivity and low specificity were excluded for further 
comparative analysis due to their cytoplasmic staining, 
which made assessment challenging and interpretation 
difficult. To statistically compare the diagnostic utility 
of the remaining markers, sections with these markers 
evaluated simultaneously were analyzed (Additional 
file 1: Table S15, Table 1). Data showed the highest sen-
sitivity of p16INK4a, but the specificity and PPV were 
low. In contrast to p16INK4a, Ki-67 and TOP2A pro-
vided a nearly equivalent sensitivity (92.6% vs. 91.2% 
vs. 88.2%, all p > 0.05) and a higher specificity (63.4% 
vs. 80.2% vs. 87.1%, all p < 0.05). The inclusion of Ki-67 
could improve specificity (87.1% vs. 63.4%, p < 0.05), 
PPV (82.2% vs. 63%), and accuracy (AUC, 0.88 vs. 0.78) 
of p16INK4a (Fig. 5E), at the little expense of sensitivity 
(92.6 to 88.2%) and NPV (92.8 to 91.7%). TOP2A had 
the same performance as p16INK4a and Ki-67 combined. 
Additionally, RFC4 not only had same sensitivity (88.2% 
vs. 88.2%, p = 1) and relatively higher specificity (90.1 
vs. 87.1%, p = 0.58), but also higher accuracy (AUC, 
0.89 vs. 0.88; Fig. 5E) than the combination of p16INK4a 
and Ki-67. Meanwhile, the diagnostic efficacy of RFC4 
and TOP2A improved for detecting HSIL+ as the AUC 
reached 0.91 and 0.89, respectively (Table  1). These 
results suggest RFC4 and TOP2A alone could be com-
plementary surrogate markers to p16INK4a and Ki-67 for 
detecting HSIL and HSIL+.

Moreover, serial and parallel interpretation of any 
marker pairs were compared to TOP2A and RFC4 alone 
(Additional file 1: Table S16). The combination of TOP2A 
and RFC4 in parallel interpretation with the highest 
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Fig. 5  p16INK4A, Ki-67, AURKA, TOP2A, RFC4, and CEP55 immunohistochemistry and potential diagnostic utility. A Heatmap illustrating the 
hierarchical clustering of samples (columns) from discovery datasets based on the scaled expression of hub genes (rows). Blue to red spectrum 
color gradient indicates low to high expression level. B Representative IHC staining images of tested markers in normal, CIN1-3, SCC tissues. Original 
magnification ×400. Inserts, original magnification ×100. C Stacked bar plots showing the fraction of positively (orange) and negatively staining 
(blue) samples in each disease stage, with positive rates presented. The p-values indicate the difference in the distribution of positive and negative 
samples between normal/LSIL and HSIL (chi-square test). The numbers above each bar refer to the number of samples in each stage. D Heatmap of 
kappa statistics for tested IHC markers in HSIL (blue) and all stages (red), related to Additional file 1: Fig. S13. E ROC curves for comparison of single 
and combined biomarkers in HSIL diagnosis and associated AUC values were shown (also see Table 1). ROC, receiver operating characteristic; AUC, 
area under the ROC curve
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accuracy (AUC, 0.90) showed significantly higher sensi-
tivity (97.1 vs. 88.2%, p < 0.05) but lower specificity (82.2 
vs. 90.1%, p < 0.05) compared with RFC4 for detecting 
HSIL (Additional file  1: Table  S16a). None of the com-
binations presented certain advantages over RFC4 for 
detecting HSIL+ (Additional file 1: Table S16b).

Prognostic assessment of hub genes for SCC
To further investigate the clinical impact of hub genes in 
SCC progression, we examined the correlation between 
their expression and disease severity in SCC patients 
from the TCGA cohort. The analysis revealed that 
increased AURKA mRNA expression was significantly 
or marginal significantly associated with advanced FIGO 
stage (p = 0.039), higher histological grade (p = 0.01), 
and lymph nodes metastasis (p = 0.088; Additional file 1: 
Fig. S8).

Next, we evaluated the effect of hub gene expression 
alterations on prognosis in three independent cohorts of 
SCC patients (see the “Methods” section). In the TCGA 
cohort (n = 252), high AURKA mRNA expression 
inversely correlated with OS (log-rank, p = 0.017; Fig. 6A). 
While higher RFC4 mRNA expression was significantly 
associated with better OS and PFI (log-rank, p = 6.8e−04 
and p = 7.8e−03, respectively; Fig. 6A, Additional file 1: 
Fig. S9A). To validate the finding at the protein level, we 
performed immunostaining for these genes on SCC tissues 
from the TJH cohort (n = 56). Overexpression of RFC4 
protein showed significant associations with increased OS 
and DFS (log-rank, p = 3.1e−03 and p = 1.5e−03, respec-
tively; Fig.  6B, Additional file  1: Fig. S9B). In addition, 
higher TOP2A protein expression significantly correlated 

