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Abstract 

Background:  Only a few of the 34 biochemical biomarkers measured in the UK Biobank (UKB) have been associated 
with breast cancer, with many associations suffering from possible confounding and reverse causation. This study 
aimed to screen and rank all UKB biochemical biomarkers for possible causal relationships with breast cancer.

Methods:  We conducted two-sample Mendelian randomisation (MR) analyses on ~420,000 women by leveraging 
summary-level genetic exposure associations from the UKB study (n = 194,174) and summary-level genetic outcome 
associations from the Breast Cancer Association Consortium (n = 228,951). Our exposures included all 34 biochemi-
cal biomarkers in the UKB, and our outcomes were overall, oestrogen-positive, and oestrogen-negative breast cancer. 
We performed inverse-variance weighted MR, weighted median MR, MR-Egger, and MR-PRESSO for 30 biomarkers for 
which we found multiple instrumental variables. We additionally performed multivariable MR to adjust for known risk 
factors, bidirectional MR to investigate reverse causation, and MR Bayesian model averaging to rank the significant 
biomarkers by their genetic evidence.

Results:  Increased genetic liability to overall breast cancer was robustly associated with the following biomarkers 
by decreasing importance: testosterone (odds ratio (OR): 1.12, 95% confidence interval (CI): 1.04–1.21), high-density 
lipoprotein (HDL) cholesterol (OR: 1.08, 95% CI: 1.04–1.13), insulin-like growth factor 1 (OR: 1.08, 95% CI: 1.02–1.13), and 
alkaline phosphatase (ALP) (OR: 0.93, 95% CI: 0.89–0.98).

Conclusions:  Our findings support a likely causal role of genetically predicted levels of testosterone, HDL cholesterol, 
and IGF-1, as well as a novel potential role of ALP in breast cancer aetiology. Further studies are needed to understand 
full disease pathways that may inform breast cancer prevention.
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Background
Breast cancer is the most common cancer in women, 
with the lifetime risk of breast cancer for women in 
highly economically developed countries being 1 in 9. 
While breast cancer is a leading cause of death in women 
[1], the exact mechanisms of breast cancer initiation and 
progression are not known [2], necessitating a better 
understanding of disease aetiology.
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The UK Biobank (UKB) study is a prospective cohort 
study that measured the genotypes and levels of 34 bio-
chemical biomarkers of around 500,000 participants aged 
between 40 and 69 years, of which we sampled 194,174 
women of white-British ancestry [3]. The biomarkers are 
grouped into six categories, namely bone and joint, can-
cer, cardiovascular, diabetes, liver, and renal biomarkers, 
which were measured due to their established relevance 
in a range of diseases and their diagnostic value and 
because they characterise phenotypes that are otherwise 
difficult to assess.

A few observational studies have been performed to 
study the associations between some of the UKB bio-
chemical biomarkers and overall breast cancer, and 
significant associations have been found for several bio-
markers. However, observational studies are prone to 
residual confounding and reverse causation. Mendelian 
randomisation (MR) complements observational studies 
by using genetic variants as instrumental variables (IVs) 
to establish likely causal associations between exposures 
and outcomes. To our knowledge, fewer than half of the 
biochemical biomarkers in the UKB have been investi-
gated for likely causal associations with overall breast 
cancer using MR, and even fewer studies have stratified 
breast cancer by oestrogen receptor (ER) presence, which 
influences the disease prognosis and type of therapy that 
will be most effective [2]. See Additional file 1: Table S1 
for a summary of the most recent observational and MR 
findings associating the UKB biochemical biomarkers 
with breast cancer in the literature.

This study aimed to use an MR framework to (1) 
explore univariable associations between genetically pre-
dicted levels of UKB biochemical biomarkers and genetic 
liability to overall, ER-positive, and ER-negative breast 
cancer; (2) investigate significant associations in detail 
through multivariable and bidirectional approaches; and 
(3) to rank the associated biomarkers by genetic evi-
dence using a multivariable Bayesian MR approach. We 
achieved our aims by replicating and extending previous 
analyses to a bigger sample containing ~420,000 women 
and providing novel evidence for biomarkers not previ-
ously studied using MR.

Methods
Analysis plan
Our prospective plan was to carry out a variety of two-
sample univariable MR (UVMR) analyses to examine the 
associations of each of the UKB biochemical biomarkers 
with overall, ER-positive, and ER-negative breast cancer 
liability. After our UVMR analyses showed significant 
associations, we performed further multivariable MR 
(MVMR) analyses to adjust for known risk factors and 
bidirectional analyses. We finally ranked our nominally 

significant biomarkers by importance using a multi-
variable Bayesian approach [4]. Our analysis follows the 
guidelines for performing MR investigations [5] and our 
reporting follows the guidelines for strengthening the 
reporting of Mendelian randomization studies (STROBE-
MR) (Additional file 2: Checklist S1) [6]. We did not pre-
register the study protocol.

Study populations
Our study used summary-level exposure data from the 
UKB study [7] and summary-level outcome data from the 
Breast Cancer Association Consortium (BCAC) [8]. The 
BCAC includes ~6000 samples from the UK [8], which 
amounts to, at most, a ~1.4% sample overlap between the 
exposure and outcome samples. Our data only includes 
women of European descent to reduce bias from popula-
tion stratification.

Exposure data
We obtained publicly available summary-level genome-
wide association study (GWAS) statistics on 34 serum, 
urine, and red blood cell biomarker levels; body mass 
index (BMI); and alcohol intake frequency from unre-
lated female participants of white-British ancestry (n = 
194,174) in the UKB cohort study from Neale et  al. [9]. 
The genotypes and 34 biomarker levels were collected by 
the UKB study at baseline between 2006 and 2010 using 
various laboratory techniques and instruments by differ-
ent suppliers [7, 10]. The GWASes were performed using 
age, age^2, and the first 20 principal components (PCs) 
as covariates [11]. Inverse-rank normalised GWAS data 
was used because many of the quantitative biomarker 
traits were non-normally distributed. Most women (at 
least 59%) in the UKB cohort were post-menopausal [12]. 
More information about the panel of UKB biomarkers 
and the original UKB study can be found elsewhere [3, 7].

Outcome data
Publicly available GWAS summary statistics on over-
all breast cancer cases (n = 122,977) and controls (n = 
105,974) of European ancestry were obtained from the 
BCAC [13]. Of the breast cancer cases, 69,501 were 
ER-positive, 21,468 were ER-negative, and the majority 
developed post-menopause. More details about the origi-
nal studies are described elsewhere [8, 14, 15].

Statistical analysis
Selection of instrumental variables
For each exposure, we selected associated single-nucleo-
tide polymorphisms (SNPs) at genome-wide significance 
(P < 5 × 10−8) and ensured their independence by remov-
ing those in linkage disequilibrium using the PLINK 
method (r2 < 0.001, clumping distance = 10,000kb). 
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We then harmonised the directions of the effect alleles 
between exposures and outcomes.

In all our MR analyses, SNPs must satisfy three 
assumptions to be considered valid IVs. Genetic vari-
ants must (1) strongly associate with the exposure (the 
relevance assumption), (2) be independent of confound-
ers (the independence assumption), and (3) affect the 
outcome only through their effect on the exposure (the 
exclusion restriction assumption).

Univariable analyses
The main univariable analysis consisted of inverse-vari-
ance weighted (IVW) MR between each exposure and 
each outcome. The IVW method first estimates the Wald 
ratio for each SNP by dividing the SNP-outcome asso-
ciation by the SNP-exposure association and then com-
bines these ratios in a fixed effect meta-analysis where 
each ratio is weighted by the inverse of the variance of 
the SNP-outcome association [16]. We used P < 0.05 
as the nominal significance threshold. We also derived 
false discovery rate (FDR)-corrected P-values with the 
Benjamini-Hochberg (BH) method and used P < 0.05 as 
the FDR-corrected significance threshold. For exposures 
for which only 1 IV could be identified, we estimated the 
Wald ratio [17]. Our results are reported as odds ratios 
(OR) per standard deviation (SD) change in the geneti-
cally predicted biomarker concentration.

