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Abstract 

Background:  Supporting decisions for patients who present to the emergency department (ED) with COVID-19 
requires accurate prognostication. We aimed to evaluate prognostic models for predicting outcomes in hospitalized 
patients with COVID-19, in different locations and across time.

Methods:  We included patients who presented to the ED with suspected COVID-19 and were admitted to 12 
hospitals in the New York City (NYC) area and 4 large Dutch hospitals. We used second-wave patients who presented 
between September and December 2020 (2137 and 3252 in NYC and the Netherlands, respectively) to evaluate 
models that were developed on first-wave patients who presented between March and August 2020 (12,163 and 
5831). We evaluated two prognostic models for in-hospital death: The Northwell COVID-19 Survival (NOCOS) model 
was developed on NYC data and the COVID Outcome Prediction in the Emergency Department (COPE) model was 
developed on Dutch data. These models were validated on subsequent second-wave data at the same site (tempo-
ral validation) and at the other site (geographic validation). We assessed model performance by the Area Under the 
receiver operating characteristic Curve (AUC), by the E-statistic, and by net benefit.

Results:  Twenty-eight-day mortality was considerably higher in the NYC first-wave data (21.0%), compared to the 
second-wave (10.1%) and the Dutch data (first wave 10.8%; second wave 10.0%). COPE discriminated well at temporal 
validation (AUC 0.82), with excellent calibration (E-statistic 0.8%). At geographic validation, discrimination was satisfac-
tory (AUC 0.78), but with moderate over-prediction of mortality risk, particularly in higher-risk patients (E-statistic 
2.9%). While discrimination was adequate when NOCOS was tested on second-wave NYC data (AUC 0.77), NOCOS sys-
tematically overestimated the mortality risk (E-statistic 5.1%). Discrimination in the Dutch data was good (AUC 0.81), 
but with over-prediction of risk, particularly in lower-risk patients (E-statistic 4.0%). Recalibration of COPE and NOCOS 
led to limited net benefit improvement in Dutch data, but to substantial net benefit improvement in NYC data.

Conclusions:  NOCOS performed moderately worse than COPE, probably reflecting unique aspects of the early pan-
demic in NYC. Frequent updating of prognostic models is likely to be required for transportability over time and space 
during a dynamic pandemic.
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Background
The coronavirus disease (COVID-19) pandemic has 
been characterized by a high uncertainty in outcomes 
for those contracting the virus, particularly regarding the 
severity of symptoms, disease trajectories, and mortal-
ity. Additionally, there are differences in governmental 
public health responses between countries and between 
surges in COVID-19 cases (“waves”) [1]. As such, out-
comes have varied by geographic region and temporally 
by “wave” [2]. This has further exacerbated uncertainty, 
making it difficult to predict outcomes among people 
with COVID-19 who are admitted to the hospital.

Approximately 20% of patients hospitalized with 
COVID-19 require intensive care and possibly invasive 
mechanical ventilation [3, 4]. Patient preferences with 
COVID-19 for mechanical ventilation may be different 
than for other types of pneumonia, because intubation 
for these patients is often prolonged, may be adminis-
tered in settings characterized by severe social isolation 
and is associated with very high average mortality rates 
[3, 5]. Supporting patients and surrogate decision-makers 
in conversations facing decisions regarding admission 
to the intensive care unit (ICU) and mechanical venti-
lation requires providing an accurate forecast of their 
likely outcomes based on their individual characteristics 
[3, 6]. Further, given the continuous pressure on health 
care systems, there is a need to support decision-making 
in triaging people with COVID-19 in the Emergency 
Department (ED) for hospital or ICU admission. Clinical 
prediction models have the potential to support health 
care providers and people with COVID-19 and their fam-
ilies in decision-making by providing accurate prognoses.