with better DFS (log-rank, p = 0.019; Additional file 1: Fig. 
S9B), which was not found at the mRNA level. Although 
not statistically significant, there was a tendency for higher 
CEP55 expression associated with increased PFI (log-rank, 
p = 0.1) in the TCGA cohort and increased DFS (log-rank, 
p = 0.072) in the TJH cohort (Fig. 6B, Additional file 1: Fig. 
S9B). Due to limited samples of the TJH cohort, we further 
investigated the RFC4 prognostic value in the combined 
TJH and OBC cohort (Extended cohort, n = 162; Addi-
tional file 1: Fig. S10). The effect of RFC4 protein expres-
sion on OS and DFS, as expected, remained significant 
(log-rank, p = 1.6e−04 and p = 2.2e−04, respectively; 
Fig. 6C, Additional file 1: Fig. S9C). The representative IHC 
staining images of hub genes in SCC are shown in Fig. 6D.

Notably, multivariate Cox regression analysis revealed 
that RFC4 expression (mRNA and protein), after adjust-
ment for age, FIGO stage, grade, and cohort, emerged as an 
independent predictor of clinical outcomes (OS, PFI, and 
DFS) for SCC patients in three cohorts (Fig. 6E, Additional 
file 1: Fig. S9D). The time-dependent AUC showed that the 
addition of RFC4 expression into the Cox proportional haz-
ards model significantly increased the prognostic efficacy 
for 2- and 3-year OS (all p < 0.05; Fig. 6F), for 1-, 2-, and 
3-year DFS (all p < 0.05; Additional file 1: Fig. S9E).

Discussion
This meta-analysis based on previous studies comprehen-
sively characterizes the transcriptomic profiles of cervical 
carcinogenesis and identifies four key genes (AURKA, 
TOP2A, RFC4, CEP55) associated with the initiation 
and progression of SCC. Then, we carefully assess their 
diagnostic performance in HSIL/HSIL+ and prognostic 

Table 1  Comparison of diagnostic performance of IHC biomarkers for detecting HSIL and HSIL+

a Exact McNemar’s test comparing to p16INK4a and p16INK4a + Ki-67
b Both p16INK4a and Ki-67 positive

Biomarker Sensitivity
(95% CI), %

p-valuea Specificity
(95% CI), %

p-valuea PPV
(95% CI), %

NPV
(95% CI), %

AUC​
(95% CI)

HSIL
  p16INK4a 92.6 (83.7–97.6) Ref/0.248 63.4 (53.2–72.7) Ref/<0.001 63.0 (52.8–72.4) 92.8 (83.9–97.6) 0.78 (0.72–0.84)

  Ki-67 91.2 (81.8–96.7) 1.000/0.480 80.2 (71.1–87.5) 0.004/0.023 75.6 (64.9–84.4) 93.1 (85.6–97.4) 0.86 (0.81–0.91)

  p16INK4a + Ki-67b 88.2 (78.1–94.8) 0.248/Ref 87.1 (79.0–93.0) <0.001/Ref 82.2 (71.5–90.2) 91.7 (84.2–96.3) 0.88 (0.83–0.93)

  TOP2A 88.2 (78.1–94.8) 0.450/1.000 87.1 (79.0–93.0) <0.001/1.000 82.2 (71.5–90.2) 91.7 (84.2–96.3) 0.88 (0.83–0.93)

  RFC4 88.2 (78.1–94.8) 0.505/1.000 90.1 (82.5–95.1) <0.001/0.579 85.7 (75.3–92.9) 91.9 (84.7–96.4) 0.89 (0.84–0.94)

HSIL+
  p16INK4a 95.3 (90.2–98.3) Ref/0.041 63.4 (53.2–72.7) Ref/<0.001 76.9 (69.6–83.2) 91.4 (82.3–96.8) 0.79 (0.74–0.84)

  Ki-67 93.0 (87.2–96.8) 0.505/0.248 80.2 (71.1–87.5) 0.004/0.023 85.7 (78.8–91.1) 90.0 (81.9–95.3) 0.87 (0.82–0.91)

  p16INK4a + Ki-67b 90.7 (84.3–95.1) 0.041/Ref 87.1 (79.0–93.0) <0.001/Ref 90.0 (83.5–94.6) 88.0 (80.0–93.6) 0.89 (0.85–0.93)

  TOP2A 91.5 (85.3–95.7) 0.228/1.000 87.1 (79.0–93.0) <0.001/1.000 90.1 (83.6–94.6) 88.9 (81.0–94.3) 0.89 (0.85–0.93)