A common violation of the exclusion restriction IV 
condition is caused by horizontal pleiotropy, where a 
genetic variant has an effect on the outcome that does not 
occur through the exposure [18]. Therefore, we employed 
several additional univariable approaches with different 
underlying assumptions about the structure of the plei-
otropy for all exposures, including the MR-Egger [19], 
weighted median [20], and MR Pleiotropy RESidual Sum 
and Outlier (MR-PRESSO) [21]. The MR-Egger allows for 
some directional pleiotropy in its estimate of the causal 
effect by making the additional Instrument Strength 
Independent of Direct Effect (InSIDE) assumption, which 
states that across all instruments, the magnitude of the 
pleiotropic effect is independent of the strength of the 
genetic variant-exposure association [19]. The weighted 
median allows for sparse or balanced pleiotropy by 
down-weighting outliers [20]. The MR-PRESSO method 
allows for some directional pleiotropy by identifying and 
adjusting for outliers [21].

Sensitivity analyses
We tested the robustness of our univariable findings 
by performing MVMR [22, 23] and bidirectional MR. 
MVMR was used to adjust for previously reported risk 
factors, while bidirectional MR was employed to rule out 
potential reverse causation.

We performed two-sample MVMR analyses for all 
seven biomarkers that were nominally significantly 
associated with overall breast cancer in IVW MR. We 
searched for associations at P < 10−8 of all variants used 
as IVs in Phenoscanner [24, 25] (Additional file 3: T1-T7), 
a database providing summarised GWASes, and adjusted 
for traits that could be considered reasons for horizon-
tal pleiotropy. MVMR assumes that pleiotropic pathways 
operate through the risk factors included in the model 
[18]. For all MVMR analyses, we included SNPs that were 
genome-wide significantly associated (P < 5 × 10−8) with 
any exposure or risk factor that was taken into considera-
tion in an MVMR model and not in linkage disequilib-
rium (r2 < 0.001, clumping distance = 10,000kb).

As lipids are correlated [26], we included HDL choles-
terol, low-density lipoprotein (LDL) cholesterol, triglyc-
erides, and lipoprotein A in MVMR models to observe 
the direct associations of each lipid with each outcome.

As BMI [27] and alcohol intake [28] are associated with 
breast cancer risk, we included BMI and alcohol intake 
frequency in MVMR models for each of the seven bio-
markers that we found to be nominally significantly asso-
ciated with overall breast cancer in IVW MR.

As oestrogen decreases alkaline phosphatase (ALP) 
expression and activity in breast cancer cells [29] and we 
could not obtain enough genetic variants for oestradiol, 
we adjusted for testosterone and SHBG in an MVMR 
model with ALP.

After adjusting for BMI in MVMR, significant asso-
ciations between SHBG and breast cancer risk have 
been found [28], so [30] we included BMI and SHBG in 
MVMR models.

Due to the low prior probability of association between 
ALP and breast cancer, we performed a bidirectional uni-
variable MR analysis of genetically predicted overall, ER-
positive, and ER-negative breast cancer liability and ALP 
levels.

Exposure rankings
We used MR Bayesian model averaging (MR-BMA) to 
agnostically rank the causal importance of the seven bio-
markers found to be nominally significantly associated 
with overall breast cancer in IVW MR while accounting 
for potential pleiotropy [4]. Empirical P-values were cal-
culated using a permutation approach [31] and adjusted 
for multiple testing using the BH method with P < 0.05 
as the significance threshold. All independent (r2 < 0.001) 
genetic variants associated with any of the biomarkers at 
genome-wide significance were included in the analysis 
(n = 460).

We used MR-BMA to consider each combination of 
biomarkers (all single biomarkers, all pairs of biomarkers, 
all triplets, and so on) as a candidate model in an MVMR 



Page 4 of 14Tang et al. BMC Medicine          (2022) 20:457 

analysis using weighted regression. Each candidate model 
was assigned a posterior probability (PP) that expresses 
the likelihood that the candidate model contains the true 
set of causal biomarkers using the regression’s goodness-
of-fit measure.

Then, we used MR-BMA to perform model-averaging 
to assign each biomarker a marginal inclusion probabil-
ity (MIP) and report each biomarker’s model-averaged 
causal effect (MACE) on overall breast cancer. The MIP 
represents the probability that the biomarker is a causal 
determinant of breast cancer risk, and the MACE rep-
resents the biomarker’s weighted average direct causal 
effect on risk across all candidate models. The MIP was 
calculated by summing up the posterior probabilities 
of all candidate models where the biomarker is present. 
The MACE underestimates the true causal effect of a 
biomarker on overall breast cancer and should not be 
interpreted in absolute terms, but as an indication of the 
effect direction and to compare the relative causal effects 
among biomarkers.

We used 0.5 as the prior probability for inclusion in the 
main analysis, which reflected an a priori belief that half 
of the candidate models or that half of the nominally sig-
nificant biomarkers are causal, and priors of 0.25 and 0.75 
as sensitivity analyses.

Software
We employed the TwoSampleMR [31], MendelianRan-
domization [32], MRPRESSO [33], and ieugwasr [34] R 
packages, as well as the GitHub repository https://​github.​
com/​verena-​zuber/ for MR-BMA for our analyses using 
R (version 4.0.5). We searched for secondary trait asso-
ciations using Phenoscanner [24, 25].

Results
Overall breast cancer results
Univariable analyses
We screened all UKB biochemical biomarkers for likely 
causal associations with overall breast cancer using vari-
ous univariable MR methods. Using IVW MR, we found 
multiple testing adjusted significant associations of 
genetically predicted levels of six biomarkers and nomi-
nally significant associations of seven biomarkers and 
overall breast cancer liability. The IVW MR ORs and 
confidence intervals (CI) for a SD increase in the geneti-
cally predicted biomarker levels were the following: HDL 
cholesterol (OR: 1.08, 95% CI: 1.04–1.13), ALP (OR: 
0.93, 95% CI: 0.89–0.98), testosterone (OR: 1.12, 95% CI: 
1.04–1.21), triglycerides (OR: 0.93, 95% CI: 0.88–0.98), 
IGF-1 (OR: 1.08, 95% CI: 1.02–1.13), and apolipopro-
tein A (ApoA) (OR: 1.06, 95% CI: 1.02–1.10). Genetically 
predicted aspartate aminotransferase was nominally sig-
nificantly associated with overall breast cancer liability 

in IVW MR (OR: 0.93, 95% CI: 0.88–0.99). We used an 
average of 147 SNPs with F-statistics ranging from 29 to 
2360 as IVs for IVW analyses for these biomarkers (Addi-
tional file 3: T8-T14). F > 10 is considered the threshold 
for a strong instrument [18]. For these biomarkers, the 
weighted median, MR-Egger, and MR-PRESSO effect 
directions and sizes were largely consistent with our IVW 
MR findings, apart from the MR-Egger result for aspar-
tate aminotransferase (Fig. 1).

While genetically predicted C-reactive protein levels 
were not significantly associated with overall breast can-
cer liability in the IVW MR, they were nominally signifi-
cantly positively associated in the MR-Egger (OR: 1.12, 
95% CI: 1.01–1.23) and MR-PRESSO (OR: 1.07, 95% 
CI: 1.02–1.11). We found no evidence of associations 
between genetically predicted levels of any of the remain-
ing 27 UKB biomarkers and overall breast cancer liability 
(Additional file 4: Figs. S1-S6).