Since the start of the pandemic, over 200 prediction 
models for the diagnosis and prognosis of COVID-19 
have appeared in the literature, but few were developed 
with high methodological rigor [7]. Almost all pub-
lished models were identified as having a high risk of 
bias, indicating that their reported performance is most 
likely overly optimistic [7]. Although some of these mod-
els were externally validated — showing highly variable 
model performance — the validity and generalizability in 
settings beyond those in which the model was developed 
remains largely unknown [8]. Poorly calibrated prognos-
tic models may lead to harm, since they yield misinfor-
mation that can lead to clinical decision-making that is 
worse than using best “on average” information [9–11].

In addition to examining geographic transport-
ability, since new SARS-CoV-2 variants with different 

COVID-19 severity are emerging (such as Omicron), 
natural and vaccine immunity are developing and treat-
ment best practices are rapidly evolving over time (e.g., 
proning, minimizing paralytics, lung-protective volumes, 
remdesivir, dexamethasone), validating and updating 
these prognostic models may be crucial, even within the 
same geographic setting [12, 13]. Changes over time in 
the selection of patients who are admitted to the hospi-
tal can also have important effects on outcomes and on 
the consistency of predictor effects. Models developed on 
abundant first-wave data may have little generalizability 
to later waves.

Both in the New York City (NYC) area and the 
Netherlands (NL), prognostic models were devel-
oped for predicting outcomes in patients hospitalized 
with COVID-19: The Northwell COVID-19 Survival 
(NOCOS) model was developed on a large set of NYC 
data and the COVID Outcome Prediction in the Emer-
gency Department (COPE) model was developed on a 
large set of NL data [14, 15]. We aimed to evaluate the 
geographic and temporal transportability of these two 
models and to examine updating approaches. Thus, we 
sought to gain further insight on model transportability 
to different settings and to different time windows, par-
ticularly in a dynamic pandemic.

Methods
Population
The database included anonymized data of COVID-19 
patients who were admitted to 12 Northwell Clinics in the 
NYC area and to 4 Dutch hospitals. NOCOS and COPE 
were developed on data of patients who presented at the 
ED and were admitted to the hospital with suspected 
COVID-19 in the first wave of the pandemic between 
March and August 2020, in NYC and NL respectively. To 
evaluate the temporal and geographic transportability of 
NOCOS and COPE, we used data of patients who pre-
sented at the ED and were admitted to the hospital with 
suspected COVID-19 in the second wave of the pan-
demic, between September and December 2020. Patients 
being transferred to other hospitals were excluded since 
information on outcomes was missing.

Outcomes
The outcomes of interest were (a) death or transfer to a 
hospice within 28 days after hospital admission and (b) 
requiring mechanical ventilation (NYC) or ICU admis-
sion (NL) within 28 days after hospital admission.

Keywords:  COVID-19, Emergency department, Clinical prediction models, Generalizability, Transportability
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Predictors
Based on prior literature both NOCOS and COPE 
included patient characteristics (sex, age, BMI), vital 
parameters (oxygen saturation, systolic blood pressure, 
heart rate, respiratory rate [RR], body temperature), and 
blood test values (C-reactive protein [CRP], lactic dehy-
drogenase [LDH], D-Dimer, leucocytes, lymphocytes, 
monocytes, neutrophils, eosinophils, Mean Corpuscu-
lar Volume [MCV], albumin, bicarbonate, sodium, cre-
atinine, urea), all measured at ED admission [7, 14, 15]. 
Logarithmic transformations of predictor values were 
included to capture non-linear associations with the 
outcomes. The date of admission was included to cap-
ture potential secular changes in outcomes over time; 
these variables were fixed to calibrate risk predictions to 
outcome rates at the end of the first wave. In the case of 
multiple measurements for the same patient, we used the 
first measurement after presentation at the ED. We used 
Multivariate Imputation by Chained Equations (R-pack-
ages mice) for multiple imputation of missing predictor 
values [16, 17]. Multiple imputation in the validation data 
was undertaken separately from multiple imputation in 
the development data to ensure fully independent model 
validation.

Model development
Details on the development of COPE and NOCOS are 
described in other publications [14, 15]. A summary of 
important details is provided in the supplement (Addi-
tional file  1: Box S1), together with the model formulas 
(Additional file 1: Table S1).