  RFC4 91.5 (85.3–95.7) 0.267/1.000 90.1 (82.5–95.1) <0.001/0.579 92.2 (86.1–96.2) 89.2 (81.5–94.5) 0.91 (0.87–0.95)
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Fig. 6  Univariate and multivariate survival analysis for OS in SCC patients, related to Additional file 1: Fig. S9. Five-year Kaplan-Meier curves for 
OS in SCC patients stratified by the hub gene expression (mRNA and protein) from A TCGA, B TJH, and C Extended cohorts. The number of cases 
and events are shown in the plots. The p-values were calculated with the log-rank test. The optimal cutoff values for HSCORE or staining intensity 
determined by the surv_cutpoint function from the survminer package were 130 for AURKA, 1 (staining intensity) for CEP55, 45 for TOP2A, and 
100/105 (TJH/Extended) for RFC4. D Representative IHC staining images of high and low AURKA, TOP2A, RFC4, and CEP55 expression in SCC. 
Original magnification ×200. Inserts, original magnification ×100. E Forest plot of multivariate Cox regression with clinical features and RFC4 
expression taken into account in three cohorts. The main effects are shown as hazard ratios with 95% confidence intervals. F Time-dependent AUC 
for combined RFC4 expression and clinical covariate model (red) and clinical covariate-only model (blue). The significant difference in the AUC was 
estimated at 1, 2, 3, 4, and 5 years, and adjusted p-values were calculated. HR, hazard ratio; CI, confidence interval. * 0.01 < p < 0.05; ns, p ≥ 0.1
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performance in SCC. To the best of our knowledge, our 
study is the first to evaluate and validate the diagnostic 
and prognostic value of RFC4 in cervical lesions.

We found that the transcriptomes of normal epithe-
lium and SILs were homogenous. However, the increased 
heterogeneity was observed upon progression to SCC. A 
study of the transcriptomic landscape of hepatocarcino-
genesis presented homogeneity in dysplastic lesions and 
early carcinoma but heterogeneity in advanced liver can-
cer, somewhat similar to our results [42]. Due to the lack 
of FIGO staging and histological grading data, whether 
there is heterogeneity between early SCC and preinvasive 
or late SCC was unknown in our discovery datasets. In the 
PCA of GSE63514, HSIL was partially overlapped with 
normal/LSIL and SCC. Moreover, HSIL showed higher 
heterogeneity than normal in GSE27678. Akin to genetic 
alteration, we believe that some dysregulated genes com-
mon to SCC but only changed in a part of HSIL contrib-
uted to the potential heterogeneity of HSIL [43, 44].

Compared to enrichment with total DEGs, separate 
enrichment with up- and downregulated genes could 
detect more pathways associated with the phenotypic 
difference [45]. We used both strategies in this study. 
Although separate analysis consistently detected more 
terms and pathways, some pathways (e.g., Wnt signaling 
pathway in LN_DN and CN_DEG) enriched in differ-
ent disease stages by two strategies respectively should 
not be ignored. Cell cycle, DNA repair, and oncogenic 
p53 pathways were activated in HSIL and SCC. The 
close association between these pathways and HPV 
has been evidenced. HR-HPV E6 and E7 oncoproteins 
interfere with p53 and pRB, leading to cell cycle distur-
bances and promoting DNA damage response (DDR) 
that has a known central role in cervical carcinogenesis 
[3, 46, 47]. Furthermore, we found inhibition of TGF-β 
and Hippo signaling pathways in LSIL, consistent with 
their tumor-suppressive properties in the early stage of 
carcinogenesis [48, 49]. Interestingly, the HTLV-1 infec-
tion and IL-17 signaling pathways were enriched in all 
disease stages. The deregulation of cell cycle is a com-
mon feature in cancer cells and HTLV-1-infected cells, 
which is why we believe that the HTLV-1 infection path-
way was enriched in HN and CN [50, 51]. The HTLV-1 
Tax oncoprotein interacts with SRF to activate the tran-
scription of immediate early genes (FOS, FOSL1, EGR1, 
and EGR2) [52, 53]. However, these genes were down-
regulated in LN. The association between HPV and SRF 
in early stage of cervical carcinogenesis might be worth 
investigating. Of IL-17 cytokine genes, IL17C showed 
significantly lower expression in HSIL and SCC when 
compared to normal control. IL17C is an epithelial cell-
derived cytokine that regulates innate epithelial immune 
responses [54], and its response to HPV infection has 

not been explicitly investigated. A previous study had 
reported that increased Th17 cells were associated with 
progression of SCC [41], which was inconsistent with 
our results. However, there were studies reporting that 
lymph nodes of premalignant lesion-bearing mouse con-
tained more Th17 cells than HNSCC-bearing mouse 
lymph nodes [55, 56]. Reduced IL23 production and 
increased TGF-β production by HNSCC may lead to the 
decrease in Th17 by redirecting the immune phenotype 
toward Treg [56].