A summary of the findings for all 34 biomarkers in the 
context of the existing literature can be found in Addi-
tional file 5: Table S1.

Sensitivity analyses
After adjusting for LDL cholesterol, triglycerides, and 
lipoprotein A in MVMR, genetically predicted HDL cho-
lesterol remained nominally significantly associated with 
overall breast cancer liability (OR: 1.05, 95% CI: 1.00–
1.10) (Additional file 4: Fig. S7).

After adjusting for BMI and alcohol in MVMR, geneti-
cally predicted HDL cholesterol, ALP, testosterone, tri-
glycerides, IGF-1, and apoA had significant direct effects 
on overall breast cancer liability, while aspartate ami-
notransferase did not (Additional file 4: Fig. S8).

Genetically predicted alkaline phosphatase remained 
nominally significantly associated with overall breast 
cancer liability after adjusting for testosterone and SHBG 
in MVMR (OR: 0.94, 95% CI: 0.89–0.98) (Additional 
file 4: Fig. S9).

We found no evidence of an association between genet-
ically predicted SHBG and overall breast cancer liability 
after adjusting for BMI in MVMR (Additional file 4: Fig. 
S10).

We found no evidence of an association in bidirectional 
MR between genetically predicted overall breast cancer 
liability and genetically predicted ALP concentrations 
(Additional file 1: Table S2).

Exposure rankings
We used MR-BMA to rank the seven genetically pre-
dicted biomarkers that were nominally significantly asso-
ciated with overall breast cancer liability in the IVW MR 
according to their MIP and with a prior probability of 
inclusion of 0.5. The biomarkers in the ranking showing 

https://github.com/verena-zuber/
https://github.com/verena-zuber/
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the strongest evidence of causality with FDR-corrected 
significant P-values were testosterone (MIP = 0.979), 
HDL cholesterol (MIP = 0.704), IGF-1 (MIP = 0.639), 
and ALP (MIP = 0.583) (Table 1). The MACE directions 

of these biomarkers also exhibited consistency with our 
IVW MR results. Sensitivity analyses with priors of 0.25 
and 0.75 did not impact the overall rankings (Additional 
file 1: Tables S3-S4).

Fig. 1  MR forest plot of significant biomarkers on overall breast cancer liability. Biomarkers of nominal significance in IVW MR analyses are shown 
in descending order of significance. The forest plot in the centre displays the odds ratio of the effect of an SD increase in genetically predicted 
concentration on overall breast cancer liability as a square, with error bars representing the 95% CI. In addition to the main analysis based on IVW 
MR, we include sensitivity analyses based on the weighted median, MR-Egger, MR-PRESSO, and MVMR accounting for known pleiotropic pathways. 
N. SNPs, number of SNPs; CI, confidence interval; Int. P-value, intercept P-value of MR-Egger; T, testosterone; BMI, body mass index. An asterisk (*) 
indicates nominal significance. Two asterisks (**) indicate FDR-corrected significance
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We also ranked our candidate models according to 
their PP with a prior of 0.5 (Additional file 1: Table S5), 
and we observed a high probability of testosterone, HDL 
cholesterol, IGF-1, and ALP being included in all candi-
date models. Sensitivity analyses with priors of 0.25 and 
0.75 indicated consistent results (Additional file 1: Tables 
S6-S7).

Results stratified by oestrogen receptor (ER) status
Univariable analyses
We stratified the outcome by ER status and screened all 
UKB biochemical biomarkers for likely causal associa-
tions using various univariable MR methods and found 
multiple testing adjusted significant associations between 
genetically predicted levels of testosterone (OR: 1.19, 95% 
CI: 1.09–1.30) and HDL cholesterol (OR: 1.08, 95% CI: 
1.03–1.13), as well as nominally significant associations 
of triglycerides (OR: 0.93, 95% CI: 0.88–0.99), ALP (0.94, 
0.89–9.99), IGF-1 (OR: 1.07, 95% CI: 1.01–1.14), aspar-
tate aminotransferase (OR: 0.93, 95% CI: 0.86–1.00), 
and urea (OR: 0.88, 95% CI: 0.78–1.00) with ER-positive 
breast cancer liability in IVW MR (Fig. 2). We found con-
sistent effect directions across the weighted median, MR-
Egger, and MR-PRESSO analyses for these biomarkers 
apart from genetically predicted aspartate aminotrans-
ferase and urea. Weighted median, MR-Egger, and MR-
PRESSO analyses showed nominally significant positive 
associations between genetically predicted C-reactive 
protein (CRP) and ER-positive breast cancer liability 
(Additional file  4: Fig. S11). We found no evidence of 
associations between any of the 27 remaining UKB bio-
markers and ER-positive breast cancer liability (Addi-
tional file 4: Figs. S11-16).

We found nominally significant associations of genet-
ically predicted levels of HDL cholesterol (OR: 1.08, 
95% CI: 1.02–1.15) and triglycerides (OR: 0.92, 95% CI: 

0.86–0.99) with ER-negative breast cancer liability in 
IVW MR (Fig. 3). We found no evidence of associations 
between any of the 32 remaining UKB biomarkers and 
ER-negative breast cancer liability (Additional file  4: 
Figs. S17-22).

Sensitivity analyses
We found no evidence of associations of lipids with ER-
positive or ER-negative breast cancer liability in MVMR 
models (Additional file 4: Figs. S23 and S24).

We included each of the seven biomarkers that were 
nominally significantly associated with overall breast 
cancer in IVW MR in MVMR models with BMI and 
alcohol. Genetically predicted ALP, HDL cholesterol, 
IGF-1, testosterone, and triglycerides nominally signifi-
cant direct associations with ER-positive breast cancer 
liability, while apoA, HDL cholesterol, and triglycerides 
had nominally significant direct associations with ER-
negative breast cancer liability (Additional file  4: S25 
and S26).

After adjusting for testosterone and SHBG in MVMR, 
genetically predicted ALP remained significantly asso-
ciated with ER-positive breast cancer liability and we 
continued seeing no evidence of association with ER-
negative breast cancer liability (Additional file  4: Figs. 
S27 and S28).

After adjusting for BMI in MVMR, genetically pre-
dicted SHBG was significantly associated with ER-pos-
itive, but not with ER-negative breast cancer liability 
(Additional file 4: Figs. S29 and S30).

We found no evidence of association in the bidirec-
tional MR between genetically predicted ER-positive 
or ER-negative breast cancer liability and ALP levels 
(Additional file 1: Tables S8-S9 Tables).

Table 1  An MR-BMA ranking of individual biomarkers according to their marginal inclusion probability with a prior probability of 
inclusion of 0.5 for overall breast cancer

A ranking of the seven biomarkers nominally significantly associated with overall breast cancer in IVW MR. FDR; false discovery rate. An asterisk (*) indicates nominal 
significance

Exposure Marginal inclusion 
probability

Model-averaged causal 
effect

P-value FDR

1 Testosterone 0.979 0.079 0.001* 0.006*

2 HDL cholesterol 0.704 0.035 0.002* 0.006*

3 IGF-1 0.639 0.025 0.017* 0.032*

4 Alkaline phosphatase 0.583 −0.019 0.018* 0.032*

5 Apolipoprotein A 0.224 −0.010 0.125 0.175

6 Triglycerides 0.064 −0.001 0.868 0.987

7 Aspartate aminotransferase 0.032 0 0.987 0.987
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Discussion
In this study, we used a hypothesis-generating two-sam-
ple summary-level MR approach to screen the UKB for 
biochemical breast cancer biomarkers. We found that 

increases of 1 standard deviation in the genetically pre-
dicted levels of testosterone, HDL cholesterol, IGF-1, 
and ALP were robustly and consistently associated with 
overall breast cancer liability in a variety of univariable, 

Fig. 2  MR forest plot of significant biomarkers on ER-positive breast cancer liability. Biomarkers of nominal significance in IVW MR analyses are 
shown in descending order of significance. The forest plot in the centre displays the odds ratio of the effect of a SD increase in genetically predicted 
biomarker concentration on overall breast cancer liability as a square, with error bars representing the 95% CI. In addition to the main analysis based 
on IVW MR, we include sensitivity analyses based on the weighted median, MR-Egger, MR-PRESSO, and MVMR accounting for known pleiotropic 
pathways. N. SNPs, number of SNPs; CI, confidence interval; Int. P-value, intercept P-value of MR-Egger; T, testosterone; BMI, body mass index. An 
asterisk (*) indicates nominal significance. Two asterisks (**) indicate FDR-corrected significance
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multivariable, bidirectional, and ranking methods based 
on MR. These associations remained for ER-positive 
breast cancer, but only HDL cholesterol remained associ-
ated with ER-negative breast cancer. To our knowledge, 
ALP has not been associated with breast cancer before. 
The summary of our findings and how these compared 
with the literature to the best of our knowledge can be 
found in Additional file 5: Table S1.