Model validation
Model performance was assessed temporally on subse-
quent second-wave data at the same site and also geo-
graphically, i.e., COPE was evaluated on second-wave 
NYC data and NOCOS on second-wave NL data. We 
assessed discriminative ability with the area under the 
operator receiver characteristic curve (AUC). The model-
based concordance (mb.c), which provides the expected 
AUC in a validation dataset based on the distribution 
of the predicted probabilities (i.e., assuming no model 
invalidity), was used to understand the impact on the 
discriminative ability of potential differences in case-
mix heterogeneity between the development and valida-
tion data [18]. We assessed calibration with calibration 
plots of ten equally sized groups of predicted risk, with 
the E-statistic — the average absolute difference between 
predicted probabilities and observed frequencies accord-
ing to a smooth calibration curve – and with calibration 
intercepts and calibration slopes [19]. We used decision 
curves to assess the net benefit of using the models at a 

range of decision thresholds [20]. We also evaluated the 
net benefit after updating the intercept and the slope in 
the validation data. All analyses were performed in MAT-
LAB 2019b and in R software, at the NYC and Dutch site, 
respectively [16].

Results
Patient characteristics and outcomes
Mortality
Twenty-eight-day mortality was considerably higher in 
the NYC first-wave data (2551/12,163 = 21.0%), com-
pared to the second-wave (216/2137 = 10.1%) and the NL 
data (first wave 629/5831 = 10.8%; second wave 326/3252 
= 10.0%). Many predictors were similarly distributed in 
the NL and the NYC area, with the exception of CRP and 
LDH, which were higher, and D-Dimer, which was lower 
in the NYC area (Table  1). These biomarkers may have 
been measured in sicker patients, reflected in higher bio-
marker levels when larger proportions were missing.

Need for mechanical ventilation or ICU admission
In the NYC area, the proportion of patients receiv-
ing mechanical ventilation decreased from 16.9% 
(2056/12,163) in the first wave to 10.4% (223/2135) in the 
second wave of the pandemic. The rate of ICU admis-
sion in NL (fully recorded for two out of four hospitals) 
decreased from 8.1% (214/2633) in the first wave to 5.9% 
(86/1466) in the second wave of the pandemic. How-
ever, for validation of the models predicting the need 
of mechanical ventilation or ICU admission in the NL 
data, we only used patients below the age of 70, as the 
probability of being admitted to the ICU paradoxically 
decreased with age after the age of 70, reflecting a triage 
policy not to admit older patients to the ICU rather than 
using a triage policy based on disease severity [15]. The 
rate of ICU admission in patients below the age of 70 in 
NL decreased from 9.9% (128/1296) in the first wave to 
6.4% (45/706) in the second wave of the pandemic.

Validation of prognostic models
Mortality
COPE discriminated well at temporal validation (AUC 
0.82 [0.80; 0.84]; Fig.  1A), with excellent calibration 
(E-statistic 0.8%; calibration intercept −0.05 [−0.17; 
0.08]; calibration slope 0.98 [0.86; 1.10]). At geographic 
validation in second-wave NYC data, discrimination 
was satisfactory (AUC 0.78 [0.75; 0.81]; Fig.  1B), but 
with moderate over-prediction of mortality risk, par-
ticularly in higher risk patients (E-statistic 2.9%; calibra-
tion intercept −0.33 [−0.50; −0.17]; calibration slope 
0.82 [0.66; 0.97]).
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In contrast, when NOCOS was evaluated in NYC area 
data from the second wave, while discrimination was 
adequate (AUC 0.77 [0.74; 0.81]; Fig.  1C), NOCOS sys-
tematically overestimated the mortality risk (E-statistic 
5.1%; calibration intercept −0.50 [−0.65; −0.34]). Simi-
larly, when tested in NL data, discrimination remained 
adequate (AUC 0.81 [0.79; 0.83]; Fig.  1D), but again 
NOCOS over-predicted mortality risk, particularly in 
lower risk patients (E-statistic 4.0%; calibration inter-
cept −0.39 [−0.51; −0.28]). Surprisingly, NOCOS was 
“underfitted” (calibration slope>1), both at temporal vali-
dation (calibration slope 1.33 [1.10; 1.57]) and geographic 
validation (calibration slope 1.55 [1.36; 1.74]), probably 
due to overly aggressive shrinkage of the predictor effects 
of NOCOS.