We found four hub genes through network analysis. 
Using IHC, the gradually increasing expression of hub 
genes along with the severity of lesions was validated. 
Notably, CEP55 was initially reported to be associated 
with the course of cervical lesions. The staining pattern 
of TOP2A was similar to that of Ki-67, and concordance 
between them was substantial. While a study compar-
ing ProExC and Ki-67 expression in 197 cervical biopsies 
reported that 35% of cases showed discordant staining 
[57]. We then compared the diagnostic performance 
of p16INK4a, Ki-67, TOP2A, and RFC4 alone or in com-
bination to detect HSIL/HSIL+. Among the four mark-
ers, p16INK4a routinely used in clinical practice showed 
the highest sensitivity but moderate specificity. Similar 
to previous reports, the combination of p16INK4a and 
Ki-67 in serial interpretation could improve specificity 
and accuracy for detecting HSIL [58]. RFC4 and TOP2A 
alone provided similar diagnostic performance to the 
combination of p16INK4a and Ki-67. Parallel interpreta-
tion of TOP2A and RFC4 produced the highest AUC, and 
parallel interpretation of Ki-67 and RFC4 produced the 
highest sensitivity and NPV for detecting HSIL. Impor-
tantly, RFC4 and TOP2A have additional advantages. 
The expression of RFC4 from 3q26 exhibited a high cor-
relation with copy number gain, and 3q gain as a poten-
tial marker in the diagnosis of HSIL is frequently found 
in cervical cancer and its precancerous lesions [59, 60]. 
For TOP2A, its exclusive and clear nuclear staining is an 
advantage over nuclear and cytoplasmic staining of RFC4 
and p16INK4a. Moreover, Shi et al. reported that TOP2A 
is more sensitive and specific than ProEXC for detect-
ing HSIL [61]. Considering cost-effectiveness, a single 
biomarker with balanced sensitivity, specificity, and high 
accuracy is recommended. When meeting patients with 
suspected HSIL, we can choose parallel interpretation of 
Ki67/TOP2A and RFC4 with high sensitivity and NPV to 
safely exclude lesions.

Furthermore, we explored the clinical and prognostic 
significance of identified genes in SCC. Compared with 
a continuous increase of hub gene expression in normal 
to SILs to SCC transitions, only AURKA mRNA expres-
sion significantly increased with advancing FIGO stage, 
increasing tumor differentiation and aggressiveness 
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in SCC, as indicated by the poor OS. This is consistent 
with the findings observed previously [62], though the 
prognostic interest of AURKA could not be validated 
in the TJH cohort. A previous study demonstrated that 
high CEP55 protein expression correlates with better 
OS and recurrence-free survival (RFS) in SCC [63]. We 
found this trend in our research but not statistically sig-
nificant. Several studies based on TCGA-CESC data have 
reported the relationship between TOP2A and RFC4 
mRNA expression and the prognosis of cervical cancer 
[64, 65]. However, there was no other evidence to sup-
port their relationship, let alone the confirmation at the 
protein level. Here, we demonstrate for the first time 
that increased RFC4 and TOP2A protein expression cor-
relates with a favorable outcome in patients with SCC, 
and RFC4 is an independent prognostic marker for SCC. 
Furthermore, preliminary investigations have also dem-
onstrated the role of RFC4 in predicting the outcome of 
other neoplasia, such as non-small cell lung carcinoma, 
colorectal cancer, and breast tumor [66–68].

Of course, our research has some limitations. Firstly, 
diagnosis error cannot be excluded entirely because 
the histopathologic diagnosis of CIN is subject to sub-
stantial rates of discordance among pathologists. Due 
to the majority diagnosis from three expert gynecologic 
pathologists and the large sample size in our study, we 
considered this diagnosis bias only to influence results 
to a minor degree. Secondly, we focus on RFC4 dynamic 
expression and clinical application here, which could not 
clarify the cause-and-effect relationship between RFC4 
overexpression and disease progression. Our laboratory 
has ongoing experimental studies of RFC4 in papilloma-
virus oncogenic cell transformation.

Conclusions
Collectively, our study has characterized the changes in 
gene expression and biological functions during cervical 
carcinogenesis, which contribute toward a better under-
standing of molecular mechanisms associated with dis-
ease progression. Furthermore, we have found that RFC4 
and TOP2A alone could serve as potential surrogate 
markers for determining HSIL and HSIL+. Their poten-
tial clinical application in cytological specimens was fore-
seen. Finally, RFC4 was also confirmed as an independent 
prognostic biomarker for SCC, implicating its therapeu-
tic targeting for the treatment of SCC.
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