For bone and joint biomarkers, we observed a novel 
inverse association between genetically predicted levels 
of ALP and overall and ER-positive breast cancer liability 
that was robust in all MR analyses. One possible expla-
nation for this finding is that ALP-prioritised genes are 
enriched in primary and secondary sexual organs, and 
crucially, gene sets enriched among ALP-associated vari-
ants included oestradiol 17-beta-dehydrogenase activity, 
which catalyses oestradiol to the less potent estrone, thus 
reducing the risk of breast cancer [35]. We were unable 
to adjust our findings for oestradiol concentrations, as 
there are no large, high-quality GWASes for oestra-
diol. We instead adjusted for testosterone and SHBG in 
MVMR and did not observe an attenuation of the effect. 
Future research is required to clarify whether the ALP 
and breast cancer liability association is independent of 
oestrogens. A nominally significant negative association 
between serum levels of calcium and overall breast can-
cer risk was found in cohort studies [36], but not in an 

MR study [37], with which our study concurs. While vita-
min D is negatively associated in observational analyses, 
no evidence of association could be found in MR [38], in 
agreement with the current study. We found no evidence 
of an association between genetically predicted rheuma-
toid factor and breast cancer liability.

For cancer biomarkers, a previous observational and 
MR study found positive associations between levels 
of IGF-1 and overall breast cancer risk in women in the 
UKB [39], which agrees with our findings. IGF-1 has long 
been implicated in breast cancer due to the role of IGF-1 
receptors in activating the AKT and mitogen-activated 
protein kinase signalling networks in tumour growth 
[40]. A meta-analysis of observational studies found posi-
tive associations between oestradiol and overall breast 
cancer risk in post-menopausal women [41], which we 
could not confirm or dispute due to a lack of valid IVs for 
our MR analyses. This was likely due to imprecise meas-
urements of oestradiol levels in the UKB [42], which was 
also a problem in a different study that led to oestradiol 
being excluded [43]. Positive associations between testos-
terone and breast cancer were found in a meta-analysis 
of prospective studies [41] and an MR study [42], which 
agree with our study. One hypothesis for our observed 
positive association of genetically predicted testosterone 
with overall, and ER-positive, but not ER-negative breast 
cancer liability is that the effect is in part mediated by the 

Fig. 3  MR forest plot of significant biomarkers on ER-negative breast cancer liability. Biomarkers of nominal significance in IVW MR analyses are 
shown in descending order of significance. The forest plot in the centre displays the odds ratio of the effect of a SD increase in genetically predicted 
biomarker concentration on overall breast cancer liability as a square, with error bars representing the 95% CI. In addition to the main analysis based 
on IVW MR, we include sensitivity analyses based on the weighted median, MR-Egger, MR-PRESSO, and MVMR accounting for known pleiotropic 
pathways. N. SNPs, number of SNPs; CI, confidence interval; Int. P-value, intercept P-value of MR-Egger; BMI, body mass index. An asterisk (*) 
indicates nominal significance. Two asterisks (**) indicate FDR-corrected significance
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downstream conversion to oestradiol [42]. A negative 
association between SHBG levels and breast cancer was 
observed in a meta-analysis of prospective studies [44], 
and in an MR study, only after adjusting for BMI in an 
MVMR model [30], in agreement with our study where 
we only found an association after adjusting for BMI for 
ER-positive breast cancer liability.

For cardiovascular biomarkers, a cohort study found 
an inverse association between ApoB, but not ApoA and 
breast cancer risk [45]. However, our MR study found a 
positive association between genetically predicted ApoA, 
but not genetically predicted ApoB and overall breast 
cancer liability. This difference in findings may have 
arisen due to confounding or reverse causation in the 
prospective cohort study. A meta-analysis of 15 obser-
vational studies did not find evidence of an association 
between CRP levels and overall breast cancer liability 
[46], in agreement with a previous MR study [47] and the 
current MR study. No evidence of associations of choles-
terol, HDL cholesterol, LDL cholesterol, and triglycerides 
with overall breast cancer risk was found in a meta-anal-
ysis of cohort studies [48]. An MR study also found no 
evidence of associations of genetically predicted choles-
terol, LDL cholesterol, or triglycerides, but found a posi-
tive association of HDL cholesterol with overall breast 
cancer [49]. We also found no evidence of associations 
of genetically predicted cholesterol or LDL cholesterol 
with overall breast cancer. However, we observed that 
genetically raised HDL cholesterol was consistently sig-
nificantly positively associated with all breast cancer 
outcomes. HDL cholesterol has been shown to stimulate 
breast cancer cell line proliferation in a dose-dependent 
relationship. The HDL receptor scavenger receptor class 
B type I, which contributes to tumour development via 
AKT and ERK1/2, has also been shown to be expressed 
more abundantly in human breast cancer tissue than in 
non-cancerous tissue [50]. Triglycerides were associated 
with a decreased liability for breast cancer, although not 
significantly in MVMR including the other lipids, and not 
ranked highly in MR-BMA. There was no evidence of an 
association between genetically predicted lipoprotein A 
levels and breast cancer liability in our study.

For diabetes-related biomarkers, a meta-analysis of 10 
cohort studies [51] and a previous MR study [52] found 
evidence of a positive association between serum glucose 
levels and risk or odds of overall breast cancer. However, 
we did not observe any evidence of association. We did 
not observe any associations between genetically pre-
dicted glycated haemoglobin levels and breast cancer 
liability.

For liver biomarkers, a case-cohort study found an 
inverse association between albumin and breast cancer 
risk [53], while our MR analyses did not find any evidence 

of association, likely due to residual confounding in the 
case-cohort study. The results of a meta-analysis of two 
cohort studies showed a higher risk of breast cancer with 
higher gamma-glutamyltransferase concentrations [54], 
whereas we did not find any evidence of an association in 
our MR study, possibly due to confounding in the cohort 
studies. No evidence of an association between total bili-
rubin concentrations and overall breast cancer liability 
was found in a case-cohort study [53], in agreement with 
our MR results. We found evidence of an inverse associa-
tion between genetically predicted aspartate aminotrans-
ferase concentrations and overall or ER-positive breast 
cancer liability. Yet, given the inconclusive evidence from 
our pleiotropy-robust approaches, possible bias from 
pleiotropy could not be excluded. We did not find any 
evidence of associations between genetically predicted 
alanine aminotransferase or direct bilirubin levels with 
breast cancer liability.