In NL data, both COPE and NOCOS had a positive 
net benefit for decision thresholds up to 70%, but the 
net benefit of COPE was considerably higher for deci-
sion thresholds up to 50% (Fig.  2A). Recalibration of 
both models to the second-wave NL data led to limited 
improvements in net benefit. In the NYC data, the net 
benefit of COPE was positive and more favorable than 

the net benefit of NOCOS for decision thresholds up to 
30%, but was negative for decision thresholds over 35%, 
while NOCOS was not negative for the full range of deci-
sion thresholds. After recalibration of the intercept and 
the slope to the second-wave NYC data (Fig. 2B), the net 
benefit of COPE and NOCOS was more similar.

Exploring the influence of changes in outcome rates over time 
in the first wave
To explore variations in outcome rates over time, we 
examined COPE and NOCOS predictions when the vari-
able for calendar time was excluded from the model and 
compared that to performance of the full model. When 
NL data from March was used to predict outcome rates 
in the second-wave NL data, the average predicted 
mortality was 17.1%, an over-prediction of 7.1%. When 
data from the full first wave was used, the average pre-
dicted mortality in the second wave decreased to 12.3%, 
an over-prediction of 2.3%. Correcting for the “March 
effect” led to the excellent calibration, with an average 
over-prediction of only 0.5%. The NOCOS model devel-
oped on first-wave data from March also over-predicted 

Table 1  Baseline characteristics of 1st wave and 2nd wave patient cohorts in the Netherlands and NYC. Median, quartile range 
(“Q1” = first quartile; “Q3” = third quartile) and percentage missing (“% NA”) are presented for all continuous variables. The percentage 
of patients with male sex is reported in the last row

NL 1st wave
n = 5831

NL 2nd wave
n = 3252

NYC 1st wave
n = 12,163

NYC 2nd wave
n = 2137

% NA Median Q1 Q3 % NA Median Q1 Q3 % NA Median Q1 Q3 % NA Median Q1 Q3

 Age (years) 0 70 58 80 0 71 58 80 0 65 54 77 0 66 54 77

 BMI (kg/m2) 58 26 23 30 59 26 23 30 17 28 24.6 32.3 2 28.1 24.9 32.4

 HR (bpm) 39 90 78 103 40 90 78 105 3 90 79 102 0 87 76 98

 SBP (mmHg) 42 133 118 150 43 134 119 151 3 127 114 143 0 129 115 145

 RR (/min) 42 19 16 23 43 20 16 24 3 20 18 23 0 20 18 22

 Saturation (%) 41 95.8 94.0 97.5 40 95.7 94.0 97.5 3 97 95 99 0 97 95 99

 Temperature (°C) 40 37.3 36.7 38.1 42 37.3 36.7 38.1 4 37.2 36.8 37.9 1 37.1 36.7 37.7

 CRP (mg/L) 7 48 10 118 9 57 16 124 41 109 56 186 6 74 34 131

 D-Dimer (μg/L) 64 1100 527 2545 76 1060 531 2170 36 477 282 1033 5 307 200 509

 LDH (U/L) 18 244 200 322 22 247 203 334 41 431 329 568 9 354 277 461

 Leucocytes (×10^9/L) 7 9.1 6.7 12.7 10 9.4 6.6 12.9 3 7.6 5.6 10.4 1 6.9 5.2 9.4

 Lymphocytes (x10^9/L) 16 1.04 0.66 1.6 20 0.98 0.62 1.50 4 0.92 0.64 1.33 1 0.91 0.63 1.35

 Albumin (g/L) 15 39 35.5 42 20 39 35 42 3 34 30 38 1 36 32 40

 Bicarbonate (mmol/L) 45 23.6 21 26 50 23.5 21 26 3 24 21 26 1 24 22 26

 Creatinine (μmol/L) 8 84 66 111 10 84 66 116 3 93 72 133 1 88 71 121

 Eosinophils (×10^9/L) 26 0.03 0.00 0.10 27 0.03 0.01 0.10 5 0 0 0.04 1 0.01 0 0.05

 MCV (fL) 7 90 87 94 10 90 87 94 5 88 84 92 1 88 85 92

 Monocytes (×10^9/L) 30 0.67 0.44 0.95 30 0.67 0.43 0.98 4 0.49 0.33 0.71 1 0.48 0.33 0.69

 Neutrophils (×10^9/L) 16 5.6 2.2 9.0 21 5.8 2.4 9.4 4 5.9 4.1 8.5 1 5.1 3.6 7.4

 Sodium (mmol/L) 9 138 135 140 11 137 134 139 3 136 133 139 1 136 134 139

 Urea (mmol/L) 9 6.5 4.6 9.7 11 6.9 4.9 10.4 3 6.4 4.3 11.1 1 6.1 4.3 9.3

 Male sex 0 57% 0 56% 0 57% 0 57%
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mortality in the second-wave NYC data; the average pre-
dicted mortality was 17.3%, an over-prediction of 7.1%. 
However, using NYC data from the full first wave or 
including a time effect did not correct this over-predic-
tion; these models yielded over-predictions of 7.2% and 
5.2%, respectively.

Need for mechanical ventilation or ICU admission
Although COPE significantly over-predicted ICU 
admission in second-wave patients in NL (Fig.  3A; 
calibration intercept −0.50 [−0.81; −0.19]; E-statistic 
4.1%), it was well able to identify the patients at high 
risk of needing ICU admission, as expressed by good 

Fig. 1  Temporal and geographic validation: performance of COPE and NOCOS for predicting death in second-wave patients. Calibration plots of 
patients who were admitted since September 2020 in 4 NL hospitals and 12 NYC hospitals. Temporal validations of COPE and NOCOS are in panels 
A and C, respectively. Geographic validations of COPE and NOCOS are in panels B and D, respectively. n is number of patients; a = calibration 
intercept (0 is perfect); b = calibration slope (1 is perfect); c = AUC (0.5 is useless; 1 is perfect); mb.c = model-based AUC​
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Fig. 2  Temporal and geographic validation: net benefit of COPE and NOCOS for predicting death in second-wave patients. Decision curves of 
patients who were admitted since September 2020 in 4 NL hospitals (panel A) and 12 NYC hospitals (panel B). Net benefit is plotted against the full 
range of possible decision threshold probabilities for the original prognostic models (“COPE” in red and “NOCOS” in blue) and for these models with 
a calibrated intercept and slope (“COPE.recal” in dashed red and “NOCOS.recal” in dashed blue)
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discriminative ability (AUC 0.83 [0.78; 0.89]) and sub-
stantially stronger predictor effects than in the devel-
opment data (calibration slope 1.56 [1.11; 2.01]). COPE 
also substantially over-predicted the need for mechani-
cal ventilation in NYC, possibly because it was designed 
to predict the need for ICU admission rather than the 

need for mechanical ventilation (Fig.  3B; calibration 
intercept −0.86 [−1.00; −0.71]; E-statistic 9.7%), but 
the discriminative ability (AUC 0.74 [0.71; 0.77]) was 
more in line with expectations (mb.c 0.71) and the 
calibration slope (1.13 [0.90; 1.37]) was much closer to 
ideal (slope 1).