For renal biomarkers, a case-cohort study found an 
inverse association between uric acid levels and overall 
breast cancer liability. However, following adjustment for 
albumin, the association was attenuated [53]. Our study 
found no evidence of an association between genetically 
predicted urate levels and breast cancer liability. We 
found evidence for an inverse association between genet-
ically predicted urea levels and ER-positive breast cancer 
liability, but the evidence was inconclusive in the pleiot-
ropy-robust approaches due to large uncertainties that 
included the null, meaning that our results were more 
suggestive of a lack of association. We could not find any 
evidence of associations of genetically predicted serum 
creatinine, enzymatic creatinine, cystatin C, microalbu-
min, phosphate, potassium, sodium, and total protein 
with breast cancer liability.

A limitation of our study was that the data was 
restricted to women of white-European ancestry to 
avoid heterogeneity issues, which hinders our ability to 
generalise to populations of other ethnic backgrounds. 
Another deficit of our study was that our exposure [12] 
and outcome [8] samples were predominantly post-men-
opausal, thus limiting generalisability to pre-menopausal 
women. Moreover, though we performed multiple MR 
sensitivity analyses, there is still the possibility of residual 
pleiotropy.

Our study’s strengths include applying many univari-
able sensitivity analyses to appraise the validity of IV 
assumptions and limit potential bias from pleiotropy. 
We also included several MVMR models in our study to 
adjust for potential risk factors. To investigate reverse 
causation, we also conducted bidirectional MR for the 
association between genetically predicted ALP concen-
trations and breast cancer liability. Biomarker samples 
were collected prospectively from a large sample, and 
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we accounted for population stratification by restrict-
ing our study to participants of white-European ethnic-
ity and adjusting for genetic principal components. We 
explored genetic associations in women, which excluded 
the potential for sex-specific effects that can arise for bio-
markers such as testosterone [55]. Most of our results 
supported findings from previous studies, which acted 
as positive controls for our methods. Our study allowed 
for the generation of hypotheses, enabling further studies 
to be targeted at biomarkers of interest with little prior 
evidence of association, such as ALP. Ranking biomark-
ers in an agnostic manner using MR-BMA reinforced our 
confidence in the strength of our findings and provided 
us with information about the importance of testoster-
one, HDL cholesterol, IGF-1, and ALP in breast cancer 
liability.

Conclusions
We performed the most comprehensive and largest 
exploratory MR study to investigate the associations 
between all UKB biomarkers and overall, ER-positive, 
and ER-negative breast cancer. We replicated previous 
findings by corroborating the breast cancer liability-
increasing effects of testosterone, HDL cholesterol, and 
IGF-1 and generated the novel hypothesis that ALP is 
potentially liability-decreasing. Further research into 
the association between ALP and breast cancer liability 
is required, for example through an MVMR adjusting for 
oestrogen, to understand its mechanism in breast cancer 
risk.
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Additional file 1: Supplementary Tables. Table S1. In the literature, the 
risk and odds of overall breast cancer per unit increase in biomarker level. 
Summary table of the most recent and largest studies on the relation-
ship between each UKB biomarker and overall breast cancer. A unit is 
defined differently in each study. Results in bold font are significant. A 
dash (-) indicates that no study could be identified in the literature. BC, 
total breast cancer; PHR, pooled hazards ratio; PRR, pooled risk ratio; 
POR, pooled odds ratio, SRR, summary risk ratio; preM, pre-menopause; 
postM, post-menopause; IVW MR, inverse-variance weighted Mendelian 
randomisation. Table S2. Results from bidirectional MR analyses of the 
effects of genetically predicted overall breast cancer liability on geneti-
cally predicted alkaline phosphatase levels. Int. P-value; intercept P-value 
of MR-Egger. Table S3. Ranking of individual biomarkers according to 

their MIP with a PP of inclusion of 0.25 for overall breast cancer. MR-BMA 
ranking of the seven biomarkers nominally significantly associated with 
overall breast cancer in IVW MR and with consistent effect directions 
in the sensitivity analyses. Table S4. An MR-BMA ranking of individual 
biomarkers according to their marginal inclusion probability with a prior 
probability of inclusion of 0.75 for overall breast cancer. A ranking of the 
seven biomarkers nominally significantly associated with overall breast 
cancer in IVW MR and with consistent effect directions in the sensitivity 
analyses. Table S5. An MR-BMA ranking of the top 20 models according 
to their posterior probability with a prior probability of inclusion of 0.5 for 
overall breast cancer liability. Models consist of different combinations of 
the seven biomarkers nominally significantly associated with overall breast 
cancer in IVW MR and with consistent effect directions in the sensitivity 
analyses. Table S6. An MR-BMA ranking of the top 20 models according 
to their posterior probability with a prior probability of inclusion of 0.25 for 
overall breast cancer liability. Models consist of different combinations of 
the seven biomarkers nominally significantly associated with overall breast 
cancer in IVW MR and with consistent effect directions in the sensitivity 
analyses. Table S7. An MR-BMA ranking of the top 20 models according 
to their posterior probability with a prior probability of inclusion of 0.75 for 
overall breast cancer liability. Models consist of different combinations of 
the seven biomarkers nominally significantly associated with overall breast 
cancer in IVW MR and with consistent effect directions in the sensitivity 
analyses. Table S8. Results from bidirectional MR analyses of the effects 
of genetically predicted ER-positive breast cancer liability on genetically 
predicted alkaline phosphatase levels. Int. P-value; intercept P-value of 
MR-Egger. Table S9. Results from bidirectional MR analyses of the effects 
of genetically predicted ER-negative breast cancer liability on genetically 
predicted alkaline phosphatase levels. Int. P-value; intercept P-value of 
MR-Egger.

Additional file 2:  STROBE-MR Checklist.