Fig. 3  Temporal and geographic validation: Performance of COPE and NOCOS for predicting the need for ICU admission (NL) or mechanical 
ventilation (NYC) in second-wave patients. Calibration plots of patients who were admitted since September 2020 in 4 NL hospitals and 12 NYC 
hospitals. Temporal validations of COPE and NOCOS are in panels A and C, respectively. Geographic validations of COPE and NOCOS are in panels 
B and D, respectively. n is number of patients; a = calibration intercept (0 is perfect); b = calibration slope (1 is perfect); c = AUC (0.5 is useless; 1 is 
perfect); mb.c = model-based AUC​
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NOCOS was well calibrated (Fig.  3C; calibration 
intercept −0.09 [−0.24; 0.07]; calibration slope 1.18 
[0.85; 1.50]; E-statistic 1.7%) with a discriminative 
performance similar to expectation in second-wave 
NYC patients (AUC 0.69 [0.65; 0.74] versus mb.c 0.67). 
NOCOS predicted the need for ICU admission in NL 
very well on average (Fig. 3D; calibration intercept 0.15 
[−0.16; 0.45]; E-statistic 2.3%), but the predictor effects 
were significantly stronger in NL (calibration slope 1.52 
[1.05; 2.00]), also reflected by the much better discrimi-
native ability than expected (AUC 0.80 [0.74; 0.87] ver-
sus mb.c 0.69).

In NL data, both COPE and NOCOS had a negative net 
benefit for decision thresholds over approximately 30% 
(Fig.  4A). For thresholds below this level, the net ben-
efit of COPE was generally better than that of NOCOS. 
Surprisingly, recalibration of both models to the second-
wave NL data led to worse net benefit in this range, prob-
ably because linear recalibration of the intercept and 
slope was insufficient. In the NYC data, the net benefit of 
COPE was negative for decision thresholds over 15% and 
clearly improved after recalibration of the intercept and 
the slope to the second-wave NYC data (Fig. 4B). The net 
benefit of NOCOS was positive for the full range of deci-
sion thresholds in the NYC data, and did not benefit from 
recalibration because NOCOS was already well cali-
brated in second-wave NYC data. After recalibration, the 
decision curves of COPE and NOCOS were quite similar.

Discussion
We examined the performance of prognostic models 
developed on the “first wave” COVID-19 data to predict 
mortality during the second wave, both locally and in a 
different setting. The model developed in the Nether-
lands (COPE) had reasonably good performance in both 
settings, except with some over-prediction of risk in the 
NYC area. This performance was only achieved by care-
fully modeling the effect of secular changes during the 
first wave such that predictions were calibrated to yield 
risks consistent with the end of the first wave (August 
2020). The model developed in the NYC area (NOCOS), 
greatly over-predicted risk in both NL and in NYC during 
the second wave, despite including a variable to capture 
the effect of calendar time in the first wave. These results 
underscore the need for caution when transporting prog-
nostic models over time and space: sometimes these 
models work, but sometimes they don’t — and specifics 

matter. In particular, we observed that calibration may be 
especially sensitive to changes in setting, consistent with 
our prior work [11, 21].

It is unsurprising that models developed on data from 
March 2020 at the very beginning of the pandemic led 
to profound over-prediction of mortality risk during the 
second wave. Presumably, this in part reflects a “learn-
ing curve” as clinical management evolved rapidly over 
time. This might be due to the development of specific 
therapeutic approaches – including proning, minimiz-
ing paralytics, changes in ventilator volume settings, 
remdesivir, dexamethasone, and other treatments — as 
well as general improvements in supportive care, which 
may relate to the capacity of the health systems to cope 
with overwhelming volumes. Based on our findings, it 
appears that the “first wave effect” was more prolonged 
in NYC, since accounting for the secular trend within 
the first wave improved COPE predictions substantially 
but not NOCOS predictions. Again, this might be antici-
pated given the intensity of the pandemic in this region. 
Despite less than excellent performance on second-wave 
data, decision curve analysis generally showed positive 
net benefit across most thresholds, except at high-risk 
levels above which there were few patients.

An interesting finding from the models predicting 
the need for mechanical ventilation is that they both 
appeared to be under-fit, with stronger predictor effects 
(slope > 1.0) in second-wave data and a “paradoxical” 
improvement in discriminative ability on validation data. 
This suggests that mechanical ventilation might have 
been better targeted to patients at higher risk in the sec-
ond wave in both settings.