Additional file 3: SNP Information. Table 1. Secondary trait associations 
of HDL cholesterol SNPs. Phenoscanner SNP associations. SNP: single 
nucleotide polymorphism. hg19_coordinates: the hg19 chromosome 
position for the input SNP. hg38_coordinates: the hg38 chromosome 
position for the input SNP. a1: the effect allele (aligned to the + strand). a2: 
the non-effect allele (aligned to the + strand). efo: the EFO ontology term 
for the phenotype or disease. pmid: PubMed ID. beta: association between 
the trait and the SNP expressed per additional copy of the effect allele 
(odds ratios are given on the log-scale). se: standard error of beta. p: 
p-value. direction: the direction of association with respect to the effect 
allele. n: number of individuals. n_cases: number of cases. n_controls: 
number of controls. n_studies: number of studies. unit: unit of analysis 
(IVNT stands for inverse normally rank transformed phenotype). Table 2. 
Secondary trait associations of alkaline phosphatase SNPs. Phenoscanner 
SNP associations. SNP: single nucleotide polymorphism. hg19_coordi-
nates: the hg19 chromosome position for the input SNP. hg38_coordi-
nates: the hg38 chromosome position for the input SNP. a1: the effect 
allele (aligned to the + strand). a2: the non-effect allele (aligned to the + 
strand). efo: the EFO ontology term for the phenotype or disease. pmid: 
PubMed ID. beta: association between the trait and the SNP expressed per 
additional copy of the effect allele (odds ratios are given on the log-scale). 
se: standard error of beta. p: p-value. direction: the direction of association 
with respect to the effect allele. n: number of individuals. n_cases: number 
of cases. n_controls: number of controls. n_studies: number of studies. 
unit: unit of analysis (IVNT stands for inverse normally rank transformed 
phenotype). Table 3. Secondary trait associations of testosterone SNPs. 
Phenoscanner SNP associations. SNP: single nucleotide polymorphism. 
hg19_coordinates: the hg19 chromosome position for the input SNP. 
hg38_coordinates: the hg38 chromosome position for the input SNP. a1: 
the effect allele (aligned to the + strand). a2: the non-effect allele (aligned 
to the + strand). efo: the EFO ontology term for the phenotype or disease. 
pmid: PubMed ID. beta: association between the trait and the SNP 
expressed per additional copy of the effect allele (odds ratios are given on 
the log-scale). se: standard error of beta. p: p-value. direction: the direction 
of association with respect to the effect allele. n: number of individuals. 
n_cases: number of cases. n_controls: number of controls. n_studies: 
number of studies. unit: unit of analysis (IVNT stands for inverse normally 
rank transformed phenotype). Table 4. Secondary trait associations of 
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triglycerides SNPs. Phenoscanner SNP associations. SNP: single nucleotide 
polymorphism. hg19_coordinates: the hg19 chromosome position for the 
input SNP. hg38_coordinates: the hg38 chromosome position for the 
input SNP. a1: the effect allele (aligned to the + strand). a2: the non-effect 
allele (aligned to the + strand). efo: the EFO ontology term for the 
phenotype or disease. pmid: PubMed ID. beta: association between the 
trait and the SNP expressed per additional copy of the effect allele (odds 
ratios are given on the log-scale). se: standard error of beta. p: p-value. 
direction: the direction of association with respect to the effect allele. n: 
number of individuals. n_cases: number of cases. n_controls: number of 
controls. n_studies: number of studies. unit: unit of analysis (IVNT stands 
for inverse normally rank transformed phenotype). Table 5. Secondary 
trait associations of IGF-1 SNPs. Phenoscanner SNP associations. SNP: 
single nucleotide polymorphism. hg19_coordinates: the hg19 chromo-
some position for the input SNP. hg38_coordinates: the hg38 chromo-
some position for the input SNP. a1: the effect allele (aligned to the + 
strand). a2: the non-effect allele (aligned to the + strand). efo: the EFO 
ontology term for the phenotype or disease. pmid: PubMed ID. beta: 
association between the trait and the SNP expressed per additional copy 
of the effect allele (odds ratios are given on the log-scale). se: standard 
error of beta. p: p-value. direction: the direction of association with respect 
to the effect allele. n: number of individuals. n_cases: number of cases. 
n_controls: number of controls. n_studies: number of studies. unit: unit of 
analysis (IVNT stands for inverse normally rank transformed phenotype). 
Table 6. Secondary trait associations of apolipoprotein A SNPs. 
Phenoscanner SNP associations. SNP: single nucleotide polymorphism. 
hg19_coordinates: the hg19 chromosome position for the input SNP. 
hg38_coordinates: the hg38 chromosome position for the input SNP. a1: 
the effect allele (aligned to the + strand). a2: the non-effect allele (aligned 
to the + strand). efo: the EFO ontology term for the phenotype or disease. 
pmid: PubMed ID. beta: association between the trait and the SNP 
expressed per additional copy of the effect allele (odds ratios are given on 
the log-scale). se: standard error of beta. p: p-value. direction: the direction 
of association with respect to the effect allele. n: number of individuals. 
n_cases: number of cases. n_controls: number of controls. n_studies: 
number of studies. unit: unit of analysis (IVNT stands for inverse normally 
rank transformed phenotype). Table 7. Secondary trait associations of 
aspartate aminotransferase SNPs. Phenoscanner SNP associations. SNP: 
single nucleotide polymorphism. hg19_coordinates: the hg19 chromo-
some position for the input SNP. hg38_coordinates: the hg38 chromo-
some position for the input SNP. a1: the effect allele (aligned to the + 
strand). a2: the non-effect allele (aligned to the + strand). efo: the EFO 
ontology term for the phenotype or disease. pmid: PubMed ID. beta: 
association between the trait and the SNP expressed per additional copy 
of the effect allele (odds ratios are given on the log-scale). se: standard 
error of beta. p: p-value. direction: the direction of association with respect 
to the effect allele. n: number of individuals. n_cases: number of cases. 
n_controls: number of controls. n_studies: number of studies. unit: unit of 
analysis (IVNT stands for inverse normally rank transformed phenotype). 
Table 8. Genetic associations with HDL cholesterol, overall , ER-positive, 
and ER-negative breast cancers. Abbreviations: SNP, single nucleotide 
polymorphism; Alt, alternate allele (not necessarily minor allele); Ref, 
reference allele; SE, standard error; P, P-value; MAF, minor allele frequency 
(equal to ref allele when AF > 0.5, otherwise equal to alt allele - calculated 
using hardcall genotypes); OBC, overall breast cancer; ERpos BC, 
ER-positive breast cancer; ERneg BC, ER-negative breast cancer. Table 9. 
Genetic associations with alkaline phosphatase, overall, ER-positive, and 
ER-negative breast cancers. Abbreviations: SNP, single nucleotide 
polymorphism; Alt, alternate allele (not necessarily minor allele); Ref, 
reference allele; SE, standard error; P, P-value; MAF, minor allele frequency 
(equal to ref allele when AF > 0.5, otherwise equal to alt allele - calculated 
using hardcall genotypes); OBC, overall breast cancer; ERpos BC, ER 
positive breast cancer; ERneg BC, ER negative breast cancer. Table 10. 
Genetic associations with testosterone, overall , ER-positive, and 
ER-negative breast cancers. Abbreviations: SNP, single nucleotide 
polymorphism; Alt, alternate allele (not necessarily minor allele); Ref, 
reference allele; SE, standard error; P, P-value; MAF, minor allele frequency 
(equal to ref allele when AF > 0.5, otherwise equal to alt allele - calculated 
using hardcall genotypes); OBC, overall breast cancer; ERpos BC, ER 
positive breast cancer; ERneg BC, ER negative breast cancer. Table 11. 

Genetic associations with triglycerides, overall , ER-positive, and 
ER-negative breast cancers. Abbreviations: SNP, single nucleotide 
polymorphism; Alt, alternate allele (not necessarily minor allele); Ref, 
reference allele; SE, standard error; P, P-value; MAF, minor allele frequency 
(equal to ref allele when AF > 0.5, otherwise equal to alt allele - calculated 
using hardcall genotypes); OBC, overall breast cancer; ERpos BC, ER 
positive breast cancer; ERneg BC, ER negative breast cancer. Table 12. 
Genetic associations with IGF-1, overall , ER-positive, and ER-negative 
breast cancers. Abbreviations: SNP, single nucleotide polymorphism; Alt, 
alternate allele (not necessarily minor allele); Ref, reference allele; SE, 
standard error; P, P-value; MAF, minor allele frequency (equal to ref allele 
when AF > 0.5, otherwise equal to alt allele - calculated using hardcall 
genotypes); OBC, overall breast cancer; ERpos BC, ER positive breast 
cancer; ERneg BC, ER negative breast cancer. Table 13. Genetic 
associations with apolipoprotein A, overall , ER-positive, and ER-negative 
breast cancers. Abbreviations: SNP, single nucleotide polymorphism; Alt, 
alternate allele (not necessarily minor allele); Ref, reference allele; SE, 
standard error; P, P-value; MAF, minor allele frequency (equal to ref allele 
when AF > 0.5, otherwise equal to alt allele - calculated using hardcall 
genotypes); OBC, overall breast cancer; ERpos BC, ER positive breast 
cancer; ERneg BC, ER negative breast cancer. Table 14. Genetic 
associations with aspartate aminotransferase, overall , ER-positive, and 
ER-negative breast cancers. Abbreviations: SNP, single nucleotide 
polymorphism; Alt, alternate allele (not necessarily minor allele); Ref, 
reference allele; SE, standard error; P, P-value; MAF, minor allele frequency 
(equal to ref allele when AF > 0.5, otherwise equal to alt allele - calculated 
using hardcall genotypes); OBC, overall breast cancer; ERpos BC, 
ER-positive breast cancer; ERneg BC, ER-negative breast cancer.

Additional file 4: Supplementary Figures. Figure S1. MR forest plot of 
bone and joint biomarkers on overall breast cancer liability. The forest plot 
in the centre displays the odds ratio of the effect of a SD increase in 
genetically predicted biomarker concentration on overall breast cancer 
liability as a square, with error bars representing the 95% CI. In addition to 
the main analysis based on IVW MR, we include sensitivity analyses based 
on the weighted median, MR-Egger, MR-PRESSO, and MVMR accounting 
for known pleiotropic pathways. N. SNPs; number of SNPs. CI; confidence 
interval. Int. P-value; intercept P-value of MR-Egger. T; Testosterone. BMI; 
body mass index. An asterisk (*) indicates nominal significance. Two 
asterisks (**) indicate FDR corrected significance. Figure S2. MR forest plot 
of cancer biomarkers on overall breast cancer liability. The forest plot in 
the centre displays the odds ratio of the effect of a SD increase in 
genetically predicted biomarker concentration on overall breast cancer 
liability as a square, with error bars representing the 95% CI. In addition to 
the main analysis based on IVW MR, we include sensitivity analyses based 
on the weighted median, MR-Egger, MR-PRESSO, and MVMR accounting 
for known pleiotropic pathways. N. SNPs; number of SNPs. Int. P-value; 
intercept P-value. ALP; alkaline phosphatase. T; testosterone. BMI; body 
mass index. * indicates nominal significance. An asterisk (*) indicates 
nominal significance. Two asterisks (**) indicate FDR corrected signifi-
cance. Figure S3. MR forest plot of cardiovascular biomarkers on overall 
breast cancer liability. The forest plot in the centre displays the odds ratio 
of the effect of a SD increase in genetically predicted biomarker 
concentration on overall breast cancer liability as a square, with error bars 
representing the 95% CI. In addition to the main analysis based on IVW 
MR, we include sensitivity analyses based on the weighted median, 
MR-Egger, MR-PRESSO, and MVMR accounting for known pleiotropic 
pathways. N. SNPs; number of SNPs. Int. P-value; intercept P-value. BMI; 
body mass index. An asterisk (*) indicates nominal significance. Two 
asterisks (**) indicate FDR corrected significance. Figure S4. MR forest plot 
of diabetes biomarkers on overall breast cancer liability. The forest plot in 
the centre displays the odds ratio of the effect of a SD increase in 
genetically predicted biomarker concentration on overall breast cancer 
liability as a square, with error bars representing the 95% CI. In addition to 
the main analysis based on IVW MR, we include sensitivity analyses based 
on the weighted median, MR-Egger, MR-PRESSO, and MVMR accounting 
for known pleiotropic pathways. N. SNPs; number of SNPs. Int. P-value; 
intercept P-value. An asterisk (*) indicates nominal significance. Two 
asterisks (**) indicate FDR corrected significance. Figure S5. MR forest plot 
of liver biomarkers on overall breast cancer liability. The forest plot in the 
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centre displays the odds ratio of the effect of a SD increase in genetically 
predicted biomarker concentration on overall breast cancer liability as a 
square, with error bars representing the 95% CI. In addition to the main 
analysis based on IVW MR, we include sensitivity analyses based on the 
weighted median, MR-Egger, MR-PRESSO, and MVMR accounting for 
known pleiotropic pathways. N. SNPs; number of SNPs. Int. P-value; 
intercept P-value. An asterisk (*) indicates nominal significance. Two 
asterisks (**) indicate FDR corrected significance. Figure S6. MR forest plot 
of renal biomarkers on overall breast cancer liability. The forest plot in the 
centre displays the odds ratio of the effect of a SD increase in genetically 
predicted biomarker concentration on overall breast cancer liability as a 
square, with error bars representing the 95% CI. In addition to the main 
analysis based on IVW MR, we include sensitivity analyses based on the 
weighted median, MR-Egger, MR-PRESSO, and MVMR accounting for 
known pleiotropic pathways. N. SNPs; number of SNPs. Int. P-value; 
intercept P-value. An asterisk (*) indicates nominal significance. Two 
asterisks (**) indicate FDR corrected significance. Figure S7. MVMR forest 
plot of lipid biomarkers on overall breast cancer liability. The forest plot 
displays the odds ratio of the effect of a unit increase in genetically 
predicted biomarker concentration on overall breast cancer liability as a 
square, with error bars representing the 95% CI. Biomarkers are shown in 
descending order of significance. An asterisk (*) indicates nominal 
significance. Figure S8. MVMR forest plot of biomarkers, alcohol, and BMI 
on overall breast cancer liability. The forest plot displays the odds ratio of 
the effect of a unit increase in genetically predicted biomarker concentra-
tion on overall breast cancer liability as a square, with error bars 
representing the 95% CI. Biomarkers are shown in descending order of 
significance. An asterisk (*) indicates nominal significance. Figure S9. 
MVMR forest plot of sex hormone biomarkers on overall breast cancer 
liability. The forest plot displays the odds ratio of the effect of a unit 
increase in genetically predicted biomarker concentration on overall 
breast cancer liability as a square, with error bars representing the 95% CI. 
Biomarkers are shown in descending order of significance. An asterisk (*) 
indicates nominal significance. Figure S10. MVMR forest plot of BMI and 
SHBG on overall breast cancer liability. The forest plot displays the odds 
ratio of the effect of a unit increase in genetically predicted biomarker 
concentration on overall breast cancer liability as a square, with error bars 
representing the 95% CI. Biomarkers are shown in descending order of 
significance. An asterisk (*) indicates nominal significance. Figure S11. MR 
forest plot of cardiovascular biomarkers on ER-positive breast cancer 
liability. The forest plot in the centre displays the odds ratio of the effect of 
a SD increase in genetically predicted biomarker concentration on ER 
positive breast cancer liability as a square, with error bars representing the 
95% CI. In addition to the main analysis based on IVW MR, we include 
sensitivity analyses based on the weighted median, MR-Egger, MR-
PRESSO, and MVMR accounting for known pleiotropic pathways. N. SNPs; 
number of SNPs. Int. P-value; intercept P-value. BMI; body mass index. An 
asterisk (*) indicates nominal significance. Two asterisks (**) indicate FDR 
corrected significance. Figure S12. MR forest plot of bone and joint 
biomarkers on ER-positive breast cancer liability. The forest plot in the 
centre displays the odds ratio of the effect of a SD increase in genetically 
predicted biomarker concentration on ER positive breast cancer liability as 
a square, with error bars representing the 95% CI. In addition to the main 
analysis based on IVW MR, we include sensitivity analyses based on the 
weighted median, MR-Egger, MR-PRESSO, and MVMR accounting for 
known pleiotropic pathways. N. SNPs; number of SNPs. Int. P-value; 
intercept P-value. BMI; body mass index. An asterisk (*) indicates nominal 
significance. Two asterisks (**) indicate FDR corrected significance. Figure 
S13. MR forest plot of cancer biomarkers on ER-positive breast cancer 
liability. The forest plot in the centre displays the odds ratio of the effect of 
a SD increase in genetically predicted biomarker concentration on ER 
negative breast cancer liability as a square, with error bars representing 
the 95% CI. In addition to the main analysis based on IVW MR, we include 
sensitivity analyses based on the weighted median, MR-Egger, MR-
PRESSO, and MVMR accounting for known pleiotropic pathways. N. SNPs; 
number of SNPs. Int. P-value; intercept P-value. BMI; body mass index. T; 
testosterone. An asterisk (*) indicates nominal significance. Two asterisks 
(**) indicate FDR corrected significance. Figure S14. MR forest plot of 
diabetes biomarkers on ER-positive breast cancer liability. The forest plot 
in the centre displays the odds ratio of the effect of a SD increase in 