A recent systematic review examined more than 200 
COVID-19 models and found that these did not generally 
apply rigorous development methods [7]. All reviewed 
models demonstrated a high or unclear risk of bias 
when evaluated using the prediction model risk of bias 
assessment tool (PROBAST) [22]. We specifically used 
PROBAST as a guide when developing our model, to 
ensure methods consistent with a low risk of bias. Nev-
ertheless, our results point to fundamental challenges of 
prediction when developing models during a dynamic 
pandemic, even when carefully adhering to good meth-
odological practice. Techniques for dynamic updating 
of models may be needed in such circumstances [23–
27]. While some of these challenges may be unique to 
COVID-19, recently the risk of poor model performance 

(See figure on next page.)
Fig. 4  Temporal and geographic validation: Net benefit of COPE and NOCOS for predicting need for ICU admission (NL) or mechanical ventilation 
(NYC) in second-wave patients. Decision curves of patients who were admitted since September 2020 in 4 NL hospitals (panel A) and 12 NYC 
hospitals (panel B). Net benefit is plotted against the full range of possible decision threshold probabilities for the original prognostic models 
(“COPE” in red and “NOCOS” in blue) and for these models with a calibrated intercept and slope (“COPE.recal” in dashed red and “NOCOS.recal” in 
dashed blue)
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Fig. 4  (See legend on previous page.)
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and the need for continual updating to avoid the poten-
tial for harmful decision-making has gotten increasing 
attention [9, 23, 26–30].

We note there are several limitations to our study. Per-
formance of these models as measured here in second-
wave data may not currently apply, since the pandemic 
has continued to evolve. In particular, the widespread 
dissemination of vaccines may well affect clinical pres-
entation, patient risk, and predictor effects. So-called 
“breakthrough” COVID generally has a much lower mor-
tality rate. These issues only strengthen the importance 
of our methodological conclusions. Another limitation 
is that we were limited to using variables that were rou-
tinely collected in both locations. In particular, we were 
limited to using variables present on ED presentation, 
which limited the performance of models used to predict 
outcomes in the subset of patients admitted to the ICU 
or placed on mechanical ventilation. Finally, the use of 
similar regression modeling strategies at both geographi-
cal sites may be considered a limitation.

Other investigators have underscored the fact that 
COVID-19 has posed many challenges for mathematical 
modelers, in particular, accurate forecasting of the pan-
demic has proven elusive [31]. Our findings underscore 
that the prediction of COVID-19 clinical outcomes may 
also have important challenges, since outcomes risks 
can be affected by variables that are not included in the 
model and that change over time and space, affecting 
the baseline risk and also modifying the effect of predic-
tor variables in the model. In particular, mortality rates 
early in the epidemic were substantially higher than those 
later in the epidemic and this change over time was dif-
ferent across the two settings we examined. Additionally, 
improved targeted of mechanical ventilation over time 
led to paradoxically improved discrimination, although 
with poor calibration. These concerns point to the impor-
tance of dynamic model updating, which may need to be 
tailored to local circumstances, placing limits on the gen-
eralizability of global models.

We note that our study had several unique strengths. 
The databases used for model development were among 
the largest first-wave databases, including over 12,000 
hospitalized patients from the NYC region and over 5000 
hospitalized Dutch patients. They were both developed 
on multiple hospitals, also permitting rigorous internal-
external validation approaches on model development 
and presumably improving model generalizability [32]. 
Unlike most prior models developed for in-hospital 
COVID-19 prognosis, we carefully adhered to methodo-
logical practices shown to be associated with a lower risk 
of bias [7, 33–35]. We used both conventional and novel 
measures of model performance, including decision 
curve analysis to assess clinical utility. Finally, ours is the 

only attempt we know of that has examined temporal and 
geographic validation of prognostic COVID-19 models in 
different pandemic waves and across different countries.

Future work should focus on methods for continuous 
dynamic model updating, including a comparison of 
different methods for updating [23, 25, 27, 36]. Further-
more, whether prognostic models improve process and 
clinical outcomes need to be studied, together with barri-
ers and facilitators of their uptake in clinical practice.

Conclusions
NOCOS performed moderately worse than COPE, both at 
temporal and geographic validation, likely reflecting unique 
aspects of the early pandemic in NYC. Frequent updating of 
prognostic models is likely to be required to for transport-
ability over time and space during a dynamic pandemic.
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