genetically predicted biomarker concentration on ER negative breast 
cancer liability as a square, with error bars representing the 95% CI. In 
addition to the main analysis based on IVW MR, we include sensitivity 
analyses based on the weighted median, MR-Egger, MR-PRESSO, and 
MVMR accounting for known pleiotropic pathways. N. SNPs; number of 
SNPs. Int. P-value; intercept P-value. BMI; body mass index. T; testosterone. 
ALP; alkaline phosphatase. An asterisk (*) indicates nominal significance. 
Two asterisks (**) indicate FDR corrected significance. Figure S15. MR 
forest plot of liver biomarkers on ER-positive breast cancer liability. The 
forest plot in the centre displays the odds ratio of the effect of a SD 
increase in genetically predicted biomarker concentration on ER negative 
breast cancer liability as a square, with error bars representing the 95% CI. 
In addition to the main analysis based on IVW MR, we include sensitivity 
analyses based on the weighted median, MR-Egger, MR-PRESSO, and 
MVMR accounting for known pleiotropic pathways. N. SNPs; number of 
SNPs. Int. P-value; intercept P-value. BMI; body mass index. An asterisk (*) 
indicates nominal significance. Two asterisks (**) indicate FDR corrected 
significance. Figure S16. MR forest plot of renal biomarkers on ER-positive 
breast cancer liability. The forest plot in the centre displays the odds ratio 
of the effect of a SD increase in genetically predicted biomarker 
concentration on ER negative breast cancer liability as a square, with error 
bars representing the 95% CI. In addition to the main analysis based on 
IVW MR, we include sensitivity analyses based on the weighted median, 
MR-Egger, MR-PRESSO, and MVMR accounting for known pleiotropic 
pathways. N. SNPs; number of SNPs. Int. P-value; intercept P-value. An 
asterisk (*) indicates nominal significance. Two asterisks (**) indicate FDR 
corrected significance. Figure S17. MR forest plot of bone and joint 
biomarkers on ER-negative breast cancer liability. The forest plot in the 
centre displays the odds ratio of the effect of a SD increase in genetically 
predicted biomarker concentration on ER negative breast cancer liability 
as a square, with error bars representing the 95% CI. In addition to the 
main analysis based on IVW MR, we include sensitivity analyses based on 
the weighted median, MR-Egger, MR-PRESSO, and MVMR accounting for 
known pleiotropic pathways. N. SNPs; number of SNPs. Int. P-value; 
intercept P-value. An asterisk (*) indicates nominal significance. Two 
asterisks (**) indicate FDR corrected significance. Figure S18. MR forest 
plot of cancer biomarkers on ER-negative breast cancer liability. The forest 
plot in the centre displays the odds ratio of the effect of a SD increase in 
genetically predicted biomarker concentration on ER negative breast 
cancer liability as a square, with error bars representing the 95% CI. In 
addition to the main analysis based on IVW MR, we include sensitivity 
analyses based on the weighted median, MR-Egger, MR-PRESSO, and 
MVMR accounting for known pleiotropic pathways. N. SNPs; number of 
SNPs. Int. P-value; intercept P-value. An asterisk (*) indicates nominal 
significance. Two asterisks (**) indicate FDR corrected significance. Figure 
S19. MR forest plot of cardiovascular biomarkers on ER-negative breast 
cancer liability. The forest plot displays the odds ratio of the effect of a unit 
increase in genetically predicted biomarker concentration on overall 
breast cancer liability as a square, with error bars representing the 95% CI. 
Biomarkers are shown in descending order of significance. An asterisk (*) 
indicates nominal significance. Figure S20. MR forest plot of diabetes 
biomarkers on ER-negative breast cancer liability. The forest plot displays 
the odds ratio of the effect of a unit increase in genetically predicted 
biomarker concentration on overall breast cancer liability as a square, with 
error bars representing the 95% CI. Biomarkers are shown in descending 
order of significance. An asterisk (*) indicates nominal significance. Figure 
S21. MR forest plot of liver biomarkers on ER-negative breast cancer 
liability. The forest plot displays the odds ratio of the effect of a unit 
increase in genetically predicted biomarker concentration on overall 
breast cancer liability as a square, with error bars representing the 95% CI. 
Biomarkers are shown in descending order of significance. An asterisk (*) 
indicates nominal significance. Figure S22. MR forest plot of renal 
biomarkers on ER-negative breast cancer liability. The forest plot displays 
the odds ratio of the effect of a unit increase in genetically predicted 
biomarker concentration on overall breast cancer liability as a square, with 
error bars representing the 95% CI. Biomarkers are shown in descending 
order of significance. An asterisk (*) indicates nominal significance. Figure 
S23. MVMR forest plot of lipid biomarkers on ER-positive breast cancer 
liability. The forest plot displays the odds ratio of the effect of a unit 
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increase in genetically predicted biomarker concentration on ER positive 
breast cancer liability as a square, with error bars representing the 95% CI. 
Biomarkers are shown in descending order of significance. An asterisk (*) 
indicates nominal significance. Figure S24. MVMR forest plot of lipid 
biomarkers on ER-negative breast cancer liability. The forest plot displays 
the odds ratio of the effect of a unit increase in genetically predicted 
biomarker concentration on ER-negative breast cancer liability as a square, 
with error bars representing the 95% CI. Biomarkers are shown in 
descending order of significance. An asterisk (*) indicates nominal 
significance. Figure S25. MVMR forest plot of biomarkers, alcohol, and BMI 
on ER-positive breast cancer liability. The forest plot displays the odds ratio 
of the effect of a unit increase in genetically predicted biomarker 
concentration on ER-negative breast cancer liability as a square, with error 
bars representing the 95% CI. Biomarkers are shown in descending order 
of significance. An asterisk (*) indicates nominal significance. Figure S26. 
MVMR forest plot of biomarkers, alcohol, and BMI on ER-negative breast 
cancer liability. The forest plot displays the odds ratio of the effect of a unit 
increase in genetically predicted biomarker concentration on ER positive 
breast cancer liability as a square, with error bars representing the 95% CI. 
Biomarkers are shown in descending order of significance. An asterisk (*) 
indicates nominal significance. Figure S27. MVMR forest plot of T, SHBG, 
and ALP on ER-positive breast cancer liability. The forest plot displays the 
odds ratio of the effect of a unit increase in genetically predicted 
biomarker concentration on ER-positive breast cancer liability as a square, 
with error bars representing the 95% CI. Biomarkers are shown in 
descending order of significance. An asterisk (*) indicates nominal 
significance. Figure S28. MVMR forest plot of lipid biomarkers on 
ER-negative breast cancer liability. The forest plot displays the odds ratio of 
the effect of a unit increase in genetically predicted biomarker concentra-
tion on ER-negative breast cancer liability as a square, with error bars 
representing the 95% CI. Biomarkers are shown in descending order of 
significance. An asterisk (*) indicates nominal significance. Figure S29. 
MVMR forest plot of BMI and SHBG on ER-positive breast cancer liability. 
The forest plot displays the odds ratio of the effect of a unit increase in 
genetically predicted biomarker concentration on ER-positive breast 
cancer liability as a square, with error bars representing the 95% CI. 
Biomarkers are shown in descending order of significance. An asterisk (*) 
indicates nominal significance. Figure S30. MVMR forest plot of BMI and 
SHBG on ER-negative breast cancer liability. The forest plot displays the 
odds ratio of the effect of a unit increase in genetically predicted 
biomarker concentration on ER-negative breast cancer liability as a square, 
with error bars representing the 95% CI. Biomarkers are shown in 
descending order of significance. An asterisk (*) indicates nominal 
significance.

Additional file 5: Table S1. Risk and odds of breast cancer per unit 
increase of each UKB biomarker in the literature and our study. A unit is 
defined differently in each study. Results in bold font are significant. BC, 
total breast cancer; PHR, pooled hazards ratio; PRR, pooled risk ratio; POR, 
pooled odds ratio, SRR, summary risk ratio; preM, pre-menopause; postM, 
post-menopause; IVW MR, inverse-variance weighted Mendelian randomi-
sation. An asterisk (*) indicates that the ratio method was performed.